Unverified Commit 9c6ba248 authored by Lianmin Zheng's avatar Lianmin Zheng Committed by GitHub
Browse files

Refactor logprob computation to return the real logprob used in sampling (#2664)

parent b02da24a
......@@ -17,6 +17,8 @@ import dataclasses
from typing import List, Optional, Union
import torch
import triton
import triton.language as tl
from torch import nn
from vllm.distributed import (
get_tensor_model_parallel_world_size,
......@@ -33,76 +35,77 @@ from sglang.srt.model_executor.forward_batch_info import (
@dataclasses.dataclass
class LogitsProcessorOutput:
## First part. This part will be returned by python/sglang/srt/layers/logits_processor.py::LogitsProcessor.
# The logits of the next tokens. shape: [#seq, vocab_size]
next_token_logits: torch.Tensor
# The logprobs of the next tokens. shape: [#seq, vocab_size]
next_token_logprobs: torch.Tensor = None
# Used by speculative decoding (EAGLE)
# The last hidden layers
hidden_states: Optional[torch.Tensor] = None
## Second part. This part will be returned by python/sglang/srt/layers/sampler.py::Sampler.
# The logprobs of the next tokens. shape: [#seq]
next_token_logprobs: Optional[torch.Tensor] = None
# The logprobs and ids of the top-k tokens in output positions. shape: [#seq, k]
next_token_top_logprobs_val: Optional[List] = None
next_token_top_logprobs_idx: Optional[List] = None
## Third part. This part will be returned by python/sglang/srt/layers/logits_processor.py::LogitsProcessor. Prefill-only.
# The normlaized logprobs of prompts. shape: [#seq]
normalized_prompt_logprobs: torch.Tensor = None
# The logprobs of input tokens. shape: [#token, vocab_size]
# The logprobs of input tokens. shape: [#token]
input_token_logprobs: torch.Tensor = None
# The logprob and id of the top-k tokens in input positions. shape [#seq, #token, k]
# The logprobs and ids of the top-k tokens in input positions. shape: [#seq, #token, k]
input_top_logprobs_val: List = None
input_top_logprobs_idx: List = None
# The logprob and id of the top-k tokens in output positions. shape [#seq, #token, k]
output_top_logprobs_val: List = None
output_top_logprobs_idx: List = None
# Used by speculative decoding (EAGLE)
# The output of transformer layers
hidden_states: Optional[torch.Tensor] = None
@dataclasses.dataclass
class LogitsMetadata:
forward_mode: ForwardMode
top_logprobs_nums: Optional[List[int]]
return_logprob: bool = False
return_top_logprob: bool = False
capture_hidden_mode: CaptureHiddenMode = CaptureHiddenMode.NULL
extend_return_logprob: bool = False
extend_return_top_logprob: bool = False
extend_seq_lens: Optional[torch.Tensor] = None
extend_seq_lens_cpu: Optional[List[int]] = None
extend_logprob_start_lens_cpu: Optional[List[int]] = None
extend_logprob_pruned_lens_cpu: Optional[List[int]] = None
capture_hidden_mode: CaptureHiddenMode = CaptureHiddenMode.NULL
top_logprobs_nums: Optional[List[int]] = None
@classmethod
def from_forward_batch(cls, forward_batch: ForwardBatch):
extend_logprob_pruned_lens_cpu = None
if forward_batch.return_logprob:
return_top_logprob = any(x > 0 for x in forward_batch.top_logprobs_nums)
if forward_batch.forward_mode.is_extend():
extend_logprob_pruned_lens_cpu = [
extend_len - start_len
for extend_len, start_len in zip(
forward_batch.extend_seq_lens_cpu,
forward_batch.extend_logprob_start_lens_cpu,
)
]
else:
return_top_logprob = False
if forward_batch.spec_info:
capture_hidden_mode = forward_batch.spec_info.capture_hidden_mode
else:
capture_hidden_mode = CaptureHiddenMode.NULL
if forward_batch.forward_mode.is_extend() and forward_batch.return_logprob:
extend_return_logprob = True
extend_return_top_logprob = any(
x > 0 for x in forward_batch.top_logprobs_nums
)
extend_logprob_pruned_lens_cpu = [
extend_len - start_len
for extend_len, start_len in zip(
forward_batch.extend_seq_lens_cpu,
forward_batch.extend_logprob_start_lens_cpu,
)
]
else:
extend_return_logprob = extend_return_top_logprob = (
extend_logprob_pruned_lens_cpu
) = False
return cls(
forward_mode=forward_batch.forward_mode,
top_logprobs_nums=forward_batch.top_logprobs_nums,
return_logprob=forward_batch.return_logprob,
return_top_logprob=return_top_logprob,
capture_hidden_mode=capture_hidden_mode,
extend_return_logprob=extend_return_logprob,
extend_return_top_logprob=extend_return_top_logprob,
extend_seq_lens=forward_batch.extend_seq_lens,
extend_seq_lens_cpu=forward_batch.extend_seq_lens_cpu,
extend_logprob_start_lens_cpu=forward_batch.extend_logprob_start_lens_cpu,
extend_logprob_pruned_lens_cpu=extend_logprob_pruned_lens_cpu,
capture_hidden_mode=capture_hidden_mode,
top_logprobs_nums=forward_batch.top_logprobs_nums,
)
......@@ -129,7 +132,6 @@ class LogitsProcessor(nn.Module):
):
if isinstance(logits_metadata, ForwardBatch):
logits_metadata = LogitsMetadata.from_forward_batch(logits_metadata)
assert isinstance(logits_metadata, LogitsMetadata)
# Get the last hidden states and last logits for the next token prediction
if (
......@@ -142,18 +144,10 @@ class LogitsProcessor(nn.Module):
last_index = torch.cumsum(logits_metadata.extend_seq_lens, dim=0) - 1
last_hidden = hidden_states[last_index]
# Compute logits
last_logits = self._get_logits(last_hidden, lm_head)
if self.do_tensor_parallel_all_gather:
last_logits = tensor_model_parallel_all_gather(last_logits)
last_logits = last_logits[:, : self.config.vocab_size].float()
if self.final_logit_softcapping:
last_logits.div_(self.final_logit_softcapping)
torch.tanh(last_logits, out=last_logits)
last_logits.mul_(self.final_logit_softcapping)
# Return only last_logits if logprob is not requested
if not logits_metadata.return_logprob:
if not logits_metadata.extend_return_logprob:
# Decode mode or extend mode without return_logprob.
return LogitsProcessorOutput(
next_token_logits=last_logits,
hidden_states=(
......@@ -167,95 +161,60 @@ class LogitsProcessor(nn.Module):
),
)
else:
last_logprobs = self.compute_temp_top_p_normalized_logprobs(
last_logits, logits_metadata
# Slice the requested tokens to compute logprob
pt, pruned_states, pruned_input_ids = 0, [], []
for start_len, extend_len in zip(
logits_metadata.extend_logprob_start_lens_cpu,
logits_metadata.extend_seq_lens_cpu,
):
pruned_states.append(hidden_states[pt + start_len : pt + extend_len])
pruned_input_ids.append(input_ids[pt + start_len : pt + extend_len])
pt += extend_len
# Compute the logits of all required tokens
pruned_states = torch.cat(pruned_states)
del hidden_states
input_token_logits = self._get_logits(pruned_states, lm_head)
del pruned_states
# Normalize the logprob w/o temperature, top-p
input_logprobs = input_token_logits
input_logprobs = self.compute_temp_top_p_normalized_logprobs(
input_logprobs, logits_metadata
)
if logits_metadata.forward_mode.is_decode():
if logits_metadata.return_top_logprob:
output_top_logprobs_val, output_top_logprobs_idx = (
self.get_top_logprobs(last_logprobs, logits_metadata)[2:4]
)
else:
output_top_logprobs_val = output_top_logprobs_idx = None
return LogitsProcessorOutput(
next_token_logits=last_logits,
next_token_logprobs=last_logprobs,
output_top_logprobs_val=output_top_logprobs_val,
output_top_logprobs_idx=output_top_logprobs_idx,
)
# Get the logprob of top-k tokens
if logits_metadata.extend_return_top_logprob:
(
input_top_logprobs_val,
input_top_logprobs_idx,
) = self.get_top_logprobs(input_logprobs, logits_metadata)
else:
# Slice the requested tokens to compute logprob
pt, states, pruned_input_ids = 0, [], []
for start_len, extend_len in zip(
logits_metadata.extend_logprob_start_lens_cpu,
logits_metadata.extend_seq_lens_cpu,
):
states.append(hidden_states[pt + start_len : pt + extend_len])
pruned_input_ids.append(input_ids[pt + start_len : pt + extend_len])
pt += extend_len
# Compute the logits and logprobs for all required tokens
states = torch.cat(states, dim=0)
all_logits = self._get_logits(states, lm_head)
if self.do_tensor_parallel_all_gather:
all_logits = tensor_model_parallel_all_gather(all_logits)
# The LM head's weights may be zero-padded for parallelism. Remove any
# extra logits that this padding may have produced.
all_logits = all_logits[:, : self.config.vocab_size].float()
if self.final_logit_softcapping:
all_logits.div_(self.final_logit_softcapping)
torch.tanh(all_logits, out=all_logits)
all_logits.mul_(self.final_logit_softcapping)
all_logprobs = all_logits
del all_logits, hidden_states
all_logprobs = self.compute_temp_top_p_normalized_logprobs(
all_logprobs, logits_metadata
)
# Get the logprob of top-k tokens
if logits_metadata.return_top_logprob:
(
input_top_logprobs_val,
input_top_logprobs_idx,
output_top_logprobs_val,
output_top_logprobs_idx,
) = self.get_top_logprobs(all_logprobs, logits_metadata)
else:
input_top_logprobs_val = input_top_logprobs_idx = (
output_top_logprobs_val
) = output_top_logprobs_idx = None
# Compute the normalized logprobs for the requested tokens.
# Note that we pad a zero at the end for easy batching.
input_token_logprobs = all_logprobs[
torch.arange(all_logprobs.shape[0], device="cuda"),
torch.cat(
[
torch.cat(pruned_input_ids)[1:],
torch.tensor([0], device="cuda"),
]
),
]
normalized_prompt_logprobs = self._get_normalized_prompt_logprobs(
input_token_logprobs,
logits_metadata,
)
input_top_logprobs_val = input_top_logprobs_idx = None
# Compute the normalized logprobs for the requested tokens.
# Note that we pad a zero at the end for easy batching.
input_token_logprobs = input_logprobs[
torch.arange(input_logprobs.shape[0], device="cuda"),
torch.cat(
[
torch.cat(pruned_input_ids)[1:],
torch.tensor([0], device="cuda"),
]
),
]
normalized_prompt_logprobs = self._get_normalized_prompt_logprobs(
input_token_logprobs,
logits_metadata,
)
return LogitsProcessorOutput(
next_token_logits=last_logits,
next_token_logprobs=last_logprobs,
normalized_prompt_logprobs=normalized_prompt_logprobs,
input_token_logprobs=input_token_logprobs,
input_top_logprobs_val=input_top_logprobs_val,
input_top_logprobs_idx=input_top_logprobs_idx,
output_top_logprobs_val=output_top_logprobs_val,
output_top_logprobs_idx=output_top_logprobs_idx,
)
return LogitsProcessorOutput(
next_token_logits=last_logits,
normalized_prompt_logprobs=normalized_prompt_logprobs,
input_token_logprobs=input_token_logprobs,
input_top_logprobs_val=input_top_logprobs_val,
input_top_logprobs_idx=input_top_logprobs_idx,
)
def _get_logits(
self,
......@@ -269,9 +228,19 @@ class LogitsProcessor(nn.Module):
# GGUF models
logits = lm_head.linear_method.apply(lm_head, hidden_states, embedding_bias)
# Optional scaling factor
if self.logit_scale is not None:
logits.mul_(self.logit_scale) # In-place multiply
logits.mul_(self.logit_scale)
if self.do_tensor_parallel_all_gather:
logits = tensor_model_parallel_all_gather(logits)
# Compute the normalized logprobs for the requested tokens.
# Note that we pad a zero at the end for easy batching.
logits = logits[:, : self.config.vocab_size].float()
if self.final_logit_softcapping:
fused_softcap(logits, self.final_logit_softcapping)
return logits
@staticmethod
......@@ -302,90 +271,73 @@ class LogitsProcessor(nn.Module):
values = ret.values.tolist()
indices = ret.indices.tolist()
if logits_metadata.forward_mode.is_decode():
output_top_logprobs_val = []
output_top_logprobs_idx = []
for i, k in enumerate(logits_metadata.top_logprobs_nums):
output_top_logprobs_val.append(values[i][:k])
output_top_logprobs_idx.append(indices[i][:k])
return None, None, output_top_logprobs_val, output_top_logprobs_idx
else:
input_top_logprobs_val, input_top_logprobs_idx = [], []
output_top_logprobs_val, output_top_logprobs_idx = [], []
input_top_logprobs_val, input_top_logprobs_idx = [], []
pt = 0
for k, pruned_len in zip(
logits_metadata.top_logprobs_nums,
logits_metadata.extend_logprob_pruned_lens_cpu,
):
if pruned_len <= 0:
input_top_logprobs_val.append([])
input_top_logprobs_idx.append([])
output_top_logprobs_val.append([])
output_top_logprobs_idx.append([])
continue
input_top_logprobs_val.append(
[values[pt + j][:k] for j in range(pruned_len - 1)]
)
input_top_logprobs_idx.append(
[indices[pt + j][:k] for j in range(pruned_len - 1)]
)
output_top_logprobs_val.append(
list(
values[pt + pruned_len - 1][:k],
)
)
output_top_logprobs_idx.append(
list(
indices[pt + pruned_len - 1][:k],
)
)
pt += pruned_len
pt = 0
for k, pruned_len in zip(
logits_metadata.top_logprobs_nums,
logits_metadata.extend_logprob_pruned_lens_cpu,
):
if pruned_len <= 0:
input_top_logprobs_val.append([])
input_top_logprobs_idx.append([])
continue
return (
input_top_logprobs_val,
input_top_logprobs_idx,
output_top_logprobs_val,
output_top_logprobs_idx,
input_top_logprobs_val.append(
[values[pt + j][:k] for j in range(pruned_len - 1)]
)
input_top_logprobs_idx.append(
[indices[pt + j][:k] for j in range(pruned_len - 1)]
)
pt += pruned_len
return input_top_logprobs_val, input_top_logprobs_idx
@staticmethod
def compute_temp_top_p_normalized_logprobs(
last_logits: torch.Tensor, logits_metadata: LogitsMetadata
) -> torch.Tensor:
# TODO: Implement the temp and top-p normalization
return torch.nn.functional.log_softmax(last_logits, dim=-1)
def test():
all_logprobs = torch.tensor(
# s s s
[[0, 1, 2, 3], [1, 2, 3, 4], [2, 3, 4, 5], [3, 4, 5, 6], [4, 5, 6, 7]],
dtype=torch.float32,
device="cuda",
@triton.jit
def fused_softcap_kernel(
full_logits_ptr,
softcapping_value,
n_elements,
BLOCK_SIZE: tl.constexpr,
):
pid = tl.program_id(0)
block_start = pid * BLOCK_SIZE
offsets = block_start + tl.arange(0, BLOCK_SIZE)
mask = offsets < n_elements
# Load values
x = tl.load(full_logits_ptr + offsets, mask=mask)
# Perform operations in-place
x = x / softcapping_value
# Manual tanh implementation using exp
exp2x = tl.exp(2 * x)
x = (exp2x - 1) / (exp2x + 1)
x = x * softcapping_value
# Store result
tl.store(full_logits_ptr + offsets, x, mask=mask)
def fused_softcap(full_logits, final_logit_softcapping):
n_elements = full_logits.numel()
BLOCK_SIZE = 1024
grid = ((n_elements + BLOCK_SIZE - 1) // BLOCK_SIZE, 1, 1)
fused_softcap_kernel[grid](
full_logits_ptr=full_logits,
softcapping_value=final_logit_softcapping,
n_elements=n_elements,
BLOCK_SIZE=BLOCK_SIZE,
)
seq_lens = torch.tensor([2, 0, 3, 0], dtype=torch.int32, device="cuda")
input_ids = torch.tensor([1, 2, 3, 0, 1], dtype=torch.int32, device="cuda")
token_logprobs = all_logprobs[
torch.arange(all_logprobs.shape[0], device="cuda"),
torch.cat([input_ids[1:], torch.tensor([0], device="cuda")]),
]
logprobs_cumsum = torch.cumsum(token_logprobs, dim=0, dtype=torch.float32)
len_cumsum = torch.cumsum(seq_lens, dim=0)
start = torch.cat((torch.tensor([0], device="cuda"), len_cumsum[:-1]), 0)
end = start + seq_lens - 2
start.clamp_(min=0, max=token_logprobs.shape[0] - 1)
end.clamp_(min=0, max=token_logprobs.shape[0] - 1)
sum_logp = logprobs_cumsum[end] - logprobs_cumsum[start] + token_logprobs[start]
# assert logprobs == [2, _, 2, 4, _]
print("token logprobs", token_logprobs)
print("start", start)
print("end", end)
print("sum_logp", sum_logp)
if __name__ == "__main__":
test()
return full_logits
import logging
from typing import Union
from typing import List
import torch
from torch import nn
......@@ -28,13 +28,12 @@ class Sampler(nn.Module):
def forward(
self,
logits: Union[torch.Tensor, LogitsProcessorOutput],
logits_output: LogitsProcessorOutput,
sampling_info: SamplingBatchInfo,
return_logprob: bool,
top_logprobs_nums: List[int],
):
if isinstance(logits, LogitsProcessorOutput):
logits = logits.next_token_logits
logits = logits.contiguous()
logits = logits_output.next_token_logits
if self.use_nan_detectioin and torch.any(torch.isnan(logits)):
logger.warning("Detected errors during sampling! NaN in the logits.")
......@@ -47,6 +46,8 @@ class Sampler(nn.Module):
if sampling_info.is_all_greedy:
# Use torch.argmax if all requests use greedy sampling
batch_next_token_ids = torch.argmax(logits, -1)
if return_logprob:
logprobs = torch.nn.functional.log_softmax(logits, dim=-1)
else:
# Post process logits
logits.div_(sampling_info.temperatures)
......@@ -54,6 +55,12 @@ class Sampler(nn.Module):
del logits
if global_server_args_dict["sampling_backend"] == "flashinfer":
if return_logprob:
# NOTE: the top_p_renorm_prob from flashinfer has numerical problems
logprobs = torch.log(
top_p_normalize_probs_torch(probs, sampling_info.top_ps)
)
max_top_k_round, batch_size = 32, probs.shape[0]
uniform_samples = torch.rand(
(max_top_k_round, batch_size), device=probs.device
......@@ -76,6 +83,7 @@ class Sampler(nn.Module):
if self.use_nan_detectioin and not torch.all(success):
logger.warning("Detected errors during sampling!")
batch_next_token_ids = torch.zeros_like(batch_next_token_ids)
elif global_server_args_dict["sampling_backend"] == "pytorch":
# A slower fallback implementation with torch native operations.
batch_next_token_ids = top_k_top_p_min_p_sampling_from_probs_torch(
......@@ -85,12 +93,31 @@ class Sampler(nn.Module):
sampling_info.min_ps,
sampling_info.need_min_p_sampling,
)
if return_logprob:
logprobs = torch.log(
top_p_normalize_probs_torch(probs, sampling_info.top_ps)
)
else:
raise ValueError(
f"Invalid sampling backend: {global_server_args_dict['sampling_backend']}"
)
return batch_next_token_ids.to(torch.int32)
batch_next_token_ids = batch_next_token_ids.to(torch.int32)
# Attach logprobs to logits_output (in-place modification)
if return_logprob:
if any(x > 0 for x in top_logprobs_nums):
(
logits_output.next_token_top_logprobs_val,
logits_output.next_token_top_logprobs_idx,
) = get_top_logprobs(logprobs, top_logprobs_nums)
logits_output.next_token_logprobs = logprobs[
torch.arange(len(batch_next_token_ids), device=sampling_info.device),
batch_next_token_ids,
]
return batch_next_token_ids
def top_k_top_p_min_p_sampling_from_probs_torch(
......@@ -120,20 +147,27 @@ def top_k_top_p_min_p_sampling_from_probs_torch(
return batch_next_token_ids
def top_p_normalize_probs(
def top_p_normalize_probs_torch(
probs: torch.Tensor,
top_ps: torch.Tensor,
):
if global_server_args_dict["sampling_backend"] == "flashinfer":
return top_p_renorm_prob(probs, top_ps)
elif global_server_args_dict["sampling_backend"] == "pytorch":
# See also top_k_top_p_min_p_sampling_from_probs_torch
probs_sort, probs_idx = probs.sort(dim=-1, descending=True)
probs_sum = torch.cumsum(probs_sort, dim=-1)
probs_sort[(probs_sum - probs_sort) > top_ps.view(-1, 1)] = 0.0
probs_sort.div_(probs_sort.sum(dim=-1, keepdim=True))
return torch.zeros_like(probs_sort).scatter_(-1, probs_idx, probs_sort)
else:
raise ValueError(
f"Invalid sampling backend: {global_server_args_dict['sampling_backend']}"
)
# See also top_k_top_p_min_p_sampling_from_probs_torch
probs_sort, probs_idx = probs.sort(dim=-1, descending=True)
probs_sum = torch.cumsum(probs_sort, dim=-1)
probs_sort[(probs_sum - probs_sort) > top_ps.view(-1, 1)] = 0.0
probs_sort.div_(probs_sort.sum(dim=-1, keepdim=True))
return torch.zeros_like(probs_sort).scatter_(-1, probs_idx, probs_sort)
def get_top_logprobs(logprobs: torch.Tensor, top_logprobs_nums: List[int]):
max_k = max(top_logprobs_nums)
ret = logprobs.topk(max_k, dim=1)
values = ret.values.tolist()
indices = ret.indices.tolist()
output_top_logprobs_val = []
output_top_logprobs_idx = []
for i, k in enumerate(top_logprobs_nums):
output_top_logprobs_val.append(values[i][:k])
output_top_logprobs_idx.append(indices[i][:k])
return output_top_logprobs_val, output_top_logprobs_idx
......@@ -974,12 +974,10 @@ class Scheduler:
logits_output, next_token_ids = self.tp_worker.resolve_batch_result(bid)
else:
# Move next_token_ids and logprobs to cpu
next_token_ids = next_token_ids.tolist()
if batch.return_logprob:
logits_output.next_token_logprobs = (
logits_output.next_token_logprobs[
torch.arange(len(next_token_ids), device=self.device),
next_token_ids,
].tolist()
logits_output.next_token_logprobs.tolist()
)
logits_output.input_token_logprobs = (
logits_output.input_token_logprobs.tolist()
......@@ -987,7 +985,6 @@ class Scheduler:
logits_output.normalized_prompt_logprobs = (
logits_output.normalized_prompt_logprobs.tolist()
)
next_token_ids = next_token_ids.tolist()
# Check finish conditions
logprob_pt = 0
......@@ -1064,13 +1061,9 @@ class Scheduler:
logits_output, next_token_ids = self.tp_worker.resolve_batch_result(bid)
next_token_logprobs = logits_output.next_token_logprobs
else:
# Move next_token_ids and logprobs to cpu
if batch.return_logprob:
next_token_logprobs = logits_output.next_token_logprobs[
torch.arange(len(next_token_ids), device=self.device),
next_token_ids,
].tolist()
next_token_ids = next_token_ids.tolist()
if batch.return_logprob:
next_token_logprobs = logits_output.next_token_logprobs.tolist()
self.token_to_kv_pool.free_group_begin()
......@@ -1095,10 +1088,10 @@ class Scheduler:
req.output_token_logprobs_idx.append(next_token_id)
if req.top_logprobs_num > 0:
req.output_top_logprobs_val.append(
logits_output.output_top_logprobs_val[i]
logits_output.next_token_top_logprobs_val[i]
)
req.output_top_logprobs_idx.append(
logits_output.output_top_logprobs_idx[i]
logits_output.next_token_top_logprobs_idx[i]
)
if req.grammar is not None:
......@@ -1200,8 +1193,9 @@ class Scheduler:
req.output_top_logprobs_idx.extend(
output.input_top_logprobs_idx[i][-req.last_update_decode_tokens :]
)
req.output_top_logprobs_val.append(output.output_top_logprobs_val[i])
req.output_top_logprobs_idx.append(output.output_top_logprobs_idx[i])
req.output_top_logprobs_val.append(output.next_token_top_logprobs_val[i])
req.output_top_logprobs_idx.append(output.next_token_top_logprobs_idx[i])
return num_input_logprobs
......
......@@ -144,10 +144,9 @@ class TpModelWorkerClient:
# Copy results to the CPU
if model_worker_batch.return_logprob:
logits_output.next_token_logprobs = logits_output.next_token_logprobs[
torch.arange(len(next_token_ids), device=self.device),
next_token_ids,
].to("cpu", non_blocking=True)
logits_output.next_token_logprobs = (
logits_output.next_token_logprobs.to("cpu", non_blocking=True)
)
if logits_output.input_token_logprobs is not None:
logits_output.input_token_logprobs = (
logits_output.input_token_logprobs.to("cpu", non_blocking=True)
......
......@@ -392,34 +392,7 @@ class CudaGraphRunner:
self.graphs[bs].replay()
next_token_logits = self.output_buffers[bs][:raw_bs]
# Extract logprobs
if forward_batch.return_logprob:
logits_metadata = LogitsMetadata(
forward_mode=ForwardMode.DECODE,
top_logprobs_nums=forward_batch.top_logprobs_nums,
)
next_token_logprobs = (
LogitsProcessor.compute_temp_top_p_normalized_logprobs(
next_token_logits, logits_metadata
)
)
logits_output = LogitsProcessorOutput(
next_token_logits=next_token_logits,
next_token_logprobs=next_token_logprobs,
)
return_top_logprob = any(x > 0 for x in forward_batch.top_logprobs_nums)
if return_top_logprob:
(
logits_output.output_top_logprobs_val,
logits_output.output_top_logprobs_idx,
) = LogitsProcessor.get_top_logprobs(
next_token_logprobs, logits_metadata
)[
2:4
]
else:
logits_output = LogitsProcessorOutput(
next_token_logits=next_token_logits,
)
logits_output = LogitsProcessorOutput(
next_token_logits=next_token_logits,
)
return logits_output
......@@ -36,7 +36,7 @@ from sglang.srt.layers.attention.flashinfer_backend import FlashInferAttnBackend
from sglang.srt.layers.attention.torch_native_backend import TorchNativeAttnBackend
from sglang.srt.layers.attention.triton_backend import TritonAttnBackend
from sglang.srt.layers.logits_processor import LogitsProcessorOutput
from sglang.srt.layers.sampler import Sampler
from sglang.srt.layers.sampler import Sampler, get_top_logprobs
from sglang.srt.layers.torchao_utils import apply_torchao_config_to_model
from sglang.srt.lora.lora_manager import LoRAManager
from sglang.srt.managers.schedule_batch import global_server_args_dict
......@@ -48,7 +48,6 @@ from sglang.srt.mem_cache.memory_pool import (
)
from sglang.srt.model_executor.forward_batch_info import ForwardBatch
from sglang.srt.model_loader import get_model
from sglang.srt.sampling.sampling_batch_info import SamplingBatchInfo
from sglang.srt.server_args import ServerArgs
from sglang.srt.utils import (
enable_show_time_cost,
......@@ -192,7 +191,8 @@ class ModelRunner:
torch.get_device_module(self.device).set_device(self.gpu_id)
if self.device == "cuda":
backend = "nccl"
# ToDO(liangan1):Just use gloo to bypass the initilization fail
# TODO(liangan1):Just use gloo to bypass the initilization fail
# Need to use xccl for xpu backend in the future
elif self.device == "xpu":
backend = "gloo"
......@@ -704,6 +704,7 @@ class ModelRunner:
def sample(
self, logits_output: LogitsProcessorOutput, forward_batch: ForwardBatch
) -> torch.Tensor:
# Apply logit bias
sampling_info = forward_batch.sampling_info
if sampling_info.sampling_info_done:
# Overlap mode: the function update_regex_vocab_mask was executed
......@@ -714,35 +715,17 @@ class ModelRunner:
# Normal mode: Put CPU-heavy tasks here. They will be overlapped with the forward pass.
sampling_info.update_regex_vocab_mask()
sampling_info.update_penalties()
logits = self.apply_logits_bias(logits_output.next_token_logits, sampling_info)
# Sample the next tokens.
next_token_ids = self.sampler(logits, sampling_info)
sampling_info.apply_logits_bias(logits_output.next_token_logits)
# Sample the next tokens
next_token_ids = self.sampler(
logits_output,
sampling_info,
forward_batch.return_logprob,
forward_batch.top_logprobs_nums,
)
return next_token_ids
def apply_logits_bias(self, logits: torch.Tensor, sampling_info: SamplingBatchInfo):
# Apply logit_bias
if sampling_info.logit_bias is not None:
logits.add_(sampling_info.logit_bias)
# min-token, presence, frequency
if sampling_info.linear_penalties is not None:
logits.add_(sampling_info.linear_penalties)
# repetition
if sampling_info.scaling_penalties is not None:
logits = torch.where(
logits > 0,
logits / sampling_info.scaling_penalties,
logits * sampling_info.scaling_penalties,
)
# Apply regex vocab_mask
if sampling_info.vocab_mask is not None:
sampling_info.apply_mask(logits=logits, vocab_mask=sampling_info.vocab_mask)
return logits
@property
def model_is_mrope(self) -> bool:
"""Detect if the model has "mrope" rope_scaling type.
......
......@@ -232,3 +232,26 @@ class SamplingBatchInfo:
self.logit_bias = SamplingBatchInfo.merge_bias_tensor(
self.logit_bias, other.logit_bias, len(self), len(other), self.device
)
def apply_logits_bias(self, logits: torch.Tensor):
# Apply logit_bias
if self.logit_bias is not None:
logits.add_(self.logit_bias)
# min-token, presence, frequency
if self.linear_penalties is not None:
logits.add_(self.linear_penalties)
# repetition
if self.scaling_penalties is not None:
logits = torch.where(
logits > 0,
logits / self.scaling_penalties,
logits * self.scaling_penalties,
)
# Apply regex vocab_mask
if self.vocab_mask is not None:
self.apply_mask(logits=logits, vocab_mask=self.vocab_mask)
return logits
......@@ -6,7 +6,7 @@ import requests
from sglang.srt.utils import kill_process_tree
from sglang.test.test_utils import (
DEFAULT_MODEL_NAME_FOR_TEST,
DEFAULT_SMALL_MODEL_NAME_FOR_TEST,
DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
DEFAULT_URL_FOR_TEST,
popen_launch_server,
......@@ -17,7 +17,7 @@ class TestBatchPenalizerE2E(unittest.TestCase):
@classmethod
def setUpClass(cls):
cls.model = DEFAULT_MODEL_NAME_FOR_TEST
cls.model = DEFAULT_SMALL_MODEL_NAME_FOR_TEST
cls.base_url = DEFAULT_URL_FOR_TEST
cls.process = popen_launch_server(
cls.model,
......
......@@ -213,6 +213,41 @@ class TestSRTEndpoint(unittest.TestCase):
max_diff = np.max(diff)
self.assertLess(max_diff, 0.25)
def test_logprob_grammar(self):
prompts = "Question: Is Paris the Capital of France? Answer:"
allowed_tokens = [" Yes", " No"]
response = requests.post(
self.base_url + "/generate",
json={
"text": prompts,
"sampling_params": {
"temperature": 1.0,
"max_new_tokens": 1,
"regex": "( Yes| No)",
},
"return_logprob": True,
"top_logprobs_num": 5,
"return_text_in_logprobs": True,
},
)
response_json = response.json()
output_top_logprobs = response_json["meta_info"]["output_top_logprobs"][0]
print(f"{output_top_logprobs=}")
# Parse results
# This is becaues the grammar constraint allows all prefix tokens
logprobs = [None] * 2
for i in range(len(output_top_logprobs)):
try:
idx = allowed_tokens.index(output_top_logprobs[i][2])
except ValueError:
# Not found
continue
logprobs[idx] = output_top_logprobs[i][0]
self.assertTrue(all(x is not None for x in logprobs))
def test_get_server_info(self):
response = requests.get(self.base_url + "/get_server_info")
response_json = response.json()
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment