exaone.py 13.8 KB
Newer Older
김종곤's avatar
김종곤 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
"""
Copyright 2024 The LGcns AI Engineering Team
Copyright 2023-2024 SGLang Team
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
"""

# Adapted from llama2.py
"""Inference-only Exaone model compatible with HuggingFace weights."""

from typing import Any, Dict, Iterable, Optional, Tuple

import torch
from torch import nn
from vllm.config import CacheConfig
from vllm.distributed import get_tensor_model_parallel_world_size
from vllm.model_executor.layers.linear import (
    MergedColumnParallelLinear,
    QKVParallelLinear,
    RowParallelLinear,
)
from vllm.model_executor.layers.quantization.base_config import QuantizationConfig
from vllm.model_executor.layers.rotary_embedding import get_rope
from vllm.model_executor.layers.vocab_parallel_embedding import (
    ParallelLMHead,
    VocabParallelEmbedding,
)
from vllm.model_executor.model_loader.weight_utils import default_weight_loader

from sglang.srt.layers.activation import SiluAndMul
from sglang.srt.layers.layernorm import RMSNorm
from sglang.srt.layers.logits_processor import LogitsProcessor, LogitsProcessorOutput
from sglang.srt.layers.radix_attention import RadixAttention
from sglang.srt.layers.sampler import Sampler
from sglang.srt.model_executor.forward_batch_info import InputMetadata


class ExaoneGatedMLP(nn.Module):
    def __init__(
        self,
        hidden_size: int,
        intermediate_size: int,
        hidden_act: str,
        quant_config: Optional[QuantizationConfig] = None,
        prefix: str = "",
    ) -> None:
        super().__init__()
        self.gate_up_proj = MergedColumnParallelLinear(
            hidden_size,
            [intermediate_size] * 2,
            bias=False,
            quant_config=quant_config,
            prefix=f"{prefix}.gate_up_proj",
        )
        self.c_proj = RowParallelLinear(
            intermediate_size,
            hidden_size,
            bias=False,
            quant_config=quant_config,
            prefix=f"{prefix}.c_proj",
        )
        if hidden_act != "silu":
            raise ValueError(
                f"Unsupported activation: {hidden_act}. "
                "Only silu is supported for now."
            )
        self.act_fn = SiluAndMul()

    def forward(self, x):
        gate_up, _ = self.gate_up_proj(x)
        x = self.act_fn(gate_up)
        x, _ = self.c_proj(x)
        return x


class ExaoneAttention(nn.Module):
    def __init__(
        self,
        config,
        hidden_size: int,
        num_heads: int,
        num_kv_heads: int,
        layer_id: int = 0,
        rope_theta: float = 500000,
        rope_scaling: Optional[Dict[str, Any]] = None,
        rope_is_neox_style: bool = True,
        max_position_embeddings: int = 4096,
        quant_config: Optional[QuantizationConfig] = None,
        prefix: str = "",
    ) -> None:
        super().__init__()
        self.hidden_size = hidden_size
        tp_size = get_tensor_model_parallel_world_size()
        self.total_num_heads = num_heads
        assert self.total_num_heads % tp_size == 0
        self.num_heads = self.total_num_heads // tp_size
        self.total_num_kv_heads = num_kv_heads
        if self.total_num_kv_heads >= tp_size:
            # Number of KV heads is greater than TP size, so we partition
            # the KV heads across multiple tensor parallel GPUs.
            assert self.total_num_kv_heads % tp_size == 0
        else:
            # Number of KV heads is less than TP size, so we replicate
            # the KV heads across multiple tensor parallel GPUs.
            assert tp_size % self.total_num_kv_heads == 0
        self.num_kv_heads = max(1, self.total_num_kv_heads // tp_size)
        # MistralConfig has an optional head_dim introduced by Mistral-Nemo
        self.head_dim = getattr(
            config, "head_dim", self.hidden_size // self.total_num_heads
        )
        self.rotary_dim = int(
            self.head_dim * getattr(config, "partial_rotary_factor", 1)
        )
        self.q_size = self.num_heads * self.head_dim
        self.kv_size = self.num_kv_heads * self.head_dim
        self.scaling = self.head_dim**-0.5
        self.rope_theta = rope_theta
        self.max_position_embeddings = max_position_embeddings

        self.qkv_proj = QKVParallelLinear(
            hidden_size,
            self.head_dim,
            self.total_num_heads,
            self.total_num_kv_heads,
            bias=False,
            quant_config=quant_config,
            prefix=f"{prefix}.qkv_proj",
        )
        self.out_proj = RowParallelLinear(
            self.total_num_heads * self.head_dim,
            hidden_size,
            bias=False,
            quant_config=quant_config,
            prefix=f"{prefix}.out_proj",
        )

        self.rotary_emb = get_rope(
            self.head_dim,
            rotary_dim=self.rotary_dim,
            max_position=max_position_embeddings,
            base=rope_theta,
            rope_scaling=rope_scaling,
            is_neox_style=rope_is_neox_style,
        )
        self.attn = RadixAttention(
            self.num_heads,
            self.head_dim,
            self.scaling,
            num_kv_heads=self.num_kv_heads,
            layer_id=layer_id,
        )

    def forward(
        self,
        positions: torch.Tensor,
        hidden_states: torch.Tensor,
        input_metadata: InputMetadata,
    ) -> torch.Tensor:
        qkv, _ = self.qkv_proj(hidden_states)
        q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1)
        q, k = self.rotary_emb(positions, q, k)
        attn_output = self.attn(q, k, v, input_metadata)
        output, _ = self.out_proj(attn_output)
        return output


class ExaoneDecoderLayer(nn.Module):
    def __init__(
        self,
        config,
        layer_id: int = 0,
        quant_config: Optional[QuantizationConfig] = None,
        prefix: str = "",
    ) -> None:
        super().__init__()
        self.hidden_size = config.hidden_size
        rope_theta = getattr(config, "rope_theta", 500000)
        rope_scaling = getattr(config, "rope_scaling", None)
        if rope_scaling is not None and getattr(
            config, "original_max_position_embeddings", None
        ):
            rope_scaling["original_max_position_embeddings"] = (
                config.original_max_position_embeddings
            )
        rope_is_neox_style = getattr(config, "rope_is_neox_style", True)
        max_position_embeddings = getattr(config, "max_position_embeddings", 4096)
        self.self_attn = ExaoneAttention(
            config=config,
            hidden_size=self.hidden_size,
            num_heads=config.num_attention_heads,
            num_kv_heads=config.num_key_value_heads,
            layer_id=layer_id,
            rope_theta=rope_theta,
            rope_scaling=rope_scaling,
            rope_is_neox_style=rope_is_neox_style,
            max_position_embeddings=max_position_embeddings,
            quant_config=quant_config,
            prefix=f"{prefix}.self_attn",
        )
        self.mlp = ExaoneGatedMLP(
            hidden_size=self.hidden_size,
            intermediate_size=config.intermediate_size,
            hidden_act=config.activation_function,
            quant_config=quant_config,
            prefix=f"{prefix}.mlp",
        )
        rms_norm_eps = config.layer_norm_epsilon
        self.ln_1 = RMSNorm(config.hidden_size, eps=rms_norm_eps)
        self.ln_2 = RMSNorm(config.hidden_size, eps=rms_norm_eps)

    def forward(
        self,
        positions: torch.Tensor,
        hidden_states: torch.Tensor,
        input_metadata: InputMetadata,
        residual: Optional[torch.Tensor],
    ) -> Tuple[torch.Tensor, torch.Tensor]:
        # Self Attention
        if residual is None:
            residual = hidden_states
            hidden_states = self.ln_1(hidden_states)
        else:
            hidden_states, residual = self.ln_1(hidden_states, residual)
        hidden_states = self.self_attn(
            positions=positions,
            hidden_states=hidden_states,
            input_metadata=input_metadata,
        )

        # Fully Connected
        hidden_states, residual = self.ln_2(hidden_states, residual)
        hidden_states = self.mlp(hidden_states)
        return hidden_states, residual


class ExaoneModel(nn.Module):
    def __init__(
        self,
        config,
        quant_config: Optional[QuantizationConfig] = None,
    ) -> None:
        super().__init__()
        self.config = config
        self.padding_idx = config.pad_token_id
        self.vocab_size = config.vocab_size
        self.wte = VocabParallelEmbedding(
            config.vocab_size,
            config.hidden_size,
        )
        self.h = nn.ModuleList(
            [
                ExaoneDecoderLayer(
                    config, i, quant_config=quant_config, prefix=f"model.h.{i}"
                )
                for i in range(config.num_hidden_layers)
            ]
        )
        rms_norm_eps = config.layer_norm_epsilon
        self.ln_f = RMSNorm(config.hidden_size, eps=rms_norm_eps)

    def forward(
        self,
        input_ids: torch.Tensor,
        positions: torch.Tensor,
        input_metadata: InputMetadata,
        input_embeds: torch.Tensor = None,
    ) -> torch.Tensor:
        if input_embeds is None:
            hidden_states = self.wte(input_ids)
        else:
            hidden_states = input_embeds
        residual = None
        for i in range(len(self.h)):
            layer = self.h[i]
            hidden_states, residual = layer(
                positions,
                hidden_states,
                input_metadata,
                residual,
            )
        hidden_states, _ = self.ln_f(hidden_states, residual)
        return hidden_states


class ExaoneForCausalLM(nn.Module):
    def __init__(
        self,
        config,
        quant_config: Optional[QuantizationConfig] = None,
        cache_config: Optional[CacheConfig] = None,
    ) -> None:
        super().__init__()
        self.config = config
        self.quant_config = quant_config
        self.transformer = ExaoneModel(config, quant_config=quant_config)
        self.lm_head = ParallelLMHead(config.vocab_size, config.hidden_size)
        self.logits_processor = LogitsProcessor(config)
        self.sampler = Sampler()

    @torch.no_grad()
    def forward(
        self,
        input_ids: torch.Tensor,
        positions: torch.Tensor,
        input_metadata: InputMetadata,
        input_embeds: torch.Tensor = None,
    ) -> LogitsProcessorOutput:
        hidden_states = self.transformer(
            input_ids, positions, input_metadata, input_embeds
        )
        logits_output = self.logits_processor(
            input_ids, hidden_states, self.lm_head.weight, input_metadata
        )
        sample_output = self.sampler(logits_output, input_metadata.sampling_info)
        return sample_output, logits_output

    def get_module_name(self, name):
        stacked_params_mapping = [
            # (param_name, shard_name, shard_id, num_shard)
            ("qkv_proj", "q_proj", "q", 3),
            ("qkv_proj", "k_proj", "k", 3),
            ("qkv_proj", "v_proj", "v", 3),
            ("gate_up_proj", "c_fc_0", 0, 2),
            ("gate_up_proj", "c_fc_1", 1, 2),
        ]
        for param_name, weight_name, shard_id, num_shard in stacked_params_mapping:
            if weight_name in name:
                return (
                    name.replace(weight_name, param_name)[: -len(".weight")],
                    num_shard,
                )
        return name[: -len(".weight")], 1

    def get_num_params(self):
        params_dict = dict(self.named_parameters())
        return len(params_dict)

347
    def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):
김종곤's avatar
김종곤 committed
348
349
350
351
352
353
354
355
356
357
        stacked_params_mapping = [
            # (param_name, shard_name, shard_id)
            ("qkv_proj", "q_proj", "q"),
            ("qkv_proj", "k_proj", "k"),
            ("qkv_proj", "v_proj", "v"),
            ("gate_up_proj", "c_fc_0", 0),
            ("gate_up_proj", "c_fc_1", 1),
        ]
        params_dict = dict(self.named_parameters())

358
        for name, loaded_weight in weights:
김종곤's avatar
김종곤 committed
359
360
361
362
363
364
365
366
367
            if "rotary_emb.inv_freq" in name or "projector" in name:
                return
            if "rotary_emb.cos_cached" in name or "rotary_emb.sin_cached" in name:
                # Models trained using ColossalAI may include these tensors in
                # the checkpoint. Skip them.
                return
            if name.startswith("model.vision_tower") and name not in params_dict:
                return

368
            name = name.replace("attn.attention", "self_attn")
김종곤's avatar
김종곤 committed
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
            for param_name, weight_name, shard_id in stacked_params_mapping:
                if weight_name not in name:
                    continue
                name = name.replace(weight_name, param_name)
                # Skip loading extra bias for GPTQ models.
                if name.endswith(".bias") and name not in params_dict:
                    continue
                param = params_dict[name]
                weight_loader = param.weight_loader
                weight_loader(param, loaded_weight, shard_id)
                break
            else:
                # Skip loading extra bias for GPTQ models.
                if name.endswith(".bias") and name not in params_dict:
                    return
                param = params_dict[name]
                weight_loader = getattr(param, "weight_loader", default_weight_loader)
                weight_loader(param, loaded_weight)


EntryClass = ExaoneForCausalLM