README.md 2.38 KB
Newer Older
sunxx1's avatar
sunxx1 committed
1
2
# ShuffleNetV2

sunxx1's avatar
sunxx1 committed
3
4
5
6
7
8
## 论文

ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design

- https://openaccess.thecvf.com/content_ECCV_2018/papers/Ningning_Light-weight_CNN_Architecture_ECCV_2018_paper.pdf

sunxx1's avatar
sunxx1 committed
9
10
11
12
## 模型介绍

ShuffleNetV2 是一种轻量级神经网络模型,旨在提高深度学习模型的效率和速度。ShuffleNetV2 利用组卷积和通道重排等技术,在保持准确性的同时,将参数量和计算量大幅降低。

sunxx1's avatar
sunxx1 committed
13
14
![20231124114915](./images/20231124114915.png)

sunxx1's avatar
sunxx1 committed
15
16
17
18
## 模型结构

ShuffleNetV2 的网络结构可以分为两个部分:基础网络和分类器。基础网络主要包含一系列 ShuffleNetV2 单元,用于提取图像特征;分类器则将提取的特征映射到类别概率上。

sunxx1's avatar
sunxx1 committed
19
![20231124120131](./images/20231124120131.png)
sunxx1's avatar
sunxx1 committed
20

sunxx1's avatar
sunxx1 committed
21
## 环境配置
sunxx1's avatar
sunxx1 committed
22

sunxx1's avatar
sunxx1 committed
23
### Docker
sunxx1's avatar
sunxx1 committed
24

sunxx1's avatar
sunxx1 committed
25
26
27
28
29
```python
git clone --recursive http://developer.hpccube.com/codes/modelzoo/shufflenet_v2_mmcv.git
docker pull image.sourcefind.cn:5000/dcu/admin/base/pytorch:1.10.0-centos7.6-dtk-22.10.1-py37-latest
# <your IMAGE ID>用以上拉取的docker的镜像ID替换
docker run --shm-size 10g --network=host --name=nit-pytorch --privileged --device=/dev/kfd --device=/dev/dri --group-add video --cap-add=SYS_PTRACE --security-opt seccomp=unconfined -v $PWD/Shufflenet_v2_mmcv :/home/Shufflenet_v2_mmcv  -it <your IMAGE ID> bash
sunxx1's avatar
sunxx1 committed
30

sunxx1's avatar
sunxx1 committed
31
32
33
cd Shufflenet_v2_mmcv /mmclassification-mmcv
pip install -r requirements.txt
```
sunxx1's avatar
sunxx1 committed
34

sunxx1's avatar
sunxx1 committed
35
## 数据集
sunxx1's avatar
sunxx1 committed
36

sunxx1's avatar
sunxx1 committed
37
在本测试中可以使用ImageNet数据集。
sunxx1's avatar
sunxx1 committed
38

sunxx1's avatar
sunxx1 committed
39
40
41
42
下载ImageNet数据集:https://image-net.org/

下载val数据:链接:https://pan.baidu.com/s/1oXsmsYahGVG3uOZ8e535LA?pwd=c3bc 提取码:c3bc 替换ImageNet数据集中的val目录,处理后的数据结构如下:

sunxx1's avatar
sunxx1 committed
43
44
45
46
47
```
├── meta
├── train
├── val
```
sunxx1's avatar
sunxx1 committed
48
49
50
51
52

### 训练

将训练数据解压到data目录下。

sunxx1's avatar
sunxx1 committed
53
### 单机8卡
sunxx1's avatar
sunxx1 committed
54
55
56

    ./shufflenet_v2.sh

sunxx1's avatar
sunxx1 committed
57
## 精度
sunxx1's avatar
sunxx1 committed
58
59
60

测试数据使用的是ImageNet数据集,使用的加速卡是DCU Z100L。

sunxx1's avatar
sunxx1 committed
61
62
63
64
| 卡数 |          精度           |
| :--: | :---------------------: |
|  8   | top1:0.6960;top5:0.8895 |

sunxx1's avatar
sunxx1 committed
65
66
67
68
69
70
71
72
73
74
75
76
77
78
## result

![img](https://developer.hpccube.com/codes/modelzoo/vit_pytorch/-/raw/master/image/README/1695381570003.png)

## 应用场景

### 算法类别

图像分类

### 热点行业

制造,能源,交通,网安

sunxx1's avatar
sunxx1 committed
79
### 源码仓库及问题反馈
sunxx1's avatar
sunxx1 committed
80

sunxx1's avatar
sunxx1 committed
81
https://developer.hpccube.com/codes/modelzoo/shufflenet_v2_mmcv
sunxx1's avatar
sunxx1 committed
82
83
84
85

### 参考

https://github.com/open-mmlab/mmpretrain