Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
zhaoyu6
sglang
Commits
b2388433
"vscode:/vscode.git/clone" did not exist on "87d7e9740bbee7fa885305cf7804614006ae4bef"
Unverified
Commit
b2388433
authored
May 25, 2025
by
fzyzcjy
Committed by
GitHub
May 24, 2025
Browse files
Add back DeepSeek non-TBO branches (#6578)
parent
a38376fa
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
119 additions
and
9 deletions
+119
-9
python/sglang/srt/models/deepseek_v2.py
python/sglang/srt/models/deepseek_v2.py
+119
-9
No files found.
python/sglang/srt/models/deepseek_v2.py
View file @
b2388433
...
@@ -324,6 +324,104 @@ class DeepseekV2MoE(nn.Module):
...
@@ -324,6 +324,104 @@ class DeepseekV2MoE(nn.Module):
if
name
not
in
[
"correction_bias"
]
if
name
not
in
[
"correction_bias"
]
]
]
def
forward
(
self
,
hidden_states
:
torch
.
Tensor
,
forward_batch
:
Optional
[
ForwardBatch
]
=
None
)
->
torch
.
Tensor
:
if
not
self
.
_enable_deepep_moe
:
return
self
.
forward_normal
(
hidden_states
)
else
:
return
self
.
forward_deepep
(
hidden_states
,
forward_batch
)
def
forward_normal
(
self
,
hidden_states
:
torch
.
Tensor
)
->
torch
.
Tensor
:
shared_output
=
self
.
_forward_shared_experts
(
hidden_states
)
# router_logits: (num_tokens, n_experts)
router_logits
=
self
.
gate
(
hidden_states
)
final_hidden_states
=
self
.
experts
(
hidden_states
=
hidden_states
,
router_logits
=
router_logits
)
final_hidden_states
*=
self
.
routed_scaling_factor
if
shared_output
is
not
None
:
final_hidden_states
=
final_hidden_states
+
shared_output
if
self
.
tp_size
>
1
:
final_hidden_states
=
tensor_model_parallel_all_reduce
(
final_hidden_states
)
return
final_hidden_states
def
forward_deepep
(
self
,
hidden_states
:
torch
.
Tensor
,
forward_batch
:
ForwardBatch
)
->
torch
.
Tensor
:
forward_mode
=
forward_batch
.
forward_mode
shared_output
=
None
if
is_non_idle_and_non_empty
(
forward_mode
,
hidden_states
):
# router_logits: (num_tokens, n_experts)
router_logits
=
self
.
gate
(
hidden_states
)
shared_output
=
self
.
_forward_shared_experts
(
hidden_states
)
topk_weights
,
topk_idx
=
select_experts
(
hidden_states
=
hidden_states
,
router_logits
=
router_logits
,
top_k
=
self
.
top_k
,
use_grouped_topk
=
True
,
renormalize
=
self
.
renormalize
,
topk_group
=
self
.
topk_group
,
num_expert_group
=
self
.
num_expert_group
,
correction_bias
=
self
.
correction_bias
,
routed_scaling_factor
=
self
.
routed_scaling_factor
,
num_token_non_padded
=
forward_batch
.
num_token_non_padded
,
)
else
:
topk_idx
=
torch
.
full
(
(
0
,
self
.
top_k
),
-
1
,
dtype
=
torch
.
int
,
device
=
hidden_states
.
device
)
topk_weights
=
torch
.
empty
(
(
0
,
self
.
top_k
),
dtype
=
torch
.
float32
,
device
=
hidden_states
.
device
)
if
self
.
ep_size
>
1
:
# TODO(ch-wan): allow users to set num_max_dispatch_tokens_per_rank value
(
hidden_states
,
topk_idx
,
topk_weights
,
reorder_topk_ids
,
num_recv_tokens_per_expert
,
seg_indptr
,
masked_m
,
expected_m
,
)
=
self
.
deepep_dispatcher
.
dispatch
(
hidden_states
=
hidden_states
,
topk_idx
=
topk_idx
,
topk_weights
=
topk_weights
,
forward_mode
=
forward_mode
,
)
final_hidden_states
=
self
.
experts
(
hidden_states
=
hidden_states
,
topk_idx
=
topk_idx
,
topk_weights
=
topk_weights
,
reorder_topk_ids
=
reorder_topk_ids
,
seg_indptr
=
seg_indptr
,
masked_m
=
masked_m
,
expected_m
=
expected_m
,
num_recv_tokens_per_expert
=
num_recv_tokens_per_expert
,
forward_mode
=
forward_mode
,
)
if
self
.
ep_size
>
1
:
final_hidden_states
=
self
.
deepep_dispatcher
.
combine
(
hidden_states
=
final_hidden_states
,
topk_idx
=
topk_idx
,
topk_weights
=
topk_weights
,
forward_mode
=
forward_mode
,
)
final_hidden_states
*=
self
.
routed_scaling_factor
if
shared_output
is
not
None
:
final_hidden_states
=
final_hidden_states
+
shared_output
return
final_hidden_states
def
_forward_shared_experts
(
self
,
hidden_states
):
if
self
.
n_share_experts_fusion
==
0
:
return
self
.
shared_experts
(
hidden_states
)
else
:
return
None
def
op_gate
(
self
,
state
):
def
op_gate
(
self
,
state
):
if
(
not
self
.
_enable_deepep_moe
)
or
is_non_idle_and_non_empty
(
if
(
not
self
.
_enable_deepep_moe
)
or
is_non_idle_and_non_empty
(
state
.
forward_batch
.
forward_mode
,
state
.
hidden_states_mlp_input
state
.
forward_batch
.
forward_mode
,
state
.
hidden_states_mlp_input
...
@@ -1353,17 +1451,29 @@ class DeepseekV2DecoderLayer(nn.Module):
...
@@ -1353,17 +1451,29 @@ class DeepseekV2DecoderLayer(nn.Module):
residual
:
Optional
[
torch
.
Tensor
],
residual
:
Optional
[
torch
.
Tensor
],
zero_allocator
:
BumpAllocator
,
zero_allocator
:
BumpAllocator
,
)
->
torch
.
Tensor
:
)
->
torch
.
Tensor
:
return
execute_operations
(
hidden_states
,
residual
=
self
.
layer_communicator
.
prepare_attn
(
inputs
=
dict
(
hidden_states
,
residual
,
forward_batch
positions
=
positions
,
)
hidden_states
=
hidden_states
,
forward_batch
=
forward_batch
,
hidden_states
=
self
.
self_attn
(
residual
=
residual
,
positions
=
positions
,
zero_allocator
=
zero_allocator
,
hidden_states
=
hidden_states
,
),
forward_batch
=
forward_batch
,
operations
=
compute_layer_operations
(
self
),
zero_allocator
=
zero_allocator
,
)
hidden_states
,
residual
=
self
.
layer_communicator
.
prepare_mlp
(
hidden_states
,
residual
,
forward_batch
)
)
hidden_states
=
self
.
mlp
(
hidden_states
,
forward_batch
)
hidden_states
,
residual
=
self
.
layer_communicator
.
postprocess_layer
(
hidden_states
,
residual
,
forward_batch
)
return
hidden_states
,
residual
def
op_comm_prepare_attn
(
def
op_comm_prepare_attn
(
self
,
self
,
state
,
state
,
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment