trainer.py 1.82 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
from types import MethodType
from typing import TYPE_CHECKING, Dict, Optional

from transformers import Trainer

from ...extras.logging import get_logger
from ..utils import create_custom_optimzer, create_custom_scheduler


if TYPE_CHECKING:
    import torch
    from transformers import ProcessorMixin

    from ...hparams import FinetuningArguments


logger = get_logger(__name__)


class CustomTrainer(Trainer):
    r"""
    Inherits Trainer for custom optimizer.
    """

    def __init__(
        self, finetuning_args: "FinetuningArguments", processor: Optional["ProcessorMixin"], **kwargs
    ) -> None:
        super().__init__(**kwargs)
        self.finetuning_args = finetuning_args
        self.processor = processor
        if finetuning_args.use_badam:
            from badam import clip_grad_norm_for_sparse_tensor

            self.accelerator.clip_grad_norm_ = MethodType(clip_grad_norm_for_sparse_tensor, self.accelerator)

    def create_optimizer(self) -> "torch.optim.Optimizer":
        if self.optimizer is None:
            self.optimizer = create_custom_optimzer(self.model, self.args, self.finetuning_args)
        return super().create_optimizer()

    def create_scheduler(
        self, num_training_steps: int, optimizer: Optional["torch.optim.Optimizer"] = None
    ) -> "torch.optim.lr_scheduler.LRScheduler":
        create_custom_scheduler(self.args, num_training_steps, optimizer)
        return super().create_scheduler(num_training_steps, optimizer)

    def _save(self, output_dir: Optional[str] = None, state_dict: Optional[Dict[str, "torch.Tensor"]] = None) -> None:
        super()._save(output_dir, state_dict)
        if self.processor is not None:
            output_dir = output_dir if output_dir is not None else self.args.output_dir
            getattr(self.processor, "image_processor").save_pretrained(output_dir)