README.md 8.32 KB
Newer Older
Lianmin Zheng's avatar
Lianmin Zheng committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
# SGLang

SGLang is a structured generation language designed for large language models (LLMs).
It makes your interaction with LLMs faster and more controllable by co-designing the frontend language and the runtime system.

The core features of SGLang include:
- **A Flexible Front-End Language**: This allows for easy programming of LLM applications with multiple chained generation calls, advanced prompting techniques, control flow, multiple modalities, parallelism, and external interaction.
- **A High-Performance Runtime with RadixAttention**: This feature significantly accelerates the execution of complex LLM programs by automatic KV cache reuse across multiple calls. It also supports other common techniques like continuous batching and tensor parallelism.

## Contents
- [Install](#install)
- [Quick Start](#quick-start)
- [Frontend: Structured Generation Langauge (SGLang)](#frontend-structured-generation-langauge-sglang)
- [Backend: SGLang Runtime (SRT)](#backend-sglang-runtime-srt)
- [Benchmark And Performance](#benchmark-and-performance)
- [Roadmap](#roadmap)
- [Citation And Acknowledgment](#citation-and-acknowledgment)

## Install

Lianmin Zheng's avatar
Lianmin Zheng committed
21
22
23
24
### Method 1: With pip
```
pip install "sglang[all]"
```
Lianmin Zheng's avatar
Lianmin Zheng committed
25

Lianmin Zheng's avatar
Lianmin Zheng committed
26
### Method 2: From source
Lianmin Zheng's avatar
Lianmin Zheng committed
27
28
29
30
31
32
33
34
```
git clone git@github.com:sgl-project/sglang.git
cd sglang

pip install --upgrade pip
pip install -e "python[all]"
```

Ying Sheng's avatar
Ying Sheng committed
35
36
37
38
### Notes
- If you are using older GPUs (NVIDIA T4, V100), please use `pip install "triton>=2.2.0"` to avoid some bugs in the triton compiler
- If you only need to use the OpenAI backend, you can avoid installing other dependencies by using `pip install sglang[openai]`

Lianmin Zheng's avatar
Lianmin Zheng committed
39
40
41
42
## Quick Start
The example below shows how to use sglang to answer a mulit-turn question.

### Using OpenAI Models
Lianmin Zheng's avatar
Lianmin Zheng committed
43
44
45
46
47
48
Set the OpenAI API Key
```
export OPENAI_API_KEY=sk-xxxxxx
```

Then, answer a multi-turn question.
Lianmin Zheng's avatar
Lianmin Zheng committed
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
```python
from sglang import function, system, user, assistant, gen, set_default_backend, OpenAI

@function
def multi_turn_question(s, question_1, question_2):
    s += system("You are a helpful assistant.")
    s += user(question_1)
    s += assistant(gen("answer_1", max_tokens=256))
    s += user(question_2)
    s += assistant(gen("answer_2", max_tokens=256))

set_default_backend(OpenAI("gpt-3.5-turbo"))

state = multi_turn_question.run(
    question_1="What is the capital of the United States?",
    question_2="List two local attractions.",
)

for m in state.messages():
    print(m["role"], ":", m["content"])
```

### Using Local Models
First, launch a server with
```
python -m sglang.launch_server --model-path meta-llama/Llama-2-7b-chat-hf --port 30000
```

Then, connect to the server and answer a multi-turn question.

```python
from sglang import function, system, user, assistant, gen, set_default_backend, RuntimeEndpoint

@function
def multi_turn_question(s, question_1, question_2):
    s += system("You are a helpful assistant.")
    s += user(question_1)
    s += assistant(gen("answer_1", max_tokens=256))
    s += user(question_2)
    s += assistant(gen("answer_2", max_tokens=256))

set_default_backend(RuntimeEndpoint("http://localhost:30000"))

state = multi_turn_question.run(
    question_1="What is the capital of the United States?",
    question_2="List two local attractions.",
)

for m in state.messages():
    print(m["role"], ":", m["content"])
```

### More Examples

You can find more examples at [examples/quick_start](examples/quick_start).

## Frontend: Structured Generation Langauge (SGLang)

Lianmin Zheng's avatar
Lianmin Zheng committed
107
108
109
110
111
To begin with, import sglang.
```python
import sglang as sgl
```

Lianmin Zheng's avatar
Lianmin Zheng committed
112
`sglang` provides some simple primitives such as `gen`, `select`, `fork`, `image`.
Lianmin Zheng's avatar
Lianmin Zheng committed
113
114
115
116
You can implement your prompt flow in a function decorated by `sgl.function`.
You can then invoke the function with `run` or `run_batch`.
The system will manage the state, chat template, and parallelism for you.

Lianmin Zheng's avatar
Lianmin Zheng committed
117
### Control Flow
Lianmin Zheng's avatar
Lianmin Zheng committed
118
119
120
121
122
123
124
125
126
127
128
129
```python
@sgl.function
def control_flow(s, question):
    s += "To answer this question: " + question + ", "
    s += "I need to use a " + sgl.gen("tool", choices=["calculator", "web browser"]) + ". "

    # You can use if or nested function calls
    if s["tool"] == "calculator":
        s += "The math expression is" + sgl.gen("expression")
    elif s["tool"] == "web browser":
        s += "The website url is" + sgl.gen("url")
```
Lianmin Zheng's avatar
Lianmin Zheng committed
130
131

### Parallelism
Lianmin Zheng's avatar
Lianmin Zheng committed
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
```python
@sgl.function
def tip_suggestion(s):
    s += (
        "Here are two tips for staying healthy: "
        "1. Balanced Diet. 2. Regular Exercise.\n\n"
    )

    forks = s.fork(2)  # Launch parallel prompts
    for i, f in enumerate(forks):
        f += f"Now, expand tip {i+1} into a paragraph:\n"
        f += sgl.gen(f"detailed_tip", max_tokens=256, stop="\n\n")

    s += "Tip 1:" + forks[0]["detailed_tip"] + "\n"
    s += "Tip 2:" + forks[1]["detailed_tip"] + "\n"
    s += "In summary" + sgl.gen("summary")
```
Lianmin Zheng's avatar
Lianmin Zheng committed
149
150
151
152

### Multi Modality
```python
@sgl.function
Lianmin Zheng's avatar
Lianmin Zheng committed
153
def image_qa(s, image_file, question):
Lianmin Zheng's avatar
Lianmin Zheng committed
154
    s += sgl.user(sgl.image(image_file) + question)
Lianmin Zheng's avatar
Lianmin Zheng committed
155
    s += sgl.assistant(sgl.gen("answer", max_tokens=256)
Lianmin Zheng's avatar
Lianmin Zheng committed
156
157
```

Lianmin Zheng's avatar
Lianmin Zheng committed
158
159
### Constrained Decoding
```python
Lianmin Zheng's avatar
Lianmin Zheng committed
160
@sgl.function
Lianmin Zheng's avatar
Lianmin Zheng committed
161
162
def regular_expression_gen(s):
    s += "Q: What is the IP address of the Google DNS servers?\n"
Lianmin Zheng's avatar
Lianmin Zheng committed
163
    s += "A: " + sgl.gen(
Lianmin Zheng's avatar
Lianmin Zheng committed
164
165
166
167
168
        "answer",
        temperature=0,
        regex=r"((25[0-5]|2[0-4]\d|[01]?\d\d?).){3}(25[0-5]|2[0-4]\d|[01]?\d\d?)",
    )
```
Lianmin Zheng's avatar
Lianmin Zheng committed
169

Lianmin Zheng's avatar
Lianmin Zheng committed
170
### Batching
Lianmin Zheng's avatar
Lianmin Zheng committed
171
172
173
174
175
176
177
178
179
180
181
182
183
184
```python
@sgl.function
def text_qa(s, question):
    s += "Q: " + question + "\n"
    s += "A:" + sgl.gen("answer", stop="\n")

states = text_qa.run_batch(
    [
        {"question": "What is the capital of the United Kingdom?"},
        {"question": "What is the capital of France?"},
        {"question": "What is the capital of Japan?"},
    ],
)
```
Lianmin Zheng's avatar
Lianmin Zheng committed
185
186

### Streaming
Lianmin Zheng's avatar
Lianmin Zheng committed
187
188
189
190
191
192
193
194
195
```python
@sgl.function
def text_qa(s, question):
    s += "Q: " + question + "\n"
    s += "A:" + sgl.gen("answer", stop="\n")

states = text_qa.run(
    question="What is the capital of France?",
    temperature=0.1)
Lianmin Zheng's avatar
Lianmin Zheng committed
196

Lianmin Zheng's avatar
Lianmin Zheng committed
197
198
199
for out in state.text_iter():
    print(out, end="", flush=True)
```
Lianmin Zheng's avatar
Lianmin Zheng committed
200
201
202
203

## Backend: SGLang Runtime (SRT)
The SGLang Runtime (SRT) is designed to work best with the SGLang frontend.
However, it can also be used as a standalone API server.
Ying Sheng's avatar
Ying Sheng committed
204
In this case, the [RadixAttention](https://arxiv.org/abs/2312.07104) can still greatly accelerate many use cases with automatic KV cache reuse.
Lianmin Zheng's avatar
Lianmin Zheng committed
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227

### Usage
Launch a server
```
python -m sglang.launch_server --model-path meta-llama/Llama-2-7b-chat-hf --port 30000
```

Send a request
```
curl http://localhost:30000/v1/completions \
  -H "Content-Type: application/json" \
  -d '{
    "prompt": "Say this is a test",
    "max_tokens": 16,
    "temperature": 0
  }'
```

### Additional Arguments
- Add `--tp 2` to enable tensor parallelism.
```
python -m sglang.launch_server --model-path meta-llama/Llama-2-7b-chat-hf --port 30000 --tp 2
```
Ying Sheng's avatar
Ying Sheng committed
228
229
230
231
- If you see out-of-memory errors during serving, please try to reduce the memory usage of the KV cache pool by setting a smaller value of `--mem-fraction-static`. The default value is `0.9`
```
python -m sglang.launch_server --model-path meta-llama/Llama-2-7b-chat-hf --port 30000 --mem-fraction-static 0.7
```
Lianmin Zheng's avatar
Lianmin Zheng committed
232
233
234
235
236
237

### Supported Models
- Llama
- Mistral
- Mixtral
- LLaVA
Lianmin Zheng's avatar
Lianmin Zheng committed
238
  - `python3 -m sglang.launch_server --model-path liuhaotian/llava-v1.5-7b --tokenizer-path llava-hf/llava-1.5-7b-hf --port 30000`
Lianmin Zheng's avatar
Lianmin Zheng committed
239
240
241

## Benchmark And Performance

Lianmin Zheng's avatar
Lianmin Zheng committed
242
243
244
245
246
247
- Llama-7B on NVIDIA A10G, FP16, Tensor Parallelism=1
![llama_7b](assets/llama_7b.jpg)

- Mixtral-8x7B on NVIDIA A10G, FP16, Tensor Parallelism=8
![mixtral_8x7b](assets/mixtral_8x7b.jpg)

Lianmin Zheng's avatar
Lianmin Zheng committed
248
Learn more [here](docs/benchmark_results.md).
Lianmin Zheng's avatar
Lianmin Zheng committed
249

Lianmin Zheng's avatar
Lianmin Zheng committed
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
## Roadmap
- [ ] Function call
- [ ] Quantization
- [ ] S-LoRA
- [ ] More models

## Citation And Acknowledgment
```
@misc{zheng2023efficiently,
      title={Efficiently Programming Large Language Models using SGLang},
      author={Lianmin Zheng and Liangsheng Yin and Zhiqiang Xie and Jeff Huang and Chuyue Sun and Cody Hao Yu and Shiyi Cao and Christos Kozyrakis and Ion Stoica and Joseph E. Gonzalez and Clark Barrett and Ying Sheng},
      year={2023},
      eprint={2312.07104},
      archivePrefix={arXiv},
      primaryClass={cs.AI}
}
```

268
We learned from the design and reused some code of the following projects: [Guidance](https://github.com/guidance-ai/guidance), [vLLM](https://github.com/vllm-project/vllm), [LightLLM](https://github.com/ModelTC/lightllm), [FlashInfer](https://github.com/flashinfer-ai/flashinfer), [Outlines](https://github.com/outlines-dev/outlines), [LMQL](https://github.com/eth-sri/lmql).