pdf_extract_kit.py 18.2 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
from loguru import logger
import os
import time

from magic_pdf.libs.Constants import *
from magic_pdf.model.model_list import AtomicModel

os.environ['NO_ALBUMENTATIONS_UPDATE'] = '1'  # 禁止albumentations检查更新
try:
    import cv2
    import yaml
    import argparse
    import numpy as np
    import torch
    # import torchtext
    #
    # if torchtext.__version__ >= "0.18.0":
    #     torchtext.disable_torchtext_deprecation_warning()
    from PIL import Image
    from torchvision import transforms
    from torch.utils.data import Dataset, DataLoader
    from ultralytics import YOLO
    # from unimernet.common.config import Config
    # import unimernet.tasks as tasks
    # from unimernet.processors import load_processor

except ImportError as e:
    logger.exception(e)
    logger.error(
        'Required dependency not installed, please install by \n'
        '"pip install magic-pdf[full] --extra-index-url https://myhloli.github.io/wheels/"')
    exit(1)

from magic_pdf.model.pek_sub_modules.layoutlmv3.model_init import Layoutlmv3_Predictor
from magic_pdf.model.pek_sub_modules.post_process import get_croped_image, latex_rm_whitespace
from magic_pdf.model.pek_sub_modules.self_modify import ModifiedPaddleOCR
from magic_pdf.model.pek_sub_modules.structeqtable.StructTableModel import StructTableModel
from magic_pdf.model.ppTableModel import ppTableModel


def table_model_init(table_model_type, model_path, max_time, _device_='cpu'):
    if table_model_type == STRUCT_EQTABLE:
        table_model = StructTableModel(model_path, max_time=max_time, device=_device_)
    else:
        config = {
            "model_dir": model_path,
            "device": _device_
        }
        table_model = ppTableModel(config)
    return table_model


def mfd_model_init(weight):
    mfd_model = YOLO(weight)
    return mfd_model


# def mfr_model_init(weight_dir, cfg_path, _device_='cpu'):
#     args = argparse.Namespace(cfg_path=cfg_path, options=None)
#     cfg = Config(args)
#     cfg.config.model.pretrained = os.path.join(weight_dir, "pytorch_model.bin")
#     cfg.config.model.model_config.model_name = weight_dir
#     cfg.config.model.tokenizer_config.path = weight_dir
#     task = tasks.setup_task(cfg)
#     model = task.build_model(cfg)
#     model = model.to(_device_)
#     vis_processor = load_processor('formula_image_eval', cfg.config.datasets.formula_rec_eval.vis_processor.eval)
#     mfr_transform = transforms.Compose([vis_processor, ])
#     return [model, mfr_transform]


def layout_model_init(weight, config_file, device):
    model = Layoutlmv3_Predictor(weight, config_file, device)
    return model


def ocr_model_init(show_log: bool = False, det_db_box_thresh=0.3):
    model = ModifiedPaddleOCR(show_log=show_log, det_db_box_thresh=det_db_box_thresh)
    return model


class MathDataset(Dataset):
    def __init__(self, image_paths, transform=None):
        self.image_paths = image_paths
        self.transform = transform

    def __len__(self):
        return len(self.image_paths)

    def __getitem__(self, idx):
        # if not pil image, then convert to pil image
        if isinstance(self.image_paths[idx], str):
            raw_image = Image.open(self.image_paths[idx])
        else:
            raw_image = self.image_paths[idx]
        if self.transform:
            image = self.transform(raw_image)
            return image


class AtomModelSingleton:
    _instance = None
    _models = {}

    def __new__(cls, *args, **kwargs):
        if cls._instance is None:
            cls._instance = super().__new__(cls)
        return cls._instance

    def get_atom_model(self, atom_model_name: str, **kwargs):
        if atom_model_name not in self._models:
            self._models[atom_model_name] = atom_model_init(model_name=atom_model_name, **kwargs)
        return self._models[atom_model_name]


def atom_model_init(model_name: str, **kwargs):

    if model_name == AtomicModel.Layout:
        atom_model = layout_model_init(
            kwargs.get("layout_weights"),
            kwargs.get("layout_config_file"),
            kwargs.get("device")
        )
    elif model_name == AtomicModel.MFD:
        atom_model = mfd_model_init(
            kwargs.get("mfd_weights")
        )
    # elif model_name == AtomicModel.MFR:
    #     atom_model = mfr_model_init(
    #         kwargs.get("mfr_weight_dir"),
    #         kwargs.get("mfr_cfg_path"),
    #         kwargs.get("device")
    #     )
    elif model_name == AtomicModel.OCR:
        atom_model = ocr_model_init(
            kwargs.get("ocr_show_log"),
            kwargs.get("det_db_box_thresh")
        )
    elif model_name == AtomicModel.Table:
        atom_model = table_model_init(
            kwargs.get("table_model_type"),
            kwargs.get("table_model_path"),
            kwargs.get("table_max_time"),
            kwargs.get("device")
        )
    else:
        logger.error("model name not allow")
        exit(1)

    return atom_model


class CustomPEKModel:

    def __init__(self, ocr: bool = False, show_log: bool = False, **kwargs):
        """
        ======== model init ========
        """
        # 获取当前文件(即 pdf_extract_kit.py)的绝对路径
        current_file_path = os.path.abspath(__file__)
        # 获取当前文件所在的目录(model)
        current_dir = os.path.dirname(current_file_path)
        # 上一级目录(magic_pdf)
        root_dir = os.path.dirname(current_dir)
        # model_config目录
        model_config_dir = os.path.join(root_dir, 'resources', 'model_config')
        # 构建 model_configs.yaml 文件的完整路径
        config_path = os.path.join(model_config_dir, 'model_configs.yaml')
        with open(config_path, "r", encoding='utf-8') as f:
            self.configs = yaml.load(f, Loader=yaml.FullLoader)
        # 初始化解析配置
        self.apply_layout = kwargs.get("apply_layout", self.configs["config"]["layout"])
        self.apply_formula = kwargs.get("apply_formula", self.configs["config"]["formula"])
        # table config
        self.table_config = kwargs.get("table_config", self.configs["config"]["table_config"])
        self.apply_table = self.table_config.get("is_table_recog_enable", False)
        self.table_max_time = self.table_config.get("max_time", TABLE_MAX_TIME_VALUE)
        self.table_model_type = self.table_config.get("model", TABLE_MASTER)
        self.apply_ocr = ocr
        logger.info(
            "DocAnalysis init, this may take some times. apply_layout: {}, apply_formula: {}, apply_ocr: {}, apply_table: {}".format(
                self.apply_layout, self.apply_formula, self.apply_ocr, self.apply_table
            )
        )
        assert self.apply_layout, "DocAnalysis must contain layout model."
        # 初始化解析方案
        self.device = kwargs.get("device", self.configs["config"]["device"])
        logger.info("using device: {}".format(self.device))
        models_dir = kwargs.get("models_dir", os.path.join(root_dir, "resources", "models"))
        logger.info("using models_dir: {}".format(models_dir))

        atom_model_manager = AtomModelSingleton()

        # 初始化公式识别
        if self.apply_formula:
            # 初始化公式检测模型
            # self.mfd_model = mfd_model_init(str(os.path.join(models_dir, self.configs["weights"]["mfd"])))
            self.mfd_model = atom_model_manager.get_atom_model(
                atom_model_name=AtomicModel.MFD,
                mfd_weights=str(os.path.join(models_dir, self.configs["weights"]["mfd"]))
            )
            # 初始化公式解析模型
            mfr_weight_dir = str(os.path.join(models_dir, self.configs["weights"]["mfr"]))
            # mfr_cfg_path = str(os.path.join(model_config_dir, "UniMERNet", "demo.yaml"))
            # self.mfr_model, mfr_vis_processors = mfr_model_init(mfr_weight_dir, mfr_cfg_path, _device_=self.device)
            # self.mfr_transform = transforms.Compose([mfr_vis_processors, ])
            # self.mfr_model, self.mfr_transform = atom_model_manager.get_atom_model(
            #     atom_model_name=AtomicModel.MFR,
            #     mfr_weight_dir=mfr_weight_dir,
            #     mfr_cfg_path=mfr_cfg_path,
            #     device=self.device
            # )

        # 初始化layout模型
        # self.layout_model = Layoutlmv3_Predictor(
        #     str(os.path.join(models_dir, self.configs['weights']['layout'])),
        #     str(os.path.join(model_config_dir, "layoutlmv3", "layoutlmv3_base_inference.yaml")),
        #     device=self.device
        # )
        self.layout_model = atom_model_manager.get_atom_model(
            atom_model_name=AtomicModel.Layout,
            layout_weights=str(os.path.join(models_dir, self.configs['weights']['layout'])),
            layout_config_file=str(os.path.join(model_config_dir, "layoutlmv3", "layoutlmv3_base_inference.yaml")),
            device=self.device
        )
        # 初始化ocr
        if self.apply_ocr:

            # self.ocr_model = ModifiedPaddleOCR(show_log=show_log, det_db_box_thresh=0.3)
            self.ocr_model = atom_model_manager.get_atom_model(
                atom_model_name=AtomicModel.OCR,
                ocr_show_log=show_log,
                det_db_box_thresh=0.3
            )
        # init table model
        if self.apply_table:
            table_model_dir = self.configs["weights"][self.table_model_type]
            # self.table_model = table_model_init(self.table_model_type, str(os.path.join(models_dir, table_model_dir)),
            #                                     max_time=self.table_max_time, _device_=self.device)
            self.table_model = atom_model_manager.get_atom_model(
                atom_model_name=AtomicModel.Table,
                table_model_type=self.table_model_type,
                table_model_path=str(os.path.join(models_dir, table_model_dir)),
                table_max_time=self.table_max_time,
                device=self.device
            )

        logger.info('DocAnalysis init done!')

zhougaofeng's avatar
zhougaofeng committed
250
    def __call__(self, image,index,end_page_id):
251
252
253
254
255
256
257
258

        latex_filling_list = []
        mf_image_list = []

        # layout检测
        layout_start = time.time()
        layout_res = self.layout_model(image, ignore_catids=[])
        layout_cost = round(time.time() - layout_start, 2)
zhougaofeng's avatar
zhougaofeng committed
259
260
        # logger.info(f"layout detection cost: {layout_cost}")
        total_cost = layout_cost
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
        if self.apply_formula:
            # 公式检测
            mfd_res = self.mfd_model.predict(image, imgsz=1888, conf=0.25, iou=0.45, verbose=True)[0]
            for xyxy, conf, cla in zip(mfd_res.boxes.xyxy.cpu(), mfd_res.boxes.conf.cpu(), mfd_res.boxes.cls.cpu()):
                xmin, ymin, xmax, ymax = [int(p.item()) for p in xyxy]
                new_item = {
                    'category_id': 13 + int(cla.item()),
                    'poly': [xmin, ymin, xmax, ymin, xmax, ymax, xmin, ymax],
                    'score': round(float(conf.item()), 2),
                    'latex': '',
                }
                layout_res.append(new_item)
                latex_filling_list.append(new_item)
                bbox_img = get_croped_image(Image.fromarray(image), [xmin, ymin, xmax, ymax])
                mf_image_list.append(bbox_img)

            # 公式识别
            mfr_start = time.time()
            dataset = MathDataset(mf_image_list, transform=self.mfr_transform)
            dataloader = DataLoader(dataset, batch_size=64, num_workers=0)
            mfr_res = []
            for mf_img in dataloader:
                mf_img = mf_img.to(self.device)
                output = self.mfr_model.generate({'image': mf_img})
                mfr_res.extend(output['pred_str'])
            for res, latex in zip(latex_filling_list, mfr_res):
                res['latex'] = latex_rm_whitespace(latex)
            mfr_cost = round(time.time() - mfr_start, 2)
zhougaofeng's avatar
zhougaofeng committed
289
            # logger.info(f"formula nums: {len(mf_image_list)}, mfr time: {mfr_cost}")
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371

        # Select regions for OCR / formula regions / table regions
        ocr_res_list = []
        table_res_list = []
        single_page_mfdetrec_res = []
        for res in layout_res:
            if int(res['category_id']) in [13, 14]:
                single_page_mfdetrec_res.append({
                    "bbox": [int(res['poly'][0]), int(res['poly'][1]),
                             int(res['poly'][4]), int(res['poly'][5])],
                })
            elif int(res['category_id']) in [0, 1, 2, 4, 6, 7]:
                ocr_res_list.append(res)
            elif int(res['category_id']) in [5]:
                table_res_list.append(res)

        #  Unified crop img logic
        def crop_img(input_res, input_pil_img, crop_paste_x=0, crop_paste_y=0):
            crop_xmin, crop_ymin = int(input_res['poly'][0]), int(input_res['poly'][1])
            crop_xmax, crop_ymax = int(input_res['poly'][4]), int(input_res['poly'][5])
            # Create a white background with an additional width and height of 50
            crop_new_width = crop_xmax - crop_xmin + crop_paste_x * 2
            crop_new_height = crop_ymax - crop_ymin + crop_paste_y * 2
            return_image = Image.new('RGB', (crop_new_width, crop_new_height), 'white')

            # Crop image
            crop_box = (crop_xmin, crop_ymin, crop_xmax, crop_ymax)
            cropped_img = input_pil_img.crop(crop_box)
            return_image.paste(cropped_img, (crop_paste_x, crop_paste_y))
            return_list = [crop_paste_x, crop_paste_y, crop_xmin, crop_ymin, crop_xmax, crop_ymax, crop_new_width, crop_new_height]
            return return_image, return_list

        pil_img = Image.fromarray(image)
        #logger.info(f'是否ocr识别:{self.apply_ocr}')
        # ocr识别
        if self.apply_ocr:
            ocr_start = time.time()
            # Process each area that requires OCR processing
            for res in ocr_res_list:
                new_image, useful_list = crop_img(res, pil_img, crop_paste_x=50, crop_paste_y=50)
                paste_x, paste_y, xmin, ymin, xmax, ymax, new_width, new_height = useful_list
                # Adjust the coordinates of the formula area
                adjusted_mfdetrec_res = []
                for mf_res in single_page_mfdetrec_res:
                    mf_xmin, mf_ymin, mf_xmax, mf_ymax = mf_res["bbox"]
                    # Adjust the coordinates of the formula area to the coordinates relative to the cropping area
                    x0 = mf_xmin - xmin + paste_x
                    y0 = mf_ymin - ymin + paste_y
                    x1 = mf_xmax - xmin + paste_x
                    y1 = mf_ymax - ymin + paste_y
                    # Filter formula blocks outside the graph
                    if any([x1 < 0, y1 < 0]) or any([x0 > new_width, y0 > new_height]):
                        continue
                    else:
                        adjusted_mfdetrec_res.append({
                            "bbox": [x0, y0, x1, y1],
                        })

                # OCR recognition
                new_image = cv2.cvtColor(np.asarray(new_image), cv2.COLOR_RGB2BGR)
                ocr_res = self.ocr_model.ocr(new_image, mfd_res=adjusted_mfdetrec_res)[0]
         #       logger.info(f'------------------------------------orc_res:\n{ocr_res}\n------------------------------------')
                # Integration results
                if ocr_res:
                    for box_ocr_res in ocr_res:
                        p1, p2, p3, p4 = box_ocr_res[0]
                        text, score = box_ocr_res[1]

                        # Convert the coordinates back to the original coordinate system
                        p1 = [p1[0] - paste_x + xmin, p1[1] - paste_y + ymin]
                        p2 = [p2[0] - paste_x + xmin, p2[1] - paste_y + ymin]
                        p3 = [p3[0] - paste_x + xmin, p3[1] - paste_y + ymin]
                        p4 = [p4[0] - paste_x + xmin, p4[1] - paste_y + ymin]

                        layout_res.append({
                            'category_id': 15,
                            'poly': p1 + p2 + p3 + p4,
                            'score': round(score, 2),
                            'text': text,
                        })

            ocr_cost = round(time.time() - ocr_start, 2)
zhougaofeng's avatar
zhougaofeng committed
372
373
374
375
376
            # logger.info(f"ocr cost: {ocr_cost}")
            total_cost = total_cost + ocr_cost
        index = index + 1
        end_page_id = end_page_id + 1
        logger.info(f'当前解析第【{index} / {end_page_id}】页, 耗时:{total_cost}')
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
        #logger.info(f'是否表格识别:{self.apply_table}')
        # 表格识别 table recognition
        if self.apply_table:
            table_start = time.time()
            for res in table_res_list:
                #logger.info(f'------------------------------table_res\n{res}\n----------------------------------')
                new_image, _ = crop_img(res, pil_img)
                single_table_start_time = time.time()
                logger.info("------------------table recognition processing begins-----------------")
                latex_code = None
                html_code = None
                if self.table_model_type == STRUCT_EQTABLE:
                    with torch.no_grad():
                        latex_code = self.table_model.image2latex(new_image)[0]
                else:
                    html_code = self.table_model.img2html(new_image)

                run_time = time.time() - single_table_start_time
                logger.info(f"------------table recognition processing ends within {run_time}s-----")
                if run_time > self.table_max_time:
                    logger.warning(f"------------table recognition processing exceeds max time {self.table_max_time}s----------")
                # 判断是否返回正常

                if latex_code:
                    expected_ending = latex_code.strip().endswith('end{tabular}') or latex_code.strip().endswith(
                        'end{table}')
                    if expected_ending:
                        res["latex"] = latex_code
                    else:
                        logger.warning(f"------------table recognition processing fails----------")
                elif html_code:
                    res["html"] = html_code
                else:
                    logger.warning(f"------------table recognition processing fails----------")
            table_cost = round(time.time() - table_start, 2)
            logger.info(f"table cost: {table_cost}")

        return layout_res