gemma.py 11.3 KB
Newer Older
Liangsheng Yin's avatar
Liangsheng Yin committed
1
2
3
4
5
6
7
8
9
# Adapted from:
# https://github.com/vllm-project/vllm/blob/d65fac2738f0287a41955b45df76a2d5a919bff6/vllm/model_executor/models/gemma.py
"""Inference-only Gemma model compatible with HuggingFace weights."""
from typing import Optional, Tuple

import torch
from sglang.srt.layers.logits_processor import LogitsProcessor
from sglang.srt.layers.radix_attention import RadixAttention
from torch import nn
10
from transformers import PretrainedConfig
Liangsheng Yin's avatar
Liangsheng Yin committed
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
from vllm.config import LoRAConfig
from vllm.model_executor.input_metadata import InputMetadata
from vllm.model_executor.layers.activation import GeluAndMul
from vllm.model_executor.layers.layernorm import RMSNorm
from vllm.model_executor.layers.linear import (
    LinearMethodBase,
    MergedColumnParallelLinear,
    QKVParallelLinear,
    RowParallelLinear,
)
from vllm.model_executor.layers.rotary_embedding import get_rope
from vllm.model_executor.layers.vocab_parallel_embedding import VocabParallelEmbedding
from vllm.model_executor.parallel_utils.parallel_state import (
    get_tensor_model_parallel_world_size,
)
from vllm.model_executor.weight_utils import (
    default_weight_loader,
    hf_model_weights_iterator,
)


class GemmaMLP(nn.Module):
    def __init__(
        self,
        hidden_size: int,
        intermediate_size: int,
        linear_method: Optional[LinearMethodBase] = None,
    ) -> None:
        super().__init__()
        self.gate_up_proj = MergedColumnParallelLinear(
            hidden_size,
            [intermediate_size] * 2,
            bias=False,
            linear_method=linear_method,
        )
        self.down_proj = RowParallelLinear(
            intermediate_size, hidden_size, bias=False, linear_method=linear_method
        )
        self.act_fn = GeluAndMul()

    def forward(self, x):
        gate_up, _ = self.gate_up_proj(x)
        x = self.act_fn(gate_up)
        x, _ = self.down_proj(x)
        return x


class GemmaAttention(nn.Module):
    def __init__(
        self,
        hidden_size: int,
        num_heads: int,
        num_kv_heads: int,
        head_dim: int,
        layer_id: int = 0,
        max_position_embeddings: int = 8192,
        rope_theta: float = 10000,
        linear_method: Optional[LinearMethodBase] = None,
    ) -> None:
        super().__init__()
        self.hidden_size = hidden_size
        tp_size = get_tensor_model_parallel_world_size()
        self.total_num_heads = num_heads
        assert self.total_num_heads % tp_size == 0
        self.num_heads = self.total_num_heads // tp_size
        self.total_num_kv_heads = num_kv_heads
        if self.total_num_kv_heads >= tp_size:
            # Number of KV heads is greater than TP size, so we partition
            # the KV heads across multiple tensor parallel GPUs.
            assert self.total_num_kv_heads % tp_size == 0
        else:
            # Number of KV heads is less than TP size, so we replicate
            # the KV heads across multiple tensor parallel GPUs.
            assert tp_size % self.total_num_kv_heads == 0
        self.num_kv_heads = max(1, self.total_num_kv_heads // tp_size)
        self.head_dim = head_dim
        self.q_size = self.num_heads * self.head_dim
        self.kv_size = self.num_kv_heads * self.head_dim
        self.scaling = self.head_dim**-0.5
        self.rope_theta = rope_theta

        self.qkv_proj = QKVParallelLinear(
            hidden_size,
            self.head_dim,
            self.total_num_heads,
            self.total_num_kv_heads,
            bias=False,
            linear_method=linear_method,
        )
        self.o_proj = RowParallelLinear(
            self.total_num_heads * self.head_dim,
            hidden_size,
            bias=False,
            linear_method=linear_method,
        )

        self.rotary_emb = get_rope(
            self.head_dim,
            rotary_dim=self.head_dim,
            max_position=max_position_embeddings,
            base=self.rope_theta,
            is_neox_style=True,
        )
        self.attn = RadixAttention(
            self.num_heads,
            self.head_dim,
            self.scaling,
            num_kv_heads=self.num_kv_heads,
            layer_id=layer_id,
        )

    def forward(
        self,
        positions: torch.Tensor,
        hidden_states: torch.Tensor,
        input_metadata: InputMetadata,
    ) -> torch.Tensor:
        qkv, _ = self.qkv_proj(hidden_states)
        q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1)
        q, k = self.rotary_emb(positions, q, k)
        attn_output = self.attn(q, k, v, input_metadata)
        output, _ = self.o_proj(attn_output)
        return output


class GemmaDecoderLayer(nn.Module):
    def __init__(
        self,
139
        config: PretrainedConfig,
Liangsheng Yin's avatar
Liangsheng Yin committed
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
        layer_id: int = 0,
        linear_method: Optional[LinearMethodBase] = None,
    ) -> None:
        super().__init__()
        self.hidden_size = config.hidden_size
        self.self_attn = GemmaAttention(
            hidden_size=self.hidden_size,
            num_heads=config.num_attention_heads,
            num_kv_heads=config.num_key_value_heads,
            head_dim=config.head_dim,
            layer_id=layer_id,
            max_position_embeddings=config.max_position_embeddings,
            rope_theta=config.rope_theta,
            linear_method=linear_method,
        )
        self.mlp = GemmaMLP(
            hidden_size=self.hidden_size,
            intermediate_size=config.intermediate_size,
            linear_method=linear_method,
        )
        self.input_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
        self.post_attention_layernorm = RMSNorm(
            config.hidden_size, eps=config.rms_norm_eps
        )

    def forward(
        self,
        positions: torch.Tensor,
        hidden_states: torch.Tensor,
        input_metadata: InputMetadata,
        residual: Optional[torch.Tensor],
    ) -> Tuple[torch.Tensor, torch.Tensor]:
        # Self Attention
        if residual is None:
            residual = hidden_states
            hidden_states = self.input_layernorm(hidden_states)
        else:
            hidden_states, residual = self.input_layernorm(hidden_states, residual)
        hidden_states = self.self_attn(
            positions=positions,
            hidden_states=hidden_states,
            input_metadata=input_metadata,
        )

        # Fully Connected
        hidden_states, residual = self.post_attention_layernorm(hidden_states, residual)
        hidden_states = self.mlp(hidden_states)
        return hidden_states, residual


class GemmaModel(nn.Module):
    def __init__(
        self,
193
        config: PretrainedConfig,
Liangsheng Yin's avatar
Liangsheng Yin committed
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
        linear_method: Optional[LinearMethodBase] = None,
    ) -> None:
        super().__init__()
        self.config = config

        self.embed_tokens = VocabParallelEmbedding(
            config.vocab_size,
            config.hidden_size,
        )
        self.layers = nn.ModuleList(
            [
                GemmaDecoderLayer(config, i, linear_method)
                for i in range(config.num_hidden_layers)
            ]
        )
        self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)

    def forward(
        self,
        input_ids: torch.Tensor,
        positions: torch.Tensor,
        input_metadata: InputMetadata,
216
        input_embeds: torch.Tensor = None,
Liangsheng Yin's avatar
Liangsheng Yin committed
217
    ) -> torch.Tensor:
218
        if input_embeds is None:
Liangsheng Yin's avatar
Liangsheng Yin committed
219
220
            hidden_states = self.embed_tokens(input_ids)
        else:
221
            hidden_states = input_embeds
Liangsheng Yin's avatar
Liangsheng Yin committed
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264

        # Normalize the embedding by sqrt(hidden_size)
        hidden_states *= self.config.hidden_size**0.5

        residual = None
        for i in range(len(self.layers)):
            layer = self.layers[i]
            hidden_states, residual = layer(
                positions,
                hidden_states,
                input_metadata,
                residual,
            )
        hidden_states, _ = self.norm(hidden_states, residual)
        return hidden_states


class GemmaForCausalLM(nn.Module):
    packed_modules_mapping = {
        "qkv_proj": [
            "q_proj",
            "k_proj",
            "v_proj",
        ],
        "gate_up_proj": [
            "gate_proj",
            "up_proj",
        ],
    }

    # LoRA specific attributes
    supported_lora_modules = [
        "qkv_proj",
        "o_proj",
        "gate_up_proj",
        "down_proj",
    ]
    # Gemma does not apply LoRA to the embedding layer.
    embedding_modules = {}
    embedding_padding_modules = []

    def __init__(
        self,
265
        config: PretrainedConfig,
Liangsheng Yin's avatar
Liangsheng Yin committed
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
        linear_method: Optional[LinearMethodBase] = None,
        lora_config: Optional[LoRAConfig] = None,
    ) -> None:
        del lora_config  # Unused.
        super().__init__()
        self.config = config
        self.linear_method = linear_method
        self.model = GemmaModel(config, linear_method)
        self.logits_processor = LogitsProcessor(config)

    @torch.no_grad()
    def forward(
        self,
        input_ids: torch.Tensor,
        positions: torch.Tensor,
        input_metadata: InputMetadata,
282
        input_embeds: torch.Tensor = None,
Liangsheng Yin's avatar
Liangsheng Yin committed
283
    ) -> torch.Tensor:
284
        hidden_states = self.model(input_ids, positions, input_metadata, input_embeds)
Liangsheng Yin's avatar
Liangsheng Yin committed
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
        return self.logits_processor(
            input_ids, hidden_states, self.model.embed_tokens.weight, input_metadata
        )

    def load_weights(
        self,
        model_name_or_path: str,
        cache_dir: Optional[str] = None,
        load_format: str = "auto",
        revision: Optional[str] = None,
    ):
        stacked_params_mapping = [
            # (param_name, shard_name, shard_id)
            ("qkv_proj", "q_proj", "q"),
            ("qkv_proj", "k_proj", "k"),
            ("qkv_proj", "v_proj", "v"),
            ("gate_up_proj", "gate_proj", 0),
            ("gate_up_proj", "up_proj", 1),
        ]
        params_dict = dict(self.named_parameters())
        loaded_params = set()
        for name, loaded_weight in hf_model_weights_iterator(
            model_name_or_path, cache_dir, load_format, revision
        ):
            for param_name, shard_name, shard_id in stacked_params_mapping:
                if shard_name not in name:
                    continue
                name = name.replace(shard_name, param_name)
                # Skip loading extra bias for GPTQ models.
                if name.endswith(".bias") and name not in params_dict:
                    continue
                param = params_dict[name]
                weight_loader = param.weight_loader
                weight_loader(param, loaded_weight, shard_id)
                break
            else:
                # Skip loading extra bias for GPTQ models.
                if name.endswith(".bias") and name not in params_dict:
                    continue
                # GemmaRMSNorm is different from Llama's in that it multiplies
                # (1 + weight) to the output, instead of just weight.
                if "norm.weight" in name:
                    loaded_weight += 1.0
                param = params_dict[name]
                weight_loader = getattr(param, "weight_loader", default_weight_loader)
                weight_loader(param, loaded_weight)
            loaded_params.add(name)
        unloaded_params = params_dict.keys() - loaded_params
        if unloaded_params:
            raise RuntimeError(
                "Some weights are not initialized from checkpoints: "
                f"{unloaded_params}"
            )


EntryClass = GemmaForCausalLM