double_sparsity_backend.py 9.01 KB
Newer Older
Shuo Yang's avatar
Shuo Yang committed
1
2
3
4
5
6
7
8
9
10
11
from __future__ import annotations

from typing import TYPE_CHECKING

import torch

from sglang.srt.layers.attention import AttentionBackend
from sglang.srt.managers.schedule_batch import global_server_args_dict
from sglang.srt.model_executor.forward_batch_info import ForwardBatch

if TYPE_CHECKING:
12
    from sglang.srt.layers.radix_attention import RadixAttention
Shuo Yang's avatar
Shuo Yang committed
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
    from sglang.srt.model_executor.model_runner import ModelRunner


class DoubleSparseAttnBackend(AttentionBackend):
    def __init__(self, model_runner: ModelRunner):
        # Lazy import to avoid the initialization of cuda context
        from sglang.srt.layers.attention.triton_ops.double_sparsity_attention import (
            flash_decode_attention_fwd,
            flash_decode_sparse_attention_fwd,
        )
        from sglang.srt.layers.attention.triton_ops.extend_attention import (
            extend_attention_fwd,
        )

        super().__init__()

        self.decode_attention_fwd = flash_decode_attention_fwd
        self.decode_sparse_attention_fwd = flash_decode_sparse_attention_fwd
        self.extend_attention_fwd = extend_attention_fwd
        self.num_head = model_runner.model_config.num_attention_heads
        self.head_dim = model_runner.model_config.hidden_size // self.num_head
        self.heavy_token_num = model_runner.server_args.ds_heavy_token_num

        self.sorted_channels = model_runner.sorted_channels
        self.sparse_decode_thresold = (
            model_runner.server_args.ds_sparse_decode_threshold
        )
        self.att_out_approx: torch.Tensor = None
        self.mid_out: torch.Tensor = None
        self.mid_o_logexpsum: torch.Tensor = None

        # TODO: Change the hard-coded block_seq_num
        self.BLOCK_SEQ = 128

        if global_server_args_dict.get("triton_attention_reduce_in_fp32", False):
            self.reduce_dtype = torch.float32
        else:
            self.reduce_dtype = torch.float16

        self.forward_metadata = None

    def init_forward_metadata(self, forward_batch: ForwardBatch):
        """Init auxiliary variables for triton attention backend."""

        if forward_batch.forward_mode.is_decode():
            start_loc = torch.zeros_like(forward_batch.seq_lens, dtype=torch.int32)
            start_loc[1:] = torch.cumsum(forward_batch.seq_lens[:-1], dim=0)

            total_num_tokens = torch.sum(forward_batch.seq_lens).item()
            attn_logits = torch.empty(
                (self.num_head, total_num_tokens),
                dtype=self.reduce_dtype,
                device="cuda",
            )

            max_seq_len = torch.max(forward_batch.seq_lens).item()
            min_seq_len = torch.min(forward_batch.seq_lens).item()
            max_extend_len = None
            # NOTE: Align sequence order with req_to_token order
            ds_req_to_token = forward_batch.req_to_token_pool.req_to_token[
                forward_batch.req_pool_indices
            ]

            bsz = forward_batch.seq_lens.shape[0]

            att_out_approx = torch.empty(
                [self.num_head, bsz, max_seq_len],
                dtype=self.reduce_dtype,
                device="cuda",
            )

            block_seq_num = (
                self.heavy_token_num + self.BLOCK_SEQ - 1
            ) // self.BLOCK_SEQ

            mid_out = torch.empty(
                [bsz, self.num_head, block_seq_num, self.head_dim],
                dtype=torch.float32,
                device="cuda",
            )
            mid_o_logexpsum = torch.empty(
                [bsz, self.num_head, block_seq_num], dtype=torch.float32, device="cuda"
            )
            self.att_out_approx = att_out_approx
            self.mid_out = mid_out
            self.mid_o_logexpsum = mid_o_logexpsum

        else:
            start_loc = attn_logits = max_seq_len = min_seq_len = None
            prefix_lens = forward_batch.extend_prefix_lens
            max_extend_len = torch.max(forward_batch.seq_lens - prefix_lens).item()
            ds_req_to_token = None

        self.forward_metadata = (
            start_loc,
            attn_logits,
            max_seq_len,
            min_seq_len,
            max_extend_len,
            ds_req_to_token,
        )

115
    def forward_extend(
116
117
118
119
120
121
122
        self,
        q,
        k,
        v,
        layer: RadixAttention,
        forward_batch: ForwardBatch,
        save_kv_cache=True,
123
    ):
Shuo Yang's avatar
Shuo Yang committed
124
125
126
127
128
129
130
131
132
133
134
135
136
137
        # TODO: reuse the buffer across layers
        if layer.qk_head_dim != layer.v_head_dim:
            o = q.new_empty((q.shape[0], layer.tp_q_head_num * layer.v_head_dim))
        else:
            o = torch.empty_like(q)

        k_label = torch.gather(
            k,
            2,
            self.sorted_channels[layer.layer_id]
            .unsqueeze(0)
            .expand(k.shape[0], -1, -1),
        )

138
139
140
141
        if save_kv_cache:
            forward_batch.token_to_kv_pool.set_kv_buffer(
                layer, forward_batch.out_cache_loc, k, v, k_label
            )
Shuo Yang's avatar
Shuo Yang committed
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168

        (
            start_loc,
            attn_logits,
            max_seq_len,
            min_seq_len,
            max_extend_len,
            ds_req_to_token,
        ) = self.forward_metadata
        self.extend_attention_fwd(
            q.view(-1, layer.tp_q_head_num, layer.qk_head_dim),
            k.contiguous(),
            v.contiguous(),
            o.view(-1, layer.tp_q_head_num, layer.v_head_dim),
            forward_batch.token_to_kv_pool.get_key_buffer(layer.layer_id),
            forward_batch.token_to_kv_pool.get_value_buffer(layer.layer_id),
            forward_batch.req_to_token_pool.req_to_token,
            forward_batch.req_pool_indices,
            forward_batch.seq_lens,
            forward_batch.extend_seq_lens,
            forward_batch.extend_start_loc,
            max_extend_len,
            layer.scaling,
            layer.logit_cap,
        )
        return o

169
    def forward_decode(
170
171
172
173
174
175
176
        self,
        q,
        k,
        v,
        layer: RadixAttention,
        forward_batch: ForwardBatch,
        save_kv_cache=True,
177
    ):
Shuo Yang's avatar
Shuo Yang committed
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
        # During torch.compile, there is a bug in rotary_emb that causes the
        # output value to have a 3D tensor shape. This reshapes the output correctly.
        q = q.reshape(-1, layer.tp_q_head_num * layer.qk_head_dim)

        # TODO: reuse the buffer across layers
        if layer.qk_head_dim != layer.v_head_dim:
            o = q.new_empty((q.shape[0], layer.tp_q_head_num * layer.v_head_dim))
        else:
            o = torch.empty_like(q)

        # TODO: Add min seqlen
        (
            start_loc,
            attn_logits,
            max_seq_len,
            min_seq_len,
            max_extend_len,
            ds_req_to_token,
        ) = self.forward_metadata

        k_label = torch.gather(
            k,
            2,
            self.sorted_channels[layer.layer_id]
            .unsqueeze(0)
            .expand(k.shape[0], -1, -1),
        )

206
207
208
209
        if save_kv_cache:
            forward_batch.token_to_kv_pool.set_kv_buffer(
                layer, forward_batch.out_cache_loc, k, v, k_label
            )
Shuo Yang's avatar
Shuo Yang committed
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259

        # NOTE(Andy) shouldn't be used when max_len_in_batch < heavy_token_num
        #            and set a minimum value for sparse_decode
        if (
            min_seq_len < self.heavy_token_num
            or max_seq_len < self.sparse_decode_thresold
        ):
            self.decode_attention_fwd(
                q.view(-1, layer.tp_q_head_num, layer.qk_head_dim),
                forward_batch.token_to_kv_pool.get_key_buffer(layer.layer_id),
                forward_batch.token_to_kv_pool.get_value_buffer(layer.layer_id),
                o.view(-1, layer.tp_q_head_num, layer.v_head_dim),
                forward_batch.req_to_token_pool.req_to_token,
                forward_batch.req_pool_indices,
                start_loc,
                forward_batch.seq_lens,
                attn_logits,
                max_seq_len,
                layer.scaling,
                layer.logit_cap,
            )
        else:
            # TODO(Andy): indexing with torch.gather or torch.index_select or customized kernel
            q_label = torch.gather(
                q.view(-1, layer.tp_q_head_num, layer.qk_head_dim),
                2,
                self.sorted_channels[layer.layer_id]
                .unsqueeze(0)
                .expand(q.shape[0], -1, -1),
            )
            self.decode_sparse_attention_fwd(
                q.view(-1, layer.tp_q_head_num, layer.qk_head_dim),
                forward_batch.token_to_kv_pool.get_key_buffer(layer.layer_id),
                forward_batch.token_to_kv_pool.get_value_buffer(layer.layer_id),
                o.view(-1, layer.tp_q_head_num, layer.qk_head_dim),
                q_label,
                forward_batch.token_to_kv_pool.get_label_buffer(layer.layer_id),
                ds_req_to_token,
                forward_batch.seq_lens,
                max_seq_len,
                layer.scaling,
                layer.logit_cap,
                self.heavy_token_num,
                self.att_out_approx,
                self.mid_out,
                self.mid_o_logexpsum,
                self.BLOCK_SEQ,
            )

        return o