trainer.py 5.69 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
import json
import os
from types import MethodType
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union

import numpy as np
import torch
from transformers import Seq2SeqTrainer

from ...extras.constants import IGNORE_INDEX
from ...extras.logging import get_logger
from ..utils import create_custom_optimzer, create_custom_scheduler


if TYPE_CHECKING:
    from transformers import ProcessorMixin
    from transformers.trainer import PredictionOutput

    from ...hparams import FinetuningArguments


logger = get_logger(__name__)


class CustomSeq2SeqTrainer(Seq2SeqTrainer):
    r"""
    Inherits Seq2SeqTrainer to compute generative metrics such as BLEU and ROUGE.
    """

    def __init__(
        self, finetuning_args: "FinetuningArguments", processor: Optional["ProcessorMixin"], **kwargs
    ) -> None:
        super().__init__(**kwargs)
        self.finetuning_args = finetuning_args
        self.processor = processor
        if finetuning_args.use_badam:
            from badam import clip_grad_norm_for_sparse_tensor

            self.accelerator.clip_grad_norm_ = MethodType(clip_grad_norm_for_sparse_tensor, self.accelerator)

    def create_optimizer(self) -> "torch.optim.Optimizer":
        if self.optimizer is None:
            self.optimizer = create_custom_optimzer(self.model, self.args, self.finetuning_args)
        return super().create_optimizer()

    def create_scheduler(
        self, num_training_steps: int, optimizer: Optional["torch.optim.Optimizer"] = None
    ) -> "torch.optim.lr_scheduler.LRScheduler":
        create_custom_scheduler(self.args, num_training_steps, optimizer)
        return super().create_scheduler(num_training_steps, optimizer)

    def _save(self, output_dir: Optional[str] = None, state_dict: Optional[Dict[str, "torch.Tensor"]] = None) -> None:
        super()._save(output_dir, state_dict)
        if self.processor is not None:
            output_dir = output_dir if output_dir is not None else self.args.output_dir
            getattr(self.processor, "image_processor").save_pretrained(output_dir)

    def prediction_step(
        self,
        model: "torch.nn.Module",
        inputs: Dict[str, Union[torch.Tensor, Any]],
        prediction_loss_only: bool,
        ignore_keys: Optional[List[str]] = None,
    ) -> Tuple[Optional[float], Optional[torch.Tensor], Optional[torch.Tensor]]:
        r"""
        Removes the prompt part in the generated tokens.

        Subclass and override to inject custom behavior.
        """
        labels = inputs["labels"].detach().clone() if "labels" in inputs else None  # backup labels
        if self.args.predict_with_generate:
            assert self.tokenizer.padding_side == "left", "This method only accepts left-padded tensor."
            prompt_len, label_len = inputs["input_ids"].size(-1), inputs["labels"].size(-1)
            if prompt_len > label_len:
                inputs["labels"] = self._pad_tensors_to_target_len(inputs["labels"], inputs["input_ids"])
            if label_len > prompt_len:  # truncate the labels instead of padding the inputs (llama2 fp16 compatibility)
                inputs["labels"] = inputs["labels"][:, :prompt_len]

        loss, generated_tokens, _ = super().prediction_step(  # ignore the returned labels (may be truncated)
            model, inputs, prediction_loss_only=prediction_loss_only, ignore_keys=ignore_keys
        )
        if generated_tokens is not None and self.args.predict_with_generate:
            generated_tokens[:, :prompt_len] = self.tokenizer.pad_token_id
            generated_tokens = generated_tokens.contiguous()

        return loss, generated_tokens, labels

    def _pad_tensors_to_target_len(self, src_tensor: torch.Tensor, tgt_tensor: torch.Tensor) -> torch.Tensor:
        r"""
        Pads the tensor to the same length as the target tensor.
        """
        assert self.tokenizer.pad_token_id is not None, "Pad token is required."
        padded_tensor = self.tokenizer.pad_token_id * torch.ones_like(tgt_tensor)
        padded_tensor[:, -src_tensor.shape[-1] :] = src_tensor  # adopt left-padding
        return padded_tensor.contiguous()  # in contiguous memory

    def save_predictions(self, predict_results: "PredictionOutput") -> None:
        r"""
        Saves model predictions to `output_dir`.

        A custom behavior that not contained in Seq2SeqTrainer.
        """
        if not self.is_world_process_zero():
            return

        output_prediction_file = os.path.join(self.args.output_dir, "generated_predictions.jsonl")
        logger.info(f"Saving prediction results to {output_prediction_file}")

        labels = np.where(
            predict_results.label_ids != IGNORE_INDEX, predict_results.label_ids, self.tokenizer.pad_token_id
        )
        preds = np.where(
            predict_results.predictions != IGNORE_INDEX, predict_results.predictions, self.tokenizer.pad_token_id
        )

        for i in range(len(preds)):
            pad_len = np.nonzero(preds[i] != self.tokenizer.pad_token_id)[0]
            if len(pad_len):
                preds[i] = np.concatenate(
                    (preds[i][pad_len[0] :], preds[i][: pad_len[0]]), axis=-1
                )  # move pad token to last

        decoded_labels = self.tokenizer.batch_decode(
            labels, skip_special_tokens=True, clean_up_tokenization_spaces=False
        )
        decoded_preds = self.tokenizer.batch_decode(preds, skip_special_tokens=True, clean_up_tokenization_spaces=True)

        with open(output_prediction_file, "w", encoding="utf-8") as writer:
            res: List[str] = []
            for label, pred in zip(decoded_labels, decoded_preds):
                res.append(json.dumps({"label": label, "predict": pred}, ensure_ascii=False))
            writer.write("\n".join(res))