adapter.py 10 KB
Newer Older
zhougaofeng's avatar
zhougaofeng committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
import re
from typing import TYPE_CHECKING

import torch
from peft import LoraConfig, LoraModel, PeftModel, TaskType, get_peft_model
from transformers.integrations import is_deepspeed_zero3_enabled
from transformers.modeling_utils import is_fsdp_enabled

from ..extras.logging import get_logger
from .utils.misc import find_all_linear_modules, find_expanded_modules
from .utils.quantization import QuantizationMethod
from .utils.unsloth import get_unsloth_peft_model, load_unsloth_peft_model


if TYPE_CHECKING:
    from transformers import PretrainedConfig, PreTrainedModel

    from ..hparams import FinetuningArguments, ModelArguments


logger = get_logger(__name__)


def init_adapter(
    config: "PretrainedConfig",
    model: "PreTrainedModel",
    model_args: "ModelArguments",
    finetuning_args: "FinetuningArguments",
    is_trainable: bool,
) -> "PreTrainedModel":
    r"""
    Initializes the adapters.

    Support full-parameter, freeze and LoRA training.

    Note that the trainable parameters must be cast to float32.
    """

    if (not is_trainable) and model_args.adapter_name_or_path is None:
        logger.info("Adapter is not found at evaluation, load the base model.")
        return model

    if finetuning_args.finetuning_type != "lora" and getattr(model, "quantization_method", None):
        raise ValueError("You can only use lora for quantized models.")

    if is_deepspeed_zero3_enabled() or is_fsdp_enabled() or finetuning_args.pure_bf16 or finetuning_args.use_badam:
        logger.info("ZeRO3/FSDP/PureBF16/BAdam detected, remaining trainable params as their original precision.")
        cast_trainable_params_to_fp32 = False
    else:
        logger.info("Upcasting trainable params to float32.")
        cast_trainable_params_to_fp32 = True

    if finetuning_args.finetuning_type == "full" and is_trainable:
        logger.info("Fine-tuning method: Full")
        if cast_trainable_params_to_fp32:
            model = model.float()

        if model_args.visual_inputs and hasattr(model, "vision_tower"):  # freeze vision model
            model.vision_tower.requires_grad_(False)

    if finetuning_args.finetuning_type == "freeze" and is_trainable:
        logger.info("Fine-tuning method: Freeze")
        num_layers = (
            getattr(model.config, "num_hidden_layers", None)
            or getattr(model.config, "num_layers", None)
            or getattr(model.config, "n_layer", None)
        )
        if not num_layers:
            raise ValueError("Current model does not support freeze tuning.")

        if finetuning_args.use_llama_pro:
            if num_layers % finetuning_args.freeze_trainable_layers != 0:
                raise ValueError(
                    "`num_layers` {} should be divisible by `num_layer_trainable` {}.".format(
                        num_layers, finetuning_args.freeze_trainable_layers
                    )
                )

            stride = num_layers // finetuning_args.freeze_trainable_layers
            trainable_layer_ids = range(stride - 1, num_layers + stride - 1, stride)
        elif finetuning_args.freeze_trainable_layers > 0:  # fine-tuning the last n layers if num_layer_trainable > 0
            trainable_layer_ids = range(max(0, num_layers - finetuning_args.freeze_trainable_layers), num_layers)
        else:  # fine-tuning the first n layers if num_layer_trainable < 0
            trainable_layer_ids = range(min(-finetuning_args.freeze_trainable_layers, num_layers))

        hidden_modules = set()
        non_hidden_modules = set()
        for name, _ in model.named_parameters():
            if ".0." in name:
                hidden_modules.add(name.split(".0.")[-1].split(".")[0])
            elif ".1." in name:  # MoD starts from layer 1
                hidden_modules.add(name.split(".1.")[-1].split(".")[0])

            if re.search(r"\.\d+\.", name) is None:
                non_hidden_modules.add(name.split(".")[-2])

        trainable_layers = []
        for module_name in finetuning_args.freeze_trainable_modules:
            if module_name != "all" and module_name not in hidden_modules:
                raise ValueError(
                    "Module {} is not found, please choose from {}".format(module_name, ", ".join(hidden_modules))
                )

            for idx in trainable_layer_ids:
                trainable_layers.append(".{:d}.{}".format(idx, module_name if module_name != "all" else ""))

        if finetuning_args.freeze_extra_modules:
            for module_name in finetuning_args.freeze_extra_modules:
                if module_name not in non_hidden_modules:
                    raise ValueError(
                        "Module {} is not found, please choose from {}".format(
                            module_name, ", ".join(non_hidden_modules)
                        )
                    )

                trainable_layers.append(module_name)

        for name, param in model.named_parameters():
            if any(trainable_layer in name for trainable_layer in trainable_layers):
                if cast_trainable_params_to_fp32:
                    param.data = param.data.to(torch.float32)
            else:
                param.requires_grad_(False)

        if model_args.visual_inputs and hasattr(model, "vision_tower"):  # freeze vision model
            model.vision_tower.requires_grad_(False)

        logger.info("Set trainable layers: {}".format(",".join(map(str, trainable_layer_ids))))

    if finetuning_args.finetuning_type == "lora":
        logger.info("Fine-tuning method: {}".format("DoRA" if finetuning_args.use_dora else "LoRA"))
        adapter_to_resume = None

        if model_args.adapter_name_or_path is not None:
            is_mergeable = True
            if getattr(model, "quantization_method", None):  # merge lora in quantized model is unstable
                assert len(model_args.adapter_name_or_path) == 1, "Quantized model only accepts a single adapter."
                is_mergeable = False

            if is_deepspeed_zero3_enabled():
                assert len(model_args.adapter_name_or_path) == 1, "Cannot use multiple adapters in DeepSpeed ZeRO-3."
                is_mergeable = False

            if model_args.use_unsloth:
                assert len(model_args.adapter_name_or_path) == 1, "Unsloth model only accepts a single adapter."
                is_mergeable = False

            if (is_trainable and not finetuning_args.create_new_adapter) or (not is_mergeable):
                adapter_to_merge = model_args.adapter_name_or_path[:-1]
                adapter_to_resume = model_args.adapter_name_or_path[-1]
            else:
                adapter_to_merge = model_args.adapter_name_or_path

            for adapter in adapter_to_merge:
                model: "LoraModel" = PeftModel.from_pretrained(
                    model, adapter, offload_folder=model_args.offload_folder
                )
                model = model.merge_and_unload()

            if len(adapter_to_merge) > 0:
                logger.info("Merged {} adapter(s).".format(len(adapter_to_merge)))

            if adapter_to_resume is not None:  # resume lora training
                if model_args.use_unsloth:
                    model = load_unsloth_peft_model(config, model_args, is_trainable=is_trainable)
                else:
                    model = PeftModel.from_pretrained(
                        model,
                        adapter_to_resume,
                        is_trainable=is_trainable,
                        offload_folder=model_args.offload_folder,
                    )

        if is_trainable and adapter_to_resume is None:  # create new lora weights while training
            if len(finetuning_args.lora_target) == 1 and finetuning_args.lora_target[0] == "all":
                target_modules = find_all_linear_modules(model)
            else:
                target_modules = finetuning_args.lora_target

            if finetuning_args.use_llama_pro:
                target_modules = find_expanded_modules(model, target_modules, finetuning_args.num_layer_trainable)

            if (
                finetuning_args.use_dora
                and getattr(model, "quantization_method", None) is not None
                and getattr(model, "quantization_method", None) != QuantizationMethod.BITS_AND_BYTES
            ):
                raise ValueError("DoRA is not compatible with PTQ-quantized models.")

            if model_args.resize_vocab and finetuning_args.additional_target is None:
                input_embeddings = model.get_input_embeddings()
                output_embeddings = model.get_output_embeddings()
                module_names = set()
                for name, module in model.named_modules():
                    if module in [input_embeddings, output_embeddings]:
                        module_names.add(name.split(".")[-1])

                finetuning_args.additional_target = module_names
                logger.warning("Vocab has been resized, add {} to trainable params.".format(",".join(module_names)))

            peft_kwargs = {
                "r": finetuning_args.lora_rank,
                "target_modules": target_modules,
                "lora_alpha": finetuning_args.lora_alpha,
                "lora_dropout": finetuning_args.lora_dropout,
                "use_rslora": finetuning_args.use_rslora,
                "modules_to_save": finetuning_args.additional_target,
            }

            if model_args.use_unsloth:
                model = get_unsloth_peft_model(model, model_args, peft_kwargs)
            else:
                lora_config = LoraConfig(
                    task_type=TaskType.CAUSAL_LM,
                    inference_mode=False,
                    use_dora=finetuning_args.use_dora,
                    **peft_kwargs,
                )
                model = get_peft_model(model, lora_config)

        if cast_trainable_params_to_fp32:
            for param in filter(lambda p: p.requires_grad, model.parameters()):
                param.data = param.data.to(torch.float32)

        if model_args.adapter_name_or_path is not None:
            logger.info("Loaded adapter(s): {}".format(",".join(model_args.adapter_name_or_path)))

    return model