Unverified Commit 1ebec1a8 authored by ykcombat's avatar ykcombat Committed by GitHub
Browse files

[Feature] CUDA Green Context Support (#7649)

parent d4d0c7c3
......@@ -246,6 +246,7 @@ set(SOURCES
"csrc/moe/ep_moe_silu_and_mul_kernel.cu"
"csrc/speculative/eagle_utils.cu"
"csrc/speculative/packbit.cu"
"csrc/spatial/greenctx_stream.cu"
"csrc/speculative/speculative_sampling.cu"
"csrc/grammar/apply_token_bitmask_inplace_cuda.cu"
"csrc/kvcacheio/transfer.cu"
......
......@@ -401,6 +401,12 @@ TORCH_LIBRARY_FRAGMENT(sgl_kernel, m) {
"qserve_w4a8_per_group_gemm(Tensor _in_feats, Tensor _kernel, Tensor _zeros, Tensor _scales_i8, Tensor _wscales, "
"Tensor _ascales, Tensor! _out_feats) -> ()");
m.impl("qserve_w4a8_per_group_gemm", torch::kCUDA, &qserve_w4a8_per_group_gemm);
/*
* From csrc/spatial
*/
m.def("create_greenctx_stream_by_value(int smA, int smB, int device) -> int[]");
m.impl("create_greenctx_stream_by_value", &create_greenctx_stream_by_value);
}
REGISTER_EXTENSION(common_ops)
#include <cuda.h>
#include <cuda_runtime.h>
#define CUDA_RT(call) \
do { \
cudaError_t _status = (call); \
if (_status != cudaSuccess) { \
std::cerr << "ERROR: CUDA RT call \"" << #call << "\" in line " << __LINE__ << " of file " << __FILE__ \
<< " failed with " << cudaGetErrorString(_status) << std::endl; \
TORCH_CHECK( \
false, \
c10::str( \
"ERROR: CUDA RT call \"", \
#call, \
"\" in line ", \
__LINE__, \
" of file ", \
__FILE__, \
" failed with ", \
cudaGetErrorString(_status))); \
} \
} while (0)
#define CUDA_DRV(call) \
do { \
CUresult _status = (call); \
if (_status != CUDA_SUCCESS) { \
const char* err_str; \
cuGetErrorString(_status, &err_str); \
std::cerr << "ERROR: CUDA DRV call \"" << #call << "\" in line " << __LINE__ << " of file " << __FILE__ \
<< " failed with " << err_str << std::endl; \
TORCH_CHECK( \
false, \
c10::str( \
"ERROR: CUDA DRV call \"", \
#call, \
"\" in line ", \
__LINE__, \
" of file ", \
__FILE__, \
" failed with ", \
err_str)); \
} \
} while (0)
#include <torch/all.h>
#include <cstdlib>
#include <iomanip>
#include <iostream>
#include "cuda_utils.h"
#include "greenctx_stream.h"
std::vector<int64_t> create_greenctx_stream_by_value(int64_t smA, int64_t smB, int64_t device) {
CUgreenCtx gctx[3];
CUdevResourceDesc desc[3];
CUdevResource input;
CUdevResource resources[4];
CUstream streamA;
CUstream streamB;
unsigned int nbGroups = 1;
if (smA <= 0 || smB <= 0) {
TORCH_CHECK(false, "SM counts must be positive");
}
// Initialize device
CUDA_RT(cudaInitDevice(device, 0, 0));
// Query input SMs
CUDA_DRV(cuDeviceGetDevResource((CUdevice)device, &input, CU_DEV_RESOURCE_TYPE_SM));
// We want 3/4 the device for our green context
unsigned int minCount = (unsigned int)(smA + smB);
unsigned int minCountA = (unsigned int)(smA);
TORCH_CHECK(minCount <= input.sm.smCount, "Not enough SMs available for the requested configuration");
// Split resources
CUDA_DRV(cuDevSmResourceSplitByCount(&resources[2], &nbGroups, &input, &resources[3], 0, minCount));
CUDA_DRV(cuDevResourceGenerateDesc(&desc[2], &resources[2], 1));
CUDA_DRV(cuGreenCtxCreate(&gctx[2], desc[2], (CUdevice)device, CU_GREEN_CTX_DEFAULT_STREAM));
CUDA_DRV(cuGreenCtxGetDevResource(gctx[2], &input, CU_DEV_RESOURCE_TYPE_SM));
CUDA_DRV(cuDevSmResourceSplitByCount(&resources[0], &nbGroups, &input, &resources[1], 0, minCountA));
CUDA_DRV(cuDevResourceGenerateDesc(&desc[0], &resources[0], 1));
CUDA_DRV(cuGreenCtxCreate(&gctx[0], desc[0], (CUdevice)device, CU_GREEN_CTX_DEFAULT_STREAM));
CUDA_DRV(cuDevResourceGenerateDesc(&desc[1], &resources[1], 1));
CUDA_DRV(cuGreenCtxCreate(&gctx[1], desc[1], (CUdevice)device, CU_GREEN_CTX_DEFAULT_STREAM));
CUDA_DRV(cuGreenCtxStreamCreate(&streamA, gctx[0], CU_STREAM_NON_BLOCKING, 0));
CUDA_DRV(cuGreenCtxStreamCreate(&streamB, gctx[1], CU_STREAM_NON_BLOCKING, 0));
int smCountA = resources[0].sm.smCount;
int smCountB = resources[1].sm.smCount;
CUDA_DRV(cuGreenCtxDestroy(gctx[2]));
std::vector<int64_t> vec = {(int64_t)streamA, (int64_t)streamB, smCountA, smCountB};
return vec;
}
#include <vector>
std::vector<int64_t> create_greenctx_stream_by_value(int64_t smA, int64_t smB, int64_t device);
......@@ -661,3 +661,8 @@ void qserve_w4a8_per_group_gemm(
const torch::Tensor& _wscales,
const torch::Tensor& _ascales,
torch::Tensor& _out_feats);
/*
* From csrc/spatial
*/
std::vector<int64_t> create_greenctx_stream_by_value(int64_t smA, int64_t smB, int64_t device);
......@@ -81,6 +81,7 @@ from sgl_kernel.sampling import (
top_p_renorm_prob,
top_p_sampling_from_probs,
)
from sgl_kernel.spatial import create_greenctx_stream_by_value, get_sm_available
from sgl_kernel.speculative import (
build_tree_kernel_efficient,
segment_packbits,
......
import torch
from torch.cuda.streams import ExternalStream
def create_greenctx_stream_by_value(
SM_a: int, SM_b: int, device_id: int = None
) -> tuple[ExternalStream, ExternalStream]:
"""
Create two streams for greenctx.
Args:
sm_A (int): The SM of stream A.
sm_B (int): The weight of stream B.
device_id (int): The device id.
Returns:
tuple[ExternalStream, ExternalStream]: The two streams.
"""
if device_id is None:
device_id = torch.cuda.current_device()
res = torch.ops.sgl_kernel.create_greenctx_stream_by_value(SM_a, SM_b, device_id)
stream_a = ExternalStream(
stream_ptr=res[0], device=torch.device(f"cuda:{device_id}")
)
stream_b = ExternalStream(
stream_ptr=res[1], device=torch.device(f"cuda:{device_id}")
)
return stream_a, stream_b
def get_sm_available(device_id: int = None) -> int:
"""
Get the SMs available on the device.
Args:
device_id (int): The device id.
Returns:
int: The SMs available.
"""
if device_id is None:
device_id = torch.cuda.current_device()
device_props = torch.cuda.get_device_properties(device_id)
# Get the number of Streaming Multiprocessors (SMs)
sm_count = device_props.multi_processor_count
return sm_count
import pytest
import torch
import torch.nn.functional as F
from sgl_kernel import create_greenctx_stream_by_value, get_sm_available
def test_green_ctx():
A = torch.randn(5120, 5120).cuda()
B = torch.randn(5120, 5120).cuda()
C = torch.matmul(A, B)
sm_counts = get_sm_available(0)
stream_group = create_greenctx_stream_by_value(sm_counts // 2, sm_counts // 2, 0)
with torch.cuda.stream(stream_group[0]):
for _ in range(100):
result_0 = torch.matmul(A, B)
with torch.cuda.stream(stream_group[1]):
for _ in range(100):
result_1 = torch.matmul(A, B)
torch.cuda.synchronize()
assert torch.allclose(result_0, C)
assert torch.allclose(result_1, C)
if __name__ == "__main__":
pytest.main([__file__])
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment