flashattention_backend.py 103 KB
Newer Older
1
2
3
from __future__ import annotations

from dataclasses import dataclass
4
from typing import TYPE_CHECKING, Optional
5

6
import numpy as np
7
import torch
8
9
import triton
import triton.language as tl
10

11
from sglang.srt.configs.model_config import AttentionArch
12
from sglang.srt.layers.attention.base_attn_backend import AttentionBackend
13
from sglang.srt.layers.radix_attention import AttentionType
14
from sglang.srt.model_executor.forward_batch_info import ForwardBatch, ForwardMode
15
from sglang.srt.server_args import get_global_server_args
16
from sglang.srt.speculative.spec_info import SpecInput
17
18
19
20
21

if TYPE_CHECKING:
    from sglang.srt.layers.radix_attention import RadixAttention
    from sglang.srt.model_executor.model_runner import ModelRunner

22
from sgl_kernel import merge_state_v2
linhai1's avatar
linhai1 committed
23
24
# from sgl_kernel.flash_attn import flash_attn_varlen_func, flash_attn_with_kvcache
from sglang.srt.layers.attention.flashattention_interface import flash_attn_varlen_func, flash_attn_with_kvcache
25
26
27
28


@dataclass
class FlashAttentionMetadata:
29
    """Metadata to be init once in the model forward pass,
30
    each layer's forward pass can reuse the metadata.
31

32
33
34
35
36
    For each init metadata function, we will try set up them in below order
    """

    # Sequence lengths for the forward batch
    cache_seqlens_int32: torch.Tensor = None
37
    # Maximum sequence length for query
38
    max_seq_len_q: int = 1
39
    # Maximum sequence length for key
40
    max_seq_len_k: int = 0
41
42
43
44
    # Cumulative sequence lengths for query
    cu_seqlens_q: torch.Tensor = None
    # Cumulative sequence lengths for key
    cu_seqlens_k: torch.Tensor = None
45
    # Window size (typically used by Gemma)
46
    window_size: tuple = (-1, -1)
47
    # Page table, the index of KV Cache Tables/Blocks
48
49
    page_table: torch.Tensor = None

50
51
52
53
54
55
56
57
58
59
    # Encoder metadata
    # Cumulative sequence lengths for encoder key
    encoder_cu_seqlens_k: torch.Tensor = None
    # Maximum sequence length for encoder key
    encoder_max_seq_len_k: int = 0
    # Sequence lengths for the forward batch
    encoder_lens_int32: torch.Tensor = None
    # Page table for the encoder
    encoder_page_table: torch.Tensor = None

Chang Su's avatar
Chang Su committed
60
61
62
63
64
65
66
67
68
69
    @dataclass
    class LocalAttentionMetadata:
        local_query_start_loc: torch.Tensor = None  # cu_seqlens_q for local attention
        local_seqused_k: torch.Tensor = None  # sequence lengths for local attention
        local_block_table: torch.Tensor = None  # block table for local attention
        local_max_query_len: int = 0  # max query length for local attention
        local_max_seq_len: int = 0  # max sequence length for local attention

    local_attn_metadata: Optional[LocalAttentionMetadata] = None

70
71
72
    # For sliding window attention topk>1 spec decoding
    swa_spec_metadata: Optional[FlashAttentionMetadata] = None

Chang Su's avatar
Chang Su committed
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152

# Copied from:
# https://github.com/houseroad/vllm/blob/4e45bfcaf928bdb9bd952b4ac922a3c205589ae8/vllm/v1/attention/backends/flash_attn.py
#
# Take in `query_start_loc_np` and `seq_lens_np` and break the sequences into
# local attention blocks, where each block is passed to the attention kernel
# as an independent local ("virtual") batch item.
#
# For example, if are performing a chunked prefill a batch of 3 sequences:
#   q_seqlens  = [4, 10, 5]
#   kv_seqlens = [6, 17, 9]
# Then normally for regular attention we would compute with an attention mask
#  for batch idx 0 (q_seqlens = 4, kv_seqlens = 6) like:
#   batch idx: 0 (q_seqlens = 4, kv_seqlens = 6)
#        k_toks >   0 1 2 3 4 5
#        q_toks v  _____________
#               0 | 1 1 1
#               1 | 1 1 1 1
#               2 | 1 1 1 1 1
#               3 | 1 1 1 1 1 1
#
# for local attention (with attn_chunk_size = 4) we would compute with an
#  attention mask like:
#   batch idx: 0  (q_seqlens = 4, kv_seqlens = 6, attn_chunk_size = 4)
#        k_toks >   0 1 2 3 4 5
#        q_toks v  _____________
#               0 | 1 1 1
#               1 | 1 1 1 1
#               2 |         1
#               3 |         1 1
#
# We can simulate this mask using standard flash-attention by breaking the
#  sequences into local ("virtual") batches, where each local batch item is a
#  local attention block, so in this case batch idx 0 would be broken up into:
#
#   local-batch idx: 0 (q_seqlens = 2, kv_seqlens = 4)  (batch 0)
#        k_toks >   0 1 2 3
#        q_toks v  _____________
#               0 | 1 1 1
#               1 | 1 1 1 1
#   local-batch idx: 1 (q_seqlens = 2, kv_seqlens = 2) (batch 0)
#        k_toks >   4 5
#        q_toks v  _____________
#               2 | 1
#               3 | 1 1
#
# e.g. if we have:
#   attn_chunk_size = 4
#   query_start_loc_np = [0, 4, 14, 19] (q_seqlens = [4, 10, 5])
# Then this function would return:
#                           __b0__  ______b1______  __b2__ < orig batch indices
#   q_seqlens_local    = [   2,  2,  1,  4,  4,  1,  4,  1]
#   cu_seqlens_q_local = [0, 4,  6, 10, 14, 18, 19, 23, 24]
#   seqlens_k_local    = [   4,  2,  4,  4,  4,  1,  4,  1]
#   block_table_local  : shape[local_virtual_batches, pages_per_local_batch]
def make_local_attention_virtual_batches(
    attn_chunk_size: int,
    query_start_loc_np: np.ndarray,
    seq_lens_np: np.ndarray,
    block_table: torch.Tensor,
    page_size: int = 0,
) -> tuple[np.ndarray, np.ndarray, np.ndarray, torch.Tensor]:
    """
    Take in `query_start_loc_np` and `seq_lens_np` and break the sequences into
    local attention blocks, where each block is passed to the attention kernel
    as an independent local ("virtual") batch item.

    Args:
        attn_chunk_size: Size of local attention chunks
        query_start_loc_np: Cumulative sum of query lengths (numpy array)
        seq_lens_np: Sequence lengths (numpy array)
        block_table: Block table for KV cache
        page_size: Size of each page in the KV cache

    Returns:
        seqlens_q_local: Query sequence lengths for local attention
        cu_seqlens_q_local: Cumulative sum of query sequence lengths for local attention
        seqlens_k_local: Key sequence lengths for local attention
        block_table_local: Block table for local attention
    """
153
154
155
156
157
158
159
160
161
162
    # Adjust attention_chunk_size based on the actual sequence length
    # to avoid index out of bounds errors
    max_seq_len = seq_lens_np.max()
    effective_chunk_size = min(attn_chunk_size, max_seq_len)
    # Make sure effective_chunk_size is divisible by page_size
    effective_chunk_size = (effective_chunk_size // page_size) * page_size
    if effective_chunk_size < page_size:
        effective_chunk_size = page_size
    attn_chunk_size = effective_chunk_size

Chang Su's avatar
Chang Su committed
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
    q_seqlens = query_start_loc_np[1:] - query_start_loc_np[:-1]
    actual_batch_size = seq_lens_np.shape[0]

    # Handle if we are starting in the middle of a local attention block,
    #  we assume q_seqlens > 0 (for all elements), for each batch idx we compute
    #  the number of tokens that are not in the first local attention block and
    #  then we can simply use a cdiv for the rest.
    # For example if we have:
    #   attn_chunk_size = 4
    #   q_seqlens = [4, 10, 5]
    #   k_seqlens = [6, 17, 9]
    # Then we would get:
    #   new_tokens_in_first_block = [2, 1, 4]
    #   local_blocks = [2, 4, 2]
    q_tokens_in_first_block = np.minimum(
        attn_chunk_size - ((seq_lens_np - q_seqlens) % attn_chunk_size), q_seqlens
    ).astype(np.int32)
    tokens_in_last_block = attn_chunk_size + (seq_lens_np % -attn_chunk_size)
    local_blocks = 1 + cdiv(q_seqlens - q_tokens_in_first_block, attn_chunk_size)

    # Once we know the number of local blocks we can compute the request spans
    #  for each batch idx, we can figure out the number of "virtual" requests we
    #  have to make,
    # For the above example we would get:
    #   seqlens_q_local = [2, 2, 1, 4, 4, 1, 4, 1]
    #
    # First Get batched arange. (E.g., [2, 4, 2] -> [0, 1, 0, 1, 2, 3, 0, 1])
    #   (TODO: max a utility to share this code with _prepare_inputs)
    # arange step 1. [2, 4, 2] -> [2, 6, 8]
    cu_num_blocks = np.cumsum(local_blocks)
    virtual_batches = cu_num_blocks[-1]
    # arange step 2. [2, 6, 8] -> [0, 0, 2, 2, 2, 2, 6, 6]
    block_offsets = np.repeat(cu_num_blocks - local_blocks, local_blocks)
    # arange step 3. [0, 1, 0, 1, 2, 3, 0, 1]
    arange = np.arange(virtual_batches, dtype=np.int32) - block_offsets
    # also compute reverse arange (i.e. [1, 0, 3, 2, 1, 0, 1, 0])
    rarange = np.repeat(local_blocks, local_blocks) - arange - 1
    # Then we can compute the seqlens_q_local, handling the fact that the
    #  first and last blocks could be partial
    seqlens_q_local = np.repeat(q_seqlens - q_tokens_in_first_block, local_blocks)
    # set the first block since this may be a partial block
    seqlens_q_local[arange == 0] = q_tokens_in_first_block
    # set the remaining blocks
    seqlens_q_local[arange > 0] = np.minimum(
        seqlens_q_local - attn_chunk_size * (arange - 1), attn_chunk_size
    )[arange > 0]

    # convert from q_seqlens to cu_seqlens_q
    cu_seqlens_q_local = np.pad(np.cumsum(seqlens_q_local), (1, 0)).astype(np.int32)

    # compute the seqlens_k_local,
    #  basically a full local attention block for all but the last block in each
    #  batch
    # For our example this will be:
    #   seqlens_k_local = [4, 2, 4, 4, 4, 1, 4, 1]
    seqlens_k_local = np.full(cu_num_blocks[-1], attn_chunk_size, dtype=np.int32)
    seqlens_k_local[cu_num_blocks - 1] = tokens_in_last_block

    k_seqstarts_absolute = np.repeat(seq_lens_np, local_blocks) - (
        rarange * attn_chunk_size + np.repeat(tokens_in_last_block, local_blocks)
    )
    # For the example the local attention blocks start at:
    #                           _b0_  _____b1_____  _b2_
    #   k_seqstarts_absolute = [0, 4, 4, 8, 12, 16, 4, 8]
    block_starts = k_seqstarts_absolute // page_size

    assert attn_chunk_size % page_size == 0, (
        f"attn_chunk_size {attn_chunk_size} is not "
        f"divisible by page_size {page_size}"
    )
    pages_per_local_batch = attn_chunk_size // page_size

    # Create a block_table for the local attention blocks
    # For out example if we have a block-table like (assuming page_size=2):
    #   block_table = [
    #     [ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9],  < batch 0
    #     [10, 11, 12, 13, 14, 15, 16, 17, 18, 19],  < batch 1
    #     [20, 21, 22, 23, 24, 25, 26, 27, 28, 29],  < batch 2
    #   ]
    # Then for the local batches we would want a block-table like
    #   block_table_local = [
    #     [  0,  1 ], < local-batch 0, (batch 0, starting from k[0])
    #     [  2,  3 ], < local-batch 1, (batch 0, starting from k[4])
    #     [ 12, 13 ], < local-batch 2, (batch 1, starting from k[4])
    #     [ 14, 15 ], < local-batch 3, (batch 1, starting from k[8])
    #     [ 16, 17 ], < local-batch 4, (batch 1, starting from k[12])
    #     [ 18, 19 ], < local-batch 5, (batch 1, starting from k[16])
    #     [ 22, 23 ], < local-batch 6, (batch 2, starting from k[4])
    #     [ 24, 25 ], < local-batch 7, (batch 2, starting from k[8])
    #   ]
    block_indices = np.broadcast_to(
        np.arange(pages_per_local_batch, dtype=np.int32),
        (virtual_batches, pages_per_local_batch),
    ) + np.expand_dims(block_starts, axis=1)
257
258
259
260
261
    # Ensure block_indices doesn't exceed block_table dimensions
    # This is a critical safety check that prevents index out of bounds errors
    # when dealing with large sequences (>8192 tokens) or when the block_table
    # dimensions are smaller than what would be needed for the full attention chunk size.
    block_indices = block_indices.flatten().clip(max=block_table.shape[1] - 1)
Chang Su's avatar
Chang Su committed
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
    batch_indices = np.repeat(
        np.arange(actual_batch_size, dtype=np.int32),
        local_blocks * pages_per_local_batch,
    )
    block_table_local = block_table[batch_indices, block_indices].view(
        virtual_batches, -1
    )

    return seqlens_q_local, cu_seqlens_q_local, seqlens_k_local, block_table_local


def cdiv(a: int, b: int) -> int:
    """Ceiling division."""
    return -(a // -b)

277

278
279
280
281
282
283
# TODO(hebiao064): remove this once we have a better way to handle the merge_state_v2 torch.compile issue
@torch._dynamo.disable()
def merge_state_v2_wrapper(o, s_a, o_exp, s_b):
    return merge_state_v2(o, s_a, o_exp, s_b)


284
class FlashAttentionBackend(AttentionBackend):
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
    """FlashAttention backend implementation.

    Note about the init:
    - If no spec decoding
        - FlashAttentionBackend will be init once when the server starts.
    - If spec decoding
        - FlashAttentionBackend will be init once for the target worker
        - FlashAttentionMultiStepBackend will be once for the draft worker
            - It will spawn num_steps FlashAttentionBackend for the draft worker

    Note about CUDA Graph:
    - We only support CUDA Graph for Decode (Normal Decode and Draft Decode) and Target Verify.
    - We don't support CUDA Graph for Extend and Draft Extend.
    - When server init, init_cuda_graph_state will be called first and then init_cuda_graph_capture will be called.
    - For each forward batch, init_replay_cuda_graph will be called first and then replay the graph.
    """
301
302
303
304
305

    def __init__(
        self,
        model_runner: ModelRunner,
        skip_prefill: bool = False,
306
        speculative_step_id=0,
307
308
        topk=0,
        speculative_num_steps=0,
309
        fa_impl_ver=3,
310
311
312
313
314
315
316
317
318
    ):
        super().__init__()

        assert not (
            model_runner.sliding_window_size is not None
            and model_runner.model_config.is_encoder_decoder
        ), "Sliding window and cross attention are not supported together"

        self.forward_metadata: FlashAttentionMetadata = None
319
        # extra metadata for handling speculative decoding topk > 1, extended draft decode and verify
320
        self.forward_metadata_spec_decode_expand: FlashAttentionMetadata = None
321
322
323
        self.max_context_len = model_runner.model_config.context_len
        self.device = model_runner.device
        self.decode_cuda_graph_metadata = {}
324
        self.target_verify_metadata = {}
325
        self.req_to_token = model_runner.req_to_token_pool.req_to_token
326
327
        self.kv_cache_dtype = model_runner.kv_cache_dtype
        self.kv_cache_dtype_str = model_runner.server_args.kv_cache_dtype
328
        self.page_size = model_runner.page_size
Baizhou Zhang's avatar
Baizhou Zhang committed
329
        self.use_mla = model_runner.model_config.attention_arch == AttentionArch.MLA
330
        self.skip_prefill = skip_prefill
tarinkk's avatar
tarinkk committed
331
332
333
334
335
        self.is_hybrid = model_runner.is_hybrid
        if self.is_hybrid:
            self.full_to_swa_index_mapping = (
                model_runner.token_to_kv_pool.full_to_swa_index_mapping
            )
336
        self.topk = model_runner.server_args.speculative_eagle_topk or 0
337
        self.speculative_num_steps = speculative_num_steps
338
339
340
341
        self.speculative_num_draft_tokens = (
            model_runner.server_args.speculative_num_draft_tokens
        )
        self.speculative_step_id = speculative_step_id
342

343
344
        self.fa_impl_ver = fa_impl_ver

Chang Su's avatar
Chang Su committed
345
346
347
348
349
350
351
        # Local attention settings
        self.attention_chunk_size = (
            model_runner.attention_chunk_size
            if hasattr(model_runner, "attention_chunk_size")
            else None
        )

352
353
354
355
356
357
358
        # For each layer, the sliding_window_size can be different. This is only used for preparing SWA metadata.
        # We use `layer.sliding_window_size` to decide whether to use SWA for each layer.
        self.sliding_window_size = model_runner.sliding_window_size
        self.has_swa = (
            self.sliding_window_size is not None and self.sliding_window_size > -1
        )

359
360
361
362
363
364
365
        # If num_splits == 0, we use a heuristic to automatically determine the number of splits.
        # We set nums splits to 1 if deterministic inference is enabled.
        # See https://thinkingmachines.ai/blog/defeating-nondeterminism-in-llm-inference/ for more details.
        self.num_splits = (
            1 if model_runner.server_args.enable_deterministic_inference else 0
        )

366
    def init_forward_metadata(self, forward_batch: ForwardBatch):
367
        """Initialize forward metadata hence all layers in the forward pass can reuse it."""
368
369
        metadata = FlashAttentionMetadata()
        seqlens_in_batch = forward_batch.seq_lens
370
        batch_size = forward_batch.batch_size
371
        device = seqlens_in_batch.device
372

373
        if forward_batch.forward_mode.is_decode_or_idle():
374
            # Draft Decode
375
            if forward_batch.spec_info is not None:
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
                if self.topk <= 1:
                    metadata.cache_seqlens_int32 = (
                        seqlens_in_batch + (self.speculative_step_id + 1)
                    ).to(torch.int32)
                    metadata.max_seq_len_k = forward_batch.seq_lens_cpu.max().item() + (
                        self.speculative_step_id + 1
                    )
                    metadata.cu_seqlens_q = torch.arange(
                        0, batch_size + 1, dtype=torch.int32, device=device
                    )
                    metadata.cu_seqlens_k = torch.nn.functional.pad(
                        torch.cumsum(
                            metadata.cache_seqlens_int32, dim=0, dtype=torch.int32
                        ),
                        (1, 0),
                    )
                    metadata.page_table = forward_batch.req_to_token_pool.req_to_token[
                        forward_batch.req_pool_indices, : metadata.max_seq_len_k
                    ]
                else:
                    metadata.cache_seqlens_int32 = (seqlens_in_batch).to(torch.int32)
                    metadata.max_seq_len_q = self.topk
                    metadata.max_seq_len_k = forward_batch.seq_lens_cpu.max().item()
                    metadata.cu_seqlens_q = torch.arange(
                        0,
                        batch_size * self.topk + 1,
                        step=self.topk,
                        dtype=torch.int32,
                        device=device,
                    )
                    metadata.cu_seqlens_k = torch.nn.functional.pad(
                        torch.cumsum(
                            metadata.cache_seqlens_int32, dim=0, dtype=torch.int32
                        ),
                        (1, 0),
                    )
                    metadata.page_table = forward_batch.req_to_token_pool.req_to_token[
                        forward_batch.req_pool_indices, : metadata.max_seq_len_k
                    ]

                    metadata_expand = FlashAttentionMetadata()
                    decode_length = self.speculative_step_id + 1
                    metadata_expand.cache_seqlens_int32 = torch.full(
                        (seqlens_in_batch.numel() * self.topk,),
                        decode_length,
                        device=device,
                        dtype=torch.int32,
                    )
                    metadata_expand.max_seq_len_q = 1
                    metadata_expand.cu_seqlens_q = torch.arange(
                        0,
                        metadata_expand.cache_seqlens_int32.numel() + 1,
                        dtype=torch.int32,
                        device=device,
                    )
                    metadata_expand.cu_seqlens_k = torch.arange(
                        0,
                        metadata_expand.cache_seqlens_int32.numel() * decode_length + 1,
                        step=decode_length,
                        dtype=torch.int32,
                        device=device,
                    )
438
                    # shape: [bs, num_steps, topk] -> [bs x topk, num_steps]
439
                    cache_loc = forward_batch.out_cache_loc.view(
440
441
                        -1, self.speculative_num_steps
                    )
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
                    metadata_expand.page_table = (
                        cache_loc[:, :decode_length].contiguous().to(torch.int32)
                    )
                    self.forward_metadata_spec_decode_expand = metadata_expand
            else:
                # Normal Decode
                metadata.cache_seqlens_int32 = seqlens_in_batch.to(torch.int32)
                metadata.max_seq_len_k = forward_batch.seq_lens_cpu.max().item()
                metadata.cu_seqlens_q = torch.arange(
                    0, batch_size + 1, dtype=torch.int32, device=device
                )
                metadata.cu_seqlens_k = torch.nn.functional.pad(
                    torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0)
                )
                metadata.page_table = forward_batch.req_to_token_pool.req_to_token[
                    forward_batch.req_pool_indices, : metadata.max_seq_len_k
                ]
            # TODO: we need to test this part for llama 4 eagle case
tarinkk's avatar
tarinkk committed
460
            self._init_local_attn_metadata(forward_batch, metadata, device)
461
462
        elif forward_batch.forward_mode.is_target_verify():
            if self.topk <= 1:
463
                metadata.cache_seqlens_int32 = (
464
                    forward_batch.seq_lens + self.speculative_num_draft_tokens
465
                ).to(torch.int32)
466
467
468
469
                metadata.max_seq_len_q = self.speculative_num_draft_tokens
                metadata.max_seq_len_k = (
                    forward_batch.seq_lens_cpu.max().item()
                    + self.speculative_num_draft_tokens
470
                )
471
                metadata.cu_seqlens_q = torch.arange(
472
473
474
475
476
                    0,
                    batch_size * self.speculative_num_draft_tokens + 1,
                    self.speculative_num_draft_tokens,
                    dtype=torch.int32,
                    device=device,
477
478
479
480
481
482
483
484
485
486
                )
                metadata.cu_seqlens_k = torch.nn.functional.pad(
                    torch.cumsum(
                        metadata.cache_seqlens_int32, dim=0, dtype=torch.int32
                    ),
                    (1, 0),
                )
                metadata.page_table = forward_batch.req_to_token_pool.req_to_token[
                    forward_batch.req_pool_indices, : metadata.max_seq_len_k
                ]
487

tarinkk's avatar
tarinkk committed
488
                self._init_local_attn_metadata(forward_batch, metadata, device)
489
            else:
490
491
                metadata.cache_seqlens_int32 = forward_batch.seq_lens.to(torch.int32)
                metadata.max_seq_len_q = self.speculative_num_draft_tokens
492
493
                metadata.max_seq_len_k = forward_batch.seq_lens_cpu.max().item()
                metadata.cu_seqlens_q = torch.arange(
494
495
496
497
498
                    0,
                    batch_size * self.speculative_num_draft_tokens + 1,
                    step=self.speculative_num_draft_tokens,
                    dtype=torch.int32,
                    device=device,
499
                )
500
                metadata.cu_seqlens_k = torch.nn.functional.pad(
501
502
503
504
                    torch.cumsum(
                        metadata.cache_seqlens_int32, dim=0, dtype=torch.int32
                    ),
                    (1, 0),
505
506
507
508
                )
                metadata.page_table = forward_batch.req_to_token_pool.req_to_token[
                    forward_batch.req_pool_indices, : metadata.max_seq_len_k
                ]
509

510
                metadata_expand = FlashAttentionMetadata()
511

512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
                metadata_expand.max_seq_len_q = 1
                metadata_expand.cu_seqlens_q = torch.arange(
                    0,
                    forward_batch.seq_lens.numel() * self.speculative_num_draft_tokens
                    + 1,
                    dtype=torch.int32,
                    device=device,
                )

                # create expand page table
                offsets = torch.arange(
                    self.speculative_num_draft_tokens, device=device
                ).unsqueeze(
                    0
                )  # shape: (1, self.speculative_num_draft_tokens)
                cols = offsets.expand(
                    forward_batch.seq_lens.numel(), -1
                ) + forward_batch.seq_lens.unsqueeze(1)
                cum_len = torch.nn.functional.pad(
                    torch.cumsum(
                        (
                            forward_batch.seq_lens + self.speculative_num_draft_tokens
                        ).repeat_interleave(self.speculative_num_draft_tokens),
                        dim=0,
                    ),
                    (1, 0),
                )[:-1]
                mask_extraction_indices = (
                    cols.repeat_interleave(self.speculative_num_draft_tokens, dim=0)
                    + cum_len[:, None]
                ).view(1, -1)
                mask = forward_batch.spec_info.custom_mask[
                    mask_extraction_indices
                ].view(
                    -1, self.speculative_num_draft_tokens
                )  # (bsz * draft_num, draft_num)

                # shift table indices to avoid padding
                # non_masked_page_table [[8, 9, 10],   mask (display with int format) [[1, 0, 0],
                #                        [8, 9, 10],                                   [1, 1, 0],
                #                        [8, 9, 10]]                                   [1, 0, 1]]
                # if masked with padding [[8, 0, 0],   our mask without padding       [[8, 9, 10],
                #                        [8, 9, 0],                                    [8, 9, 10],
                #                        [8, 0, 10]]                                   [8, 10, 9]]
                # note here cache_seqlens_int32 is [1, 2, 2] so extra page indices will be ignored in each row
                col_indices = offsets.expand(
                    mask.shape[0], self.speculative_num_draft_tokens
                )
                # Build keys: if an entry is valid (mask==True), keep its original index;
                # if not, add self.speculative_num_draft_tokens so that it sorts after all valid entries.
                keys = torch.where(
                    mask, col_indices, col_indices + self.speculative_num_draft_tokens
                )
                _, sort_order = torch.sort(keys, dim=1)
                non_masked_page_table = (
                    forward_batch.req_to_token_pool.req_to_token[
                        forward_batch.req_pool_indices, :
                    ]
                    .gather(1, cols)
                    .repeat_interleave(self.speculative_num_draft_tokens, dim=0)
                )  # (bsz, draft_num)
                metadata_expand.page_table = non_masked_page_table.gather(1, sort_order)
                metadata_expand.cache_seqlens_int32 = mask.sum(dim=1).to(torch.int32)
                metadata_expand.cu_seqlens_k = torch.nn.functional.pad(
                    torch.cumsum(
                        metadata_expand.cache_seqlens_int32, dim=0, dtype=torch.int32
                    ),
                    (1, 0),
                )
                self.forward_metadata_spec_decode_expand = metadata_expand
582
583
584
585
586
587

                if self.has_swa:
                    self._init_sliding_window_attn_spec_metadata(
                        metadata, metadata_expand
                    )

588
        elif forward_batch.forward_mode.is_extend_or_draft_extend_or_mixed():
589
            metadata.cache_seqlens_int32 = seqlens_in_batch.to(torch.int32)
590
            metadata.max_seq_len_k = forward_batch.seq_lens_cpu.max().item()
591
592
593
594
595
596
            metadata.cu_seqlens_k = torch.nn.functional.pad(
                torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0)
            )
            metadata.page_table = forward_batch.req_to_token_pool.req_to_token[
                forward_batch.req_pool_indices, : metadata.max_seq_len_k
            ]
Chang Su's avatar
Chang Su committed
597

598
599
600
601
            if (
                any(forward_batch.extend_prefix_lens_cpu)
                or forward_batch.forward_mode == ForwardMode.DRAFT_EXTEND
            ):
602
                extend_seq_lens = forward_batch.extend_seq_lens
603
                metadata.max_seq_len_q = max(forward_batch.extend_seq_lens_cpu)
604
605
606
607
                metadata.cu_seqlens_q = torch.nn.functional.pad(
                    torch.cumsum(extend_seq_lens, dim=0, dtype=torch.int32), (1, 0)
                )
            else:
608
                metadata.max_seq_len_q = metadata.max_seq_len_k
609
                metadata.cu_seqlens_q = metadata.cu_seqlens_k
610

Chang Su's avatar
Chang Su committed
611
            # Setup local attention if enabled
612
            if forward_batch.forward_mode == ForwardMode.EXTEND:
tarinkk's avatar
tarinkk committed
613
                self._init_local_attn_metadata(forward_batch, metadata, device)
Chang Su's avatar
Chang Su committed
614

615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
        # Encoder metadata for cross attention
        if forward_batch.encoder_lens is not None:
            assert (
                forward_batch.encoder_lens.numel() == 1
            ), "Only encoder size 1 is supported for now"

            metadata.encoder_lens_int32 = forward_batch.encoder_lens.to(torch.int32)
            metadata.encoder_cu_seqlens_k = torch.nn.functional.pad(
                torch.cumsum(metadata.encoder_lens_int32, dim=0, dtype=torch.int32),
                (1, 0),
            )
            metadata.encoder_max_seq_len_k = metadata.encoder_lens_int32.max().item()
            metadata.encoder_page_table = forward_batch.req_to_token_pool.req_to_token[
                forward_batch.req_pool_indices, : metadata.encoder_max_seq_len_k
            ]

            # Currently only support forward_batch.encoder_lens.numel() == 1
            metadata.page_table = forward_batch.req_to_token_pool.req_to_token[
                forward_batch.req_pool_indices,
                metadata.encoder_max_seq_len_k : (
                    metadata.encoder_max_seq_len_k + metadata.max_seq_len_k
                ),
            ]

639
        # Convert the page table to a strided format which is needed by FA3 API
640
641
642
643
644
645
646
        if self.page_size > 1:
            self.strided_indices = torch.arange(
                0, metadata.page_table.shape[1], self.page_size, device=self.device
            )
            metadata.page_table = (
                metadata.page_table[:, self.strided_indices] // self.page_size
            )
Chang Su's avatar
Chang Su committed
647

648
649
650
651
652
653
654
655
656
657
        self.forward_metadata = metadata

    def forward_extend(
        self,
        q: torch.Tensor,
        k: torch.Tensor,
        v: torch.Tensor,
        layer: RadixAttention,
        forward_batch: ForwardBatch,
        save_kv_cache=True,
658
659
        # For multi-head latent attention
        q_rope: Optional[torch.Tensor] = None,
Ke Bao's avatar
Ke Bao committed
660
        k_rope: Optional[torch.Tensor] = None,
661
        sinks: Optional[torch.Tensor] = None,
662
663
664
665
    ):
        if k is not None:
            assert v is not None
            if save_kv_cache:
666
667
668
669
                cache_loc = (
                    forward_batch.out_cache_loc
                    if not layer.is_cross_attention
                    else forward_batch.encoder_out_cache_loc
670
                )
671
672
673
674
675
                if not self.use_mla:
                    forward_batch.token_to_kv_pool.set_kv_buffer(
                        layer, cache_loc, k, v, layer.k_scale, layer.v_scale
                    )
                else:
Ke Bao's avatar
Ke Bao committed
676
                    forward_batch.token_to_kv_pool.set_mla_kv_buffer(
677
678
679
                        layer,
                        cache_loc,
                        k,
Ke Bao's avatar
Ke Bao committed
680
                        k_rope,
681
                    )
682

683
        # Use precomputed metadata across all layers
684
685
686
687
688
        metadata = self.forward_metadata

        # Calculate window size (can be moved to metadata if layer properties don't change)
        # we don't do layer.sliding_window_size - 1 since in model.get_attention_sliding_window_size() we already - 1
        # here is two side inclusive
689
690
        is_swa = (
            layer.sliding_window_size is not None and layer.sliding_window_size > -1
691
        )
692
        window_size = (layer.sliding_window_size, 0) if is_swa else (-1, -1)
693
        k_descale, v_descale = None, None
694
        # only use kv scaling if: 1) fp8 kv is explicitly enabled, 2) RadixAttention
695
        # has corresponding quantization method so that layer.k_scale is not None,
696
697
698
699
700
701
702
        # 3) layer.head_dim <= 256 since fa3 kernel require fp16 and bf16 data type in this case,
        # 4) fa_impl_ver != 4 since fa4 does not currently support fp8 queries and keys.
        if (
            self.kv_cache_dtype_str != "auto"
            and layer.head_dim <= 256
            and self.fa_impl_ver != 4
        ):
703
704
705
706
            if layer.k_scale is not None:
                descale_shape = (forward_batch.batch_size, layer.tp_k_head_num)
                k_descale = layer.k_scale.expand(descale_shape)
                v_descale = layer.v_scale.expand(descale_shape)
707
            # q = q.to(self.kv_cache_dtype)
708
709
            q_rope = q_rope.to(self.kv_cache_dtype) if q_rope is not None else None
            k_rope = k_rope.to(self.kv_cache_dtype) if k_rope is not None else None
710
711
712
        causal = True
        if layer.is_cross_attention or layer.attn_type == AttentionType.ENCODER_ONLY:
            causal = False
713

Chang Su's avatar
Chang Su committed
714
715
716
717
718
719
720
        # Check if we should use local attention
        use_local_attn = (
            self.attention_chunk_size is not None
            and metadata.local_attn_metadata is not None
            and (hasattr(layer, "use_irope") and layer.use_irope)
        )

721
        # We do cascade attention for Target Verify with topk > 1
722
723
724
        # We don't use cascade attention for Sliding Window Attention:
        # - Different window sizes should be passed in for each q in the first stage of cascade attention, but FA3 interface doesn't support pass in a list of window sizes.
        # - The overhead of duplicated computation of the common prefix part is small for sliding window layers (seq_len <= window_size), so we can just expand it.
725
        use_cascade_attn = (
726
727
728
            forward_batch.forward_mode.is_target_verify()
            and self.topk > 1
            and not is_swa
729
730
        )

731
732
        # For fa3 interface version compatibility, we put new fields into conditional keyword args
        kwargs = {}
733
734
        if self.fa_impl_ver != 3:
            kwargs["ver"] = self.fa_impl_ver
735
736
737
        if sinks is not None:
            kwargs["sinks"] = sinks

Chang Su's avatar
Chang Su committed
738
739
740
741
742
743
744
        # Get the appropriate page table based on whether we're using local attention
        if use_local_attn:
            local_metadata = metadata.local_attn_metadata
            page_table = local_metadata.local_block_table
            cu_seqlens_q = local_metadata.local_query_start_loc
            cache_seqlens = local_metadata.local_seqused_k
            max_seqlen_q = local_metadata.local_max_query_len
745
746
747
748
749
750
751
        elif is_swa and metadata.swa_spec_metadata is not None:
            swa_spec_metadata = metadata.swa_spec_metadata
            page_table = swa_spec_metadata.page_table
            cu_seqlens_q = swa_spec_metadata.cu_seqlens_q
            cache_seqlens = swa_spec_metadata.cache_seqlens_int32
            max_seqlen_q = swa_spec_metadata.max_seq_len_q
            cu_seqlens_k = swa_spec_metadata.cu_seqlens_k
Chang Su's avatar
Chang Su committed
752
753
754
755
756
757
        else:
            page_table = metadata.page_table
            cu_seqlens_q = metadata.cu_seqlens_q
            cache_seqlens = metadata.cache_seqlens_int32
            max_seqlen_q = metadata.max_seq_len_q
            cu_seqlens_k = metadata.cu_seqlens_k
758

759
        # Use Flash Attention for prefill
760
761
        if not self.use_mla:
            # Do multi-head attention
762
763
764
            key_cache, value_cache = forward_batch.token_to_kv_pool.get_kv_buffer(
                layer.layer_id
            )
765
766
767
768
769
770
            key_cache = key_cache.view(
                -1, self.page_size, layer.tp_k_head_num, layer.head_dim
            )
            value_cache = value_cache.view(
                -1, self.page_size, layer.tp_v_head_num, layer.head_dim
            )
771
772
773
774
775
776
            if layer.is_cross_attention:
                page_table = metadata.encoder_page_table
                cache_seqlens = metadata.encoder_lens_int32
                cu_seqlens_k = metadata.encoder_cu_seqlens_k
                window_size = (-1, -1)

777
            result = flash_attn_with_kvcache(
778
779
780
781
                q=q.contiguous().view(-1, layer.tp_q_head_num, layer.head_dim),
                k_cache=key_cache,
                v_cache=value_cache,
                page_table=page_table,
Chang Su's avatar
Chang Su committed
782
783
784
785
                cache_seqlens=cache_seqlens,
                cu_seqlens_q=cu_seqlens_q,
                cu_seqlens_k_new=cu_seqlens_k if not use_local_attn else None,
                max_seqlen_q=max_seqlen_q,
786
                softmax_scale=layer.scaling,
787
                causal=False if use_cascade_attn else causal,
788
789
                window_size=window_size,
                softcap=layer.logit_cap,
790
791
                k_descale=k_descale,
                v_descale=v_descale,
792
                return_softmax_lse=use_cascade_attn,
793
                num_splits=self.num_splits,
794
                **kwargs,
795
            )
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814

            if use_cascade_attn:
                o, softmax_lse, *rest = result
                o_expand, softmax_lse_expand, *rest_expand = flash_attn_with_kvcache(
                    q=q.contiguous().view(-1, layer.tp_q_head_num, layer.head_dim),
                    k_cache=key_cache,
                    v_cache=value_cache,
                    page_table=self.forward_metadata_spec_decode_expand.page_table,
                    cache_seqlens=self.forward_metadata_spec_decode_expand.cache_seqlens_int32,
                    cu_seqlens_q=self.forward_metadata_spec_decode_expand.cu_seqlens_q,
                    cu_seqlens_k_new=self.forward_metadata_spec_decode_expand.cu_seqlens_k,
                    max_seqlen_q=self.forward_metadata_spec_decode_expand.max_seq_len_q,
                    softmax_scale=layer.scaling,
                    causal=False,
                    window_size=window_size,
                    softcap=layer.logit_cap,
                    k_descale=k_descale,
                    v_descale=v_descale,
                    return_softmax_lse=True,
815
                    num_splits=self.num_splits,
816
                    **kwargs,
817
818
819
820
821
822
823
824
825
                )
                o, _ = merge_state_v2_wrapper(
                    o,
                    softmax_lse.T.contiguous(),
                    o_expand,
                    softmax_lse_expand.T.contiguous(),
                )
            else:
                o = result
826
        else:
827
            if (
828
                forward_batch.attn_attend_prefix_cache is not None
829
830
                and not forward_batch.forward_mode.is_target_verify()
                and not forward_batch.forward_mode.is_draft_extend()
linhai1's avatar
linhai1 committed
831
            ):  
832
833
                # Do multi-head attention with chunked prefix cache
                if forward_batch.attn_attend_prefix_cache:
834
                    assert not get_global_server_args().disable_chunked_prefix_cache
835
836
837
838
839
840
841
842
                    # MHA for chunked prefix kv cache when running model with MLA
                    assert forward_batch.prefix_chunk_idx is not None
                    assert forward_batch.prefix_chunk_cu_seq_lens is not None
                    assert forward_batch.prefix_chunk_max_seq_lens is not None

                    chunk_idx = forward_batch.prefix_chunk_idx
                    assert chunk_idx >= 0

843
844
                    assert forward_batch.mha_return_lse
                    output = flash_attn_varlen_func(
845
846
847
                        q=q.view(-1, layer.tp_q_head_num, layer.head_dim),
                        k=k.view(-1, layer.tp_k_head_num, layer.head_dim).view(q.dtype),
                        v=v.view(-1, layer.tp_k_head_num, layer.v_head_dim).view(q.dtype),
848
849
850
851
852
853
854
                        cu_seqlens_q=metadata.cu_seqlens_q,
                        cu_seqlens_k=forward_batch.prefix_chunk_cu_seq_lens[chunk_idx],
                        max_seqlen_q=metadata.max_seq_len_q,
                        max_seqlen_k=forward_batch.prefix_chunk_max_seq_lens[chunk_idx],
                        softmax_scale=layer.scaling,
                        causal=False,
                        return_softmax_lse=True,
855
                        **kwargs,
856
857
                    )
                else:
858
                    output = flash_attn_varlen_func(
859
860
861
                        q=q.view(-1, layer.tp_q_head_num, layer.head_dim),
                        k=k.view(-1, layer.tp_k_head_num, layer.head_dim).view(q.dtype),
                        v=v.view(-1, layer.tp_k_head_num, layer.v_head_dim).view(q.dtype),
862
863
864
865
866
867
                        cu_seqlens_q=metadata.cu_seqlens_q,
                        cu_seqlens_k=metadata.cu_seqlens_q,
                        max_seqlen_q=metadata.max_seq_len_q,
                        max_seqlen_k=metadata.max_seq_len_q,
                        softmax_scale=layer.scaling,
                        causal=True,
868
                        return_softmax_lse=forward_batch.mha_return_lse,
869
                        **kwargs,
870
                    )
871
872
873
874
875
                if forward_batch.mha_return_lse:
                    output, lse, *rest = output
                    lse = torch.transpose(lse, 0, 1).contiguous()
                    return output, lse
                return output
876
            else:
877
                assert self.fa_impl_ver in [3], "Only FA3 support here"
878
                # Do absorbed multi-latent attention
879
880
881
                kv_cache = forward_batch.token_to_kv_pool.get_key_buffer(
                    layer.layer_id
                ).to(q.dtype)
882
883
884
885
886
887
888
889
890
891
892
                k_rope = kv_cache[:, :, layer.v_head_dim :]
                c_kv = kv_cache[:, :, : layer.v_head_dim]
                k_rope_cache = k_rope.view(
                    -1,
                    self.page_size,
                    layer.tp_k_head_num,
                    layer.head_dim - layer.v_head_dim,
                )
                c_kv_cache = c_kv.view(
                    -1, self.page_size, layer.tp_v_head_num, layer.v_head_dim
                )
893
894
895
896
897
898
899
900
901
                if q_rope is not None:
                    q_nope = q.view(-1, layer.tp_q_head_num, layer.v_head_dim)
                    q_rope = q_rope.view(
                        -1, layer.tp_q_head_num, layer.head_dim - layer.v_head_dim
                    )
                else:
                    q_all = q.contiguous().view(-1, layer.tp_q_head_num, layer.head_dim)
                    q_nope = q_all[:, :, : layer.v_head_dim]
                    q_rope = q_all[:, :, layer.v_head_dim :]
902
903

                result = flash_attn_with_kvcache(
904
905
906
907
908
909
910
911
912
913
                    q=q_rope,
                    k_cache=k_rope_cache,
                    v_cache=c_kv_cache,
                    qv=q_nope,
                    page_table=page_table,
                    cache_seqlens=cache_seqlens,
                    cu_seqlens_q=cu_seqlens_q,
                    cu_seqlens_k_new=cu_seqlens_k if not use_local_attn else None,
                    max_seqlen_q=max_seqlen_q,
                    softmax_scale=layer.scaling,
914
                    causal=False if use_cascade_attn else causal,
915
916
917
                    softcap=layer.logit_cap,
                    k_descale=k_descale,
                    v_descale=v_descale,
918
                    return_softmax_lse=use_cascade_attn,
919
                    num_splits=self.num_splits,
920
                )
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
                if use_cascade_attn:
                    o, softmax_lse, *rest = result
                    o_expand, softmax_lse_expand, *rest_expand = (
                        flash_attn_with_kvcache(
                            q=q_rope,
                            k_cache=k_rope_cache,
                            v_cache=c_kv_cache,
                            qv=q_nope,
                            page_table=self.forward_metadata_spec_decode_expand.page_table,
                            cache_seqlens=self.forward_metadata_spec_decode_expand.cache_seqlens_int32,
                            cu_seqlens_q=self.forward_metadata_spec_decode_expand.cu_seqlens_q,
                            cu_seqlens_k_new=self.forward_metadata_spec_decode_expand.cu_seqlens_k,
                            max_seqlen_q=self.forward_metadata_spec_decode_expand.max_seq_len_q,
                            softmax_scale=layer.scaling,
                            causal=False,
                            window_size=window_size,
                            softcap=layer.logit_cap,
                            k_descale=k_descale,
                            v_descale=v_descale,
                            return_softmax_lse=True,
941
                            num_splits=self.num_splits,
942
943
944
945
946
947
948
949
950
951
                        )
                    )
                    o, _ = merge_state_v2_wrapper(
                        o,
                        softmax_lse.T.contiguous(),
                        o_expand,
                        softmax_lse_expand.T.contiguous(),
                    )
                else:
                    o = result
952

953
        return o.view(-1, layer.tp_q_head_num * layer.v_head_dim)
954
955
956
957
958
959
960
961
962

    def forward_decode(
        self,
        q: torch.Tensor,
        k: torch.Tensor,
        v: torch.Tensor,
        layer: RadixAttention,
        forward_batch: ForwardBatch,
        save_kv_cache=True,
963
964
        # For multi-head latent attention
        q_rope: Optional[torch.Tensor] = None,
Ke Bao's avatar
Ke Bao committed
965
        k_rope: Optional[torch.Tensor] = None,
966
        sinks: Optional[torch.Tensor] = None,
967
    ) -> torch.Tensor:
968
        assert self.fa_impl_ver in [3], "Only FA3 support decoding"
969
970
971
972
973
974
975
976
977
978
979
980
981
        if k is not None:
            assert v is not None
            if save_kv_cache:
                cache_loc = (
                    forward_batch.out_cache_loc
                    if not layer.is_cross_attention
                    else forward_batch.encoder_out_cache_loc
                )
                if not self.use_mla:
                    forward_batch.token_to_kv_pool.set_kv_buffer(
                        layer, cache_loc, k, v, layer.k_scale, layer.v_scale
                    )
                else:
Ke Bao's avatar
Ke Bao committed
982
                    forward_batch.token_to_kv_pool.set_mla_kv_buffer(
983
984
985
                        layer,
                        cache_loc,
                        k,
Ke Bao's avatar
Ke Bao committed
986
                        k_rope,
987
                    )
988

989
        # Use precomputed metadata across all layers
990
        metadata = self.forward_metadata
991
        local_attn_metadata = getattr(metadata, "local_attn_metadata", None)
992
993
994
995
        use_local_attn = (
            self.attention_chunk_size is not None
            and local_attn_metadata is not None
            and (hasattr(layer, "use_irope") and layer.use_irope)
996
        )
997
998

        # When Spec Decode enabled, forward_decode would be called with two mode:
999
1000
1001
        # 1. DRAFT_DECODE: we enable cascade attention when top_k > 1
        # 2. IDLE: we don’t need cascade attention, spec_info will be none in this case
        use_cascade_attn = forward_batch.spec_info is not None and self.topk > 1
1002
1003
1004
1005
1006
1007

        # Calculate window size (can be moved to metadata if layer properties don't change)
        # we don't do layer.sliding_window_size - 1 since in model.get_attention_sliding_window_size() we already - 1
        # here is two side inclusive
        window_size = (
            (layer.sliding_window_size, 0)
1008
            if layer.sliding_window_size is not None and layer.sliding_window_size > -1
1009
1010
            else (-1, -1)
        )
1011
1012
1013
        causal = True
        if layer.is_cross_attention or layer.attn_type == AttentionType.ENCODER_ONLY:
            causal = False
1014

1015
1016
        # For fa3 interface version compatibility, we put new fields into conditional keyword args
        kwargs = {}
1017
1018
        if self.fa_impl_ver != 3:
            kwargs["ver"] = self.fa_impl_ver
1019
1020
1021
        if sinks is not None:
            kwargs["sinks"] = sinks

1022
        k_descale, v_descale = None, None
1023
        # only use kv scaling if: 1) fp8 kv is explicitly enabled, 2) RadixAttention
1024
1025
1026
        # has corresponding quantization method so that layer.k_scale is not None,
        # 3) layer.head_dim <= 256 since fa3 kernel require fp16 and bf16 data type in this case.
        if self.kv_cache_dtype_str != "auto" and layer.head_dim <= 256:
1027
1028
1029
1030
            if layer.k_scale is not None:
                descale_shape = (forward_batch.batch_size, layer.tp_k_head_num)
                k_descale = layer.k_scale.expand(descale_shape)
                v_descale = layer.v_scale.expand(descale_shape)
1031
            q = q.to(self.kv_cache_dtype)
1032
1033
            q_rope = q_rope.to(self.kv_cache_dtype) if q_rope is not None else None
            k_rope = k_rope.to(self.kv_cache_dtype) if k_rope is not None else None
1034
1035
        if not self.use_mla:
            # Do multi-head attention
1036
1037
1038
1039

            key_cache, value_cache = forward_batch.token_to_kv_pool.get_kv_buffer(
                layer.layer_id
            )
1040
1041
1042
1043
1044
1045
1046
            key_cache = key_cache.view(
                -1, self.page_size, layer.tp_k_head_num, layer.head_dim
            )
            value_cache = value_cache.view(
                -1, self.page_size, layer.tp_v_head_num, layer.head_dim
            )

1047
            if layer.is_cross_attention:
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
                # Always use non-chunked logic for cross-attention
                o = flash_attn_with_kvcache(
                    q=q.contiguous().view(-1, layer.tp_q_head_num, layer.head_dim),
                    k_cache=key_cache,
                    v_cache=value_cache,
                    page_table=metadata.encoder_page_table,
                    cache_seqlens=metadata.encoder_lens_int32,
                    cu_seqlens_q=metadata.cu_seqlens_q,
                    cu_seqlens_k_new=metadata.encoder_cu_seqlens_k,
                    max_seqlen_q=1,
                    softmax_scale=layer.scaling,
                    causal=False,
                    window_size=(-1, -1),
                    softcap=layer.logit_cap,
                    k_descale=k_descale,
                    v_descale=v_descale,
1064
                    num_splits=self.num_splits,
1065
                    **kwargs,
1066
                )
1067
            elif use_local_attn:
1068
1069
1070
1071
1072
1073
1074
1075
                # Use chunked (local) attention batching for self-attention
                o = flash_attn_with_kvcache(
                    q=q.contiguous().view(-1, layer.tp_q_head_num, layer.head_dim),
                    k_cache=key_cache,
                    v_cache=value_cache,
                    page_table=local_attn_metadata.local_block_table,
                    cache_seqlens=local_attn_metadata.local_seqused_k,
                    cu_seqlens_q=local_attn_metadata.local_query_start_loc,
1076
                    cu_seqlens_k_new=None,
1077
1078
1079
1080
1081
1082
1083
                    max_seqlen_q=local_attn_metadata.local_max_query_len,
                    softmax_scale=layer.scaling,
                    causal=True,
                    window_size=(-1, -1),
                    softcap=layer.logit_cap,
                    k_descale=k_descale,
                    v_descale=v_descale,
1084
                    num_splits=self.num_splits,
1085
                    **kwargs,
1086
                )
1087
            else:
1088
1089
1090
1091
1092
1093
1094
1095
                page_table = metadata.page_table
                cache_seqlens = metadata.cache_seqlens_int32
                cu_seqlens_k = metadata.cu_seqlens_k
                max_seqlen_q = metadata.max_seq_len_q
                q_reshaped = q.contiguous().view(
                    -1, layer.tp_q_head_num, layer.head_dim
                )

1096
                # Default: single-token self-attention
1097
1098
                result = flash_attn_with_kvcache(
                    q=q_reshaped,
1099
1100
                    k_cache=key_cache,
                    v_cache=value_cache,
1101
1102
                    page_table=page_table,
                    cache_seqlens=cache_seqlens,
1103
                    cu_seqlens_q=metadata.cu_seqlens_q,
1104
1105
                    cu_seqlens_k_new=cu_seqlens_k,
                    max_seqlen_q=max_seqlen_q,
1106
                    softmax_scale=layer.scaling,
1107
                    causal=False if use_cascade_attn else causal,
1108
1109
1110
1111
                    window_size=window_size,
                    softcap=layer.logit_cap,
                    k_descale=k_descale,
                    v_descale=v_descale,
1112
                    return_softmax_lse=use_cascade_attn,
1113
                    num_splits=self.num_splits,
1114
                    **kwargs,
1115
                )
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
                if use_cascade_attn:
                    o, softmax_lse, *rest = result
                    o_expand, softmax_lse_expand, *rest_expand = (
                        flash_attn_with_kvcache(
                            q=q_reshaped,
                            k_cache=key_cache,
                            v_cache=value_cache,
                            page_table=self.forward_metadata_spec_decode_expand.page_table,
                            cache_seqlens=self.forward_metadata_spec_decode_expand.cache_seqlens_int32,
                            cu_seqlens_q=self.forward_metadata_spec_decode_expand.cu_seqlens_q,
                            cu_seqlens_k_new=self.forward_metadata_spec_decode_expand.cu_seqlens_k,
                            max_seqlen_q=self.forward_metadata_spec_decode_expand.max_seq_len_q,
                            softmax_scale=layer.scaling,
                            causal=False,
                            window_size=window_size,
                            softcap=layer.logit_cap,
                            k_descale=k_descale,
                            v_descale=v_descale,
                            return_softmax_lse=True,
1135
                            num_splits=self.num_splits,
1136
                            **kwargs,
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
                        )
                    )
                    o, _ = merge_state_v2(
                        o,
                        softmax_lse.T.contiguous(),
                        o_expand,
                        softmax_lse_expand.T.contiguous(),
                    )
                else:
                    o = result
1147
1148
        else:
            # Do absorbed multi-latent attention
1149
1150
1151
            kv_cache = forward_batch.token_to_kv_pool.get_key_buffer(layer.layer_id).to(
                q.dtype
            )
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
            k_rope = kv_cache[:, :, layer.v_head_dim :]
            c_kv = kv_cache[:, :, : layer.v_head_dim]
            k_rope_cache = k_rope.view(
                -1,
                self.page_size,
                layer.tp_k_head_num,
                layer.head_dim - layer.v_head_dim,
            )
            c_kv_cache = c_kv.view(
                -1, self.page_size, layer.tp_v_head_num, layer.v_head_dim
            )

1164
1165
1166
1167
1168
1169
1170
1171
1172
            if q_rope is not None:
                q_nope = q.view(-1, layer.tp_q_head_num, layer.v_head_dim)
                q_rope = q_rope.view(
                    -1, layer.tp_q_head_num, layer.head_dim - layer.v_head_dim
                )
            else:
                q_all = q.contiguous().view(-1, layer.tp_q_head_num, layer.head_dim)
                q_nope = q_all[:, :, : layer.v_head_dim]
                q_rope = q_all[:, :, layer.v_head_dim :]
1173
            max_seqlen_q = metadata.max_seq_len_q
1174

1175
            result = flash_attn_with_kvcache(
1176
1177
1178
1179
                q=q_rope,
                k_cache=k_rope_cache,
                v_cache=c_kv_cache,
                qv=q_nope,
1180
                page_table=metadata.page_table,
1181
1182
1183
                cache_seqlens=metadata.cache_seqlens_int32,
                cu_seqlens_q=metadata.cu_seqlens_q,
                cu_seqlens_k_new=metadata.cu_seqlens_k,
1184
                max_seqlen_q=max_seqlen_q,
1185
                softmax_scale=layer.scaling,
1186
                causal=False if use_cascade_attn else causal,
1187
                softcap=layer.logit_cap,
1188
1189
                k_descale=k_descale,
                v_descale=v_descale,
1190
                return_softmax_lse=use_cascade_attn,  # softmax_lse is needed for merge states
1191
                num_splits=self.num_splits,
1192
            )
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
            if use_cascade_attn:
                o, softmax_lse, *rest = result
                o_expand, softmax_lse_expand, *rest_expand = flash_attn_with_kvcache(
                    q=q_rope,
                    k_cache=k_rope_cache,
                    v_cache=c_kv_cache,
                    qv=q_nope,
                    page_table=self.forward_metadata_spec_decode_expand.page_table,
                    cache_seqlens=self.forward_metadata_spec_decode_expand.cache_seqlens_int32,
                    cu_seqlens_q=self.forward_metadata_spec_decode_expand.cu_seqlens_q,
                    cu_seqlens_k_new=self.forward_metadata_spec_decode_expand.cu_seqlens_k,
                    max_seqlen_q=self.forward_metadata_spec_decode_expand.max_seq_len_q,
                    softmax_scale=layer.scaling,
                    causal=False,
                    window_size=window_size,
                    softcap=layer.logit_cap,
                    k_descale=k_descale,
                    v_descale=v_descale,
                    return_softmax_lse=True,
1212
                    num_splits=self.num_splits,
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
                )
                o, _ = merge_state_v2(
                    o,
                    softmax_lse.T.contiguous(),
                    o_expand,
                    softmax_lse_expand.T.contiguous(),
                )
            else:
                o = result

1223
        return o.view(-1, layer.tp_q_head_num * layer.v_head_dim)
1224

1225
    def init_cuda_graph_state(self, max_bs: int, max_num_tokens: int):
1226
1227
1228
1229
1230
1231
1232
1233
        """Initialize CUDA graph state for the attention backend.

        Args:
            max_bs (int): Maximum batch size to support in CUDA graphs

        This creates fixed-size tensors that will be reused during CUDA graph replay
        to avoid memory allocations.
        """
1234
1235
        max_num_pages = (self.max_context_len + self.page_size - 1) // self.page_size

1236
        # This is being used by normal decode and draft decode when topk == 1
1237
        self.decode_cuda_graph_metadata = {
1238
1239
1240
1241
1242
1243
1244
            "cache_seqlens": torch.zeros(max_bs, dtype=torch.int32, device=self.device),
            "cu_seqlens_q": torch.arange(
                0, max_bs + 1, dtype=torch.int32, device=self.device
            ),
            "cu_seqlens_k": torch.zeros(
                max_bs + 1, dtype=torch.int32, device=self.device
            ),
1245
            "page_table": torch.zeros(
1246
                max_bs,
1247
                max_num_pages,
1248
1249
1250
1251
1252
1253
                dtype=torch.int32,
                device=self.device,
            ),
            "strided_indices": torch.arange(
                0, self.max_context_len, self.page_size, device=self.device
            ),
1254
        }
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
        # Only allocate local attention buffers if local attention is enabled
        # This prevents OOM errors when local attention is not being used
        if self.attention_chunk_size is not None:
            # Estimate maximum sizes for local attention metadata
            max_seq_len = self.max_context_len
            page_size = self.page_size or 1
            attn_chunk_size = self.attention_chunk_size
            max_virtual_batches = max_bs * (
                (max_seq_len + attn_chunk_size - 1) // attn_chunk_size
            )
            max_pages_per_block = (attn_chunk_size + page_size - 1) // page_size

            self.decode_cuda_graph_local_attn_metadata = {
                "local_query_start_loc": torch.zeros(
                    max_virtual_batches + 1, dtype=torch.int32, device=self.device
                ),
                "local_seqused_k": torch.zeros(
                    max_virtual_batches, dtype=torch.int32, device=self.device
                ),
                "local_block_table": torch.zeros(
                    max_virtual_batches,
1276
                    max_pages_per_block,
1277
1278
1279
1280
1281
                    dtype=torch.int32,
                    device=self.device,
                ),
            }

1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
        # This is used by draft decode's first half of metadata when topk > 1
        if self.topk > 1:
            self.draft_decode_metadata_topk_normal = {
                "cache_seqlens": torch.zeros(
                    max_bs, dtype=torch.int32, device=self.device
                ),
                "cu_seqlens_q": torch.arange(
                    0,
                    max_bs * self.topk + 1,
                    step=self.topk,
                    dtype=torch.int32,
                    device=self.device,
                ),
                "cu_seqlens_k": torch.zeros(
                    max_bs + 1, dtype=torch.int32, device=self.device
                ),
                "page_table": torch.zeros(
                    max_bs,
                    self.max_context_len,
                    dtype=torch.int32,
                    device=self.device,
                ),
            }

            # This is used by draft decode's second half of metadata when topk > 1
            decode_length = self.speculative_step_id + 1
            self.draft_decode_metadata_topk_expand = {
                "cache_seqlens": torch.full(
                    (max_bs * self.topk,),
                    decode_length,
                    device=self.device,
                    dtype=torch.int32,
                ),
                "cu_seqlens_q": torch.arange(
                    0,
                    max_bs * self.topk + 1,
                    dtype=torch.int32,
                    device=self.device,
                ),
                "cu_seqlens_k": torch.arange(
                    0,
                    max_bs * self.topk * decode_length + 1,
                    step=decode_length,
                    dtype=torch.int32,
                    device=self.device,
                ),
                "page_table": torch.zeros(
                    max_bs * self.topk,
                    decode_length,
                    dtype=torch.int32,
                    device=self.device,
                ),
            }

        if (
            self.speculative_num_draft_tokens is not None
            and self.speculative_num_draft_tokens > 0
        ):
1340
1341
1342
1343
1344
1345
1346
1347
            # "page_table_draft_decode" will be set only when spec decoding enabled to save memory
            self.decode_cuda_graph_metadata["page_table_draft_decode"] = torch.zeros(
                max_bs,
                max_num_pages,
                dtype=torch.int32,
                device=self.device,
            )

1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
            self.target_verify_metadata = {
                "cache_seqlens": torch.zeros(
                    max_bs, dtype=torch.int32, device=self.device
                ),
                "cu_seqlens_q": torch.arange(
                    0,
                    max_bs * self.speculative_num_draft_tokens + 1,
                    step=self.speculative_num_draft_tokens,
                    dtype=torch.int32,
                    device=self.device,
                ),
                "cu_seqlens_k": torch.zeros(
                    max_bs + 1, dtype=torch.int32, device=self.device
                ),
                "page_table": torch.zeros(
                    max_bs,
1364
                    max_num_pages,
1365
1366
1367
1368
1369
1370
1371
1372
                    dtype=torch.int32,
                    device=self.device,
                ),
                "strided_indices": torch.arange(
                    0, self.max_context_len, self.page_size, device=self.device
                ),
            }

1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
            self.draft_extend_metadata = {
                "cache_seqlens": torch.zeros(
                    max_bs, dtype=torch.int32, device=self.device
                ),
                "cu_seqlens_q": torch.zeros(
                    max_bs + 1,
                    dtype=torch.int32,
                    device=self.device,
                ),
                "cu_seqlens_k": torch.zeros(
                    max_bs + 1, dtype=torch.int32, device=self.device
                ),
                "page_table": torch.zeros(
                    max_bs,
1387
                    max_num_pages,
1388
1389
1390
1391
1392
1393
1394
1395
                    dtype=torch.int32,
                    device=self.device,
                ),
                "strided_indices": torch.arange(
                    0, self.max_context_len, self.page_size, device=self.device
                ),
            }

1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
        if self.topk > 1:
            self.target_verify_metadata_topk_normal = {
                "cache_seqlens": torch.zeros(
                    max_bs, dtype=torch.int32, device=self.device
                ),
                "cu_seqlens_q": torch.arange(
                    0,
                    max_bs * self.speculative_num_draft_tokens + 1,
                    step=self.speculative_num_draft_tokens,
                    dtype=torch.int32,
                    device=self.device,
                ),
                "cu_seqlens_k": torch.zeros(
                    max_bs + 1, dtype=torch.int32, device=self.device
                ),
                "page_table": torch.zeros(
                    max_bs,
                    self.max_context_len,
                    dtype=torch.int32,
                    device=self.device,
                ),
            }

            self.target_verify_metadata_topk_expand = {
                "cache_seqlens": torch.zeros(
                    max_bs * self.speculative_num_draft_tokens,
                    dtype=torch.int32,
                    device=self.device,
                ),
                "cu_seqlens_k": torch.zeros(
                    max_bs * self.speculative_num_draft_tokens + 1,
                    dtype=torch.int32,
                    device=self.device,
                ),
                "cu_seqlens_q": torch.arange(
                    0,
                    max_bs * self.speculative_num_draft_tokens + 1,
                    dtype=torch.int32,
                    device=self.device,
                ),
                "page_table": torch.zeros(
                    max_bs * self.speculative_num_draft_tokens,
                    self.speculative_num_draft_tokens,
                    dtype=torch.int32,
                    device=self.device,
                ),
            }
1443

1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
            if self.has_swa:
                self.target_verify_metadata_topk_swa = {
                    "cache_seqlens": torch.zeros(
                        max_bs * self.speculative_num_draft_tokens,
                        dtype=torch.int32,
                        device=self.device,
                    ),
                    "cu_seqlens_k": torch.zeros(
                        max_bs * self.speculative_num_draft_tokens + 1,
                        dtype=torch.int32,
                        device=self.device,
                    ),
                    "cu_seqlens_q": torch.arange(
                        0,
                        max_bs * self.speculative_num_draft_tokens + 1,
                        dtype=torch.int32,
                        device=self.device,
                    ),
                    "page_table": torch.zeros(
                        max_bs * self.speculative_num_draft_tokens,
                        self.max_context_len,
                        dtype=torch.int32,
                        device=self.device,
                    ),
                }

1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
        self.encoder_metadata = {
            "encoder_page_table": torch.zeros(
                max_bs,
                self.max_context_len,
                dtype=torch.int32,
                device=self.device,
            ),
            "encoder_lens_int32": torch.zeros(
                max_bs, dtype=torch.int32, device=self.device
            ),
            "encoder_cu_seqlens_k": torch.zeros(
                max_bs + 1, dtype=torch.int32, device=self.device
            ),
        }

1485
1486
1487
1488
1489
1490
1491
1492
    def init_forward_metadata_capture_cuda_graph(
        self,
        bs: int,
        num_tokens: int,
        req_pool_indices: torch.Tensor,
        seq_lens: torch.Tensor,
        encoder_lens: Optional[torch.Tensor],
        forward_mode: ForwardMode,
1493
        spec_info: Optional[SpecInput],
1494
1495
1496
    ):
        """Initialize forward metadata for capturing CUDA graph."""
        metadata = FlashAttentionMetadata()
1497
1498
1499
1500

        # metadata_expand is needed for Spec Decoding when top k > 1
        metadata_expand = FlashAttentionMetadata()

1501
        device = seq_lens.device
1502
        if forward_mode.is_decode_or_idle():
1503
1504
            if spec_info is not None:
                # Draft Decode
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
                if self.topk <= 1:
                    # When topk = 1, we use the normal decode metadata
                    metadata.cache_seqlens_int32 = self.decode_cuda_graph_metadata[
                        "cache_seqlens"
                    ][:bs]
                    metadata.max_seq_len_k = seq_lens.max().item() + (
                        self.speculative_step_id + 1
                    )
                    metadata.cu_seqlens_q = self.decode_cuda_graph_metadata[
                        "cu_seqlens_q"
                    ][: bs + 1]
                    metadata.cu_seqlens_k = torch.nn.functional.pad(
                        torch.cumsum(
                            metadata.cache_seqlens_int32, dim=0, dtype=torch.int32
                        ),
                        (1, 0),
                    )
                    metadata.page_table = self.decode_cuda_graph_metadata[
                        "page_table_draft_decode"
1524
                    ][:bs, :]
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
                    self.decode_cuda_graph_metadata[bs] = metadata
                else:
                    # When top k > 1, we need two specific draft decode metadata, and then merge states
                    # 1. The first half of metadata for prefix tokens
                    metadata.cache_seqlens_int32 = (
                        self.draft_decode_metadata_topk_normal["cache_seqlens"][:bs]
                    )
                    metadata.max_seq_len_q = self.topk
                    metadata.max_seq_len_k = seq_lens.max().item()
                    metadata.cu_seqlens_q = self.draft_decode_metadata_topk_normal[
                        "cu_seqlens_q"
                    ][: bs + 1]
                    metadata.cu_seqlens_k = self.draft_decode_metadata_topk_normal[
                        "cu_seqlens_k"
                    ][: bs + 1]
                    metadata.page_table = self.draft_decode_metadata_topk_normal[
                        "page_table"
1542
                    ][:bs, :]
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

                    # 2. The second half of metadata for draft tokens (per_batch_num_tokens = topk)
                    metadata_expand.cache_seqlens_int32 = (
                        self.draft_decode_metadata_topk_expand["cache_seqlens"][
                            : bs * self.topk
                        ]
                    )
                    metadata_expand.max_seq_len_q = 1
                    metadata_expand.cu_seqlens_q = (
                        self.draft_decode_metadata_topk_expand["cu_seqlens_q"][
                            : bs * self.topk + 1
                        ]
                    )
                    metadata_expand.cu_seqlens_k = (
                        self.draft_decode_metadata_topk_expand["cu_seqlens_k"][
                            : bs * self.topk + 1
                        ]
                    )
                    metadata_expand.page_table = self.draft_decode_metadata_topk_expand[
                        "page_table"
                    ][: bs * self.topk]
                    self.draft_decode_metadata_topk_normal[bs] = metadata
                    self.draft_decode_metadata_topk_expand[bs] = metadata_expand
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
            else:
                # Normal Decode
                # Get sequence information
                metadata.cache_seqlens_int32 = seq_lens.to(torch.int32)
                batch_size = len(seq_lens)
                device = seq_lens.device
                metadata.cu_seqlens_k = torch.nn.functional.pad(
                    torch.cumsum(seq_lens, dim=0, dtype=torch.int32), (1, 0)
                )
                # Precompute maximum sequence length
                metadata.max_seq_len_k = seq_lens.max().item()
                # Precompute page table
                metadata.page_table = self.decode_cuda_graph_metadata["page_table"][
1579
                    :bs, :
1580
1581
1582
1583
1584
                ]
                # Precompute cumulative sequence lengths
                metadata.cu_seqlens_q = torch.arange(
                    0, batch_size + 1, dtype=torch.int32, device=device
                )
1585
1586
                self.decode_cuda_graph_metadata[bs] = metadata

1587
                if self.attention_chunk_size is not None:
1588
                    self._update_local_attn_metadata_for_capture(metadata, batch_size)
1589

1590
        elif forward_mode.is_target_verify():
1591
1592
1593
1594
1595
            if self.topk <= 1:
                metadata.cache_seqlens_int32 = self.target_verify_metadata[
                    "cache_seqlens"
                ][:bs]
                metadata.cache_seqlens_int32.copy_(
1596
                    (seq_lens + self.speculative_num_draft_tokens)
1597
                )
1598

1599
1600
1601
1602
                metadata.max_seq_len_q = self.speculative_num_draft_tokens
                metadata.max_seq_len_k = (
                    seq_lens.max().item() + self.speculative_num_draft_tokens
                )
1603

1604
1605
1606
1607
1608
1609
1610
                metadata.cu_seqlens_q = torch.arange(
                    0,
                    bs * self.speculative_num_draft_tokens + 1,
                    self.speculative_num_draft_tokens,
                    dtype=torch.int32,
                    device=device,
                )
1611

1612
1613
1614
                metadata.cu_seqlens_k = self.target_verify_metadata["cu_seqlens_k"][
                    : (bs + 1)
                ]
1615

1616
                metadata.page_table = self.target_verify_metadata["page_table"][:bs, :]
1617

1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
                self.target_verify_metadata[bs] = metadata
            else:
                # When topk > 1, we need two specific target verify metadata, and then merge states
                # 1. The first half of metadata for prefix tokens
                metadata.cache_seqlens_int32 = self.target_verify_metadata_topk_normal[
                    "cache_seqlens"
                ][:bs]
                metadata.max_seq_len_q = self.speculative_num_draft_tokens
                # metadata.max_seq_len_k = forward_batch.seq_lens_cpu.max().item(), do this in replay
                metadata.cu_seqlens_q = self.target_verify_metadata_topk_normal[
                    "cu_seqlens_q"
                ][: bs + 1]
                metadata.cu_seqlens_k = self.target_verify_metadata_topk_normal[
                    "cu_seqlens_k"
                ][: bs + 1]
                metadata.page_table = self.target_verify_metadata_topk_normal[
                    "page_table"
1635
                ][:bs, :]
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656

                # 2. The second half of metadata for draft tokens (per_batch_num_tokens = topk)
                metadata_expand.cache_seqlens_int32 = (
                    self.target_verify_metadata_topk_expand["cache_seqlens"][
                        : bs * self.speculative_num_draft_tokens
                    ]
                )
                metadata_expand.max_seq_len_q = 1
                metadata_expand.cu_seqlens_q = self.target_verify_metadata_topk_expand[
                    "cu_seqlens_q"
                ][: bs * self.speculative_num_draft_tokens + 1]
                metadata_expand.cu_seqlens_k = self.target_verify_metadata_topk_expand[
                    "cu_seqlens_k"
                ][: bs * self.speculative_num_draft_tokens + 1]

                metadata_expand.page_table = self.target_verify_metadata_topk_expand[
                    "page_table"
                ][: bs * self.speculative_num_draft_tokens]

                self.target_verify_metadata_topk_normal[bs] = metadata
                self.target_verify_metadata_topk_expand[bs] = metadata_expand
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678

                if self.has_swa:
                    metadata_swa = FlashAttentionMetadata()
                    metadata_swa.cache_seqlens_int32 = (
                        self.target_verify_metadata_topk_swa["cache_seqlens"][
                            : bs * self.speculative_num_draft_tokens
                        ]
                    )
                    metadata_swa.max_seq_len_q = 1
                    metadata_swa.cu_seqlens_q = self.target_verify_metadata_topk_swa[
                        "cu_seqlens_q"
                    ][: bs * self.speculative_num_draft_tokens + 1]
                    metadata_swa.cu_seqlens_k = self.target_verify_metadata_topk_swa[
                        "cu_seqlens_k"
                    ][: bs * self.speculative_num_draft_tokens + 1]

                    metadata_swa.page_table = self.target_verify_metadata_topk_swa[
                        "page_table"
                    ][: bs * self.speculative_num_draft_tokens]
                    self.target_verify_metadata_topk_swa[bs] = metadata_swa
                    metadata.swa_spec_metadata = metadata_swa

1679
1680
1681
1682
        elif forward_mode.is_draft_extend():
            metadata.cache_seqlens_int32 = self.draft_extend_metadata["cache_seqlens"][
                :bs
            ]
1683
            metadata.cache_seqlens_int32.copy_(seq_lens)
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699

            num_tokens_per_bs = num_tokens // bs
            metadata.max_seq_len_q = num_tokens_per_bs
            metadata.max_seq_len_k = seq_lens.max().item()

            metadata.cu_seqlens_q = torch.arange(
                0,
                bs * num_tokens_per_bs + 1,
                num_tokens_per_bs,
                dtype=torch.int32,
                device=device,
            )

            metadata.cu_seqlens_k = self.draft_extend_metadata["cu_seqlens_k"][
                : (bs + 1)
            ]
1700
            metadata.page_table = self.draft_extend_metadata["page_table"][:bs, :]
1701
1702

            self.draft_extend_metadata[bs] = metadata
1703

1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
        if encoder_lens is not None:
            encoder_bs = encoder_lens.numel()
            metadata.encoder_lens_int32 = self.encoder_metadata["encoder_lens_int32"][
                :encoder_bs
            ]
            metadata.encoder_cu_seqlens_k = self.encoder_metadata[
                "encoder_cu_seqlens_k"
            ][: (encoder_bs + 1)]

            metadata.encoder_page_table = self.encoder_metadata["encoder_page_table"][
1714
                :bs, :
1715
1716
            ]

1717
        self.forward_metadata = metadata
1718
        self.forward_metadata_spec_decode_expand = metadata_expand
1719
1720
1721
1722
1723
1724
1725
1726
1727

    def init_forward_metadata_replay_cuda_graph(
        self,
        bs: int,
        req_pool_indices: torch.Tensor,
        seq_lens: torch.Tensor,
        seq_lens_sum: int,
        encoder_lens: Optional[torch.Tensor],
        forward_mode: ForwardMode,
1728
        spec_info: Optional[SpecInput],
1729
        seq_lens_cpu: Optional[torch.Tensor],
tarinkk's avatar
tarinkk committed
1730
        out_cache_loc: Optional[torch.Tensor] = None,
1731
    ):
1732
        """Initialize forward metadata for replaying CUDA graph."""
1733
1734
        seq_lens = seq_lens[:bs]
        seq_lens_cpu = seq_lens_cpu[:bs]
1735
        req_pool_indices = req_pool_indices[:bs]
1736
        device = seq_lens.device
1737
1738
        metadata = None
        metadata_expand = None
1739

1740
        if forward_mode.is_decode_or_idle():
1741
1742
1743

            if spec_info is not None:
                # Draft Decode
1744
1745
                if self.topk <= 1:
                    # When topk = 1, we use the normal decode metadata
1746
1747
1748
                    metadata = self.decode_cuda_graph_metadata[bs]
                    max_len = seq_lens_cpu.max().item()
                    metadata.max_seq_len_k = max_len + self.speculative_step_id + 1
1749
1750
1751
1752
                    max_seq_pages = (
                        metadata.max_seq_len_k + self.page_size - 1
                    ) // self.page_size

fzyzcjy's avatar
fzyzcjy committed
1753
                    normal_decode_set_metadata(
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
                        metadata.cache_seqlens_int32,
                        metadata.cu_seqlens_k,
                        metadata.page_table,
                        self.req_to_token,
                        req_pool_indices,
                        self.decode_cuda_graph_metadata["strided_indices"],
                        max_seq_pages,
                        seq_lens,
                        self.speculative_step_id + 1,
                        self.page_size,
                    )

1766
1767
1768
1769
                else:
                    # When top k > 1, we need two specific draft decode metadata, and then merge states
                    # 1. The first half of metadata for prefix tokens
                    metadata = self.draft_decode_metadata_topk_normal[bs]
1770
                    metadata.cache_seqlens_int32.copy_(seq_lens)
1771
1772
1773
                    # metadata.max_seq_len_q = self.topk, already set in capture
                    metadata.max_seq_len_k = seq_lens_cpu.max().item()
                    # metadata.cu_seqlens_q already set in capture
1774
1775
1776
                    metadata.cu_seqlens_k[1:].copy_(
                        torch.cumsum(
                            metadata.cache_seqlens_int32, dim=0, dtype=torch.int32
1777
1778
                        )
                    )
1779

1780
1781
1782
1783
1784
                    page_table = self.req_to_token[
                        req_pool_indices, : metadata.max_seq_len_k
                    ]

                    metadata.page_table[:, : metadata.max_seq_len_k].copy_(page_table)
1785

1786
1787
1788
                    # 2. The second half of metadata for draft tokens (per_batch_num_tokens = topk)
                    metadata_expand = self.draft_decode_metadata_topk_expand[bs]
                    decode_length = self.speculative_step_id + 1
1789
1790
                    # shape: [bs, num_steps, topk] -> [bs x topk, num_steps]
                    cache_loc = out_cache_loc.view(-1, self.speculative_num_steps)
1791
                    metadata_expand.page_table[: cache_loc.shape[0]].copy_(
1792
                        cache_loc[:, :decode_length]
1793
                    )
1794
                # TODO: Handle local attention metadata for draft decode when llama4 eagle is supported
1795
1796
            else:
                # Normal Decode
1797
                metadata = self.decode_cuda_graph_metadata[bs]
1798
                max_len = seq_lens_cpu.max().item()
1799
                max_seq_pages = (max_len + self.page_size - 1) // self.page_size
1800
1801
                metadata.max_seq_len_k = max_len

fzyzcjy's avatar
fzyzcjy committed
1802
                normal_decode_set_metadata(
1803
1804
1805
                    metadata.cache_seqlens_int32,
                    metadata.cu_seqlens_k,
                    metadata.page_table,
1806
1807
1808
1809
1810
                    self.req_to_token,
                    req_pool_indices,
                    self.decode_cuda_graph_metadata["strided_indices"],
                    max_seq_pages,
                    seq_lens,
1811
                    0,
1812
                    self.page_size,
1813
1814
                )

tarinkk's avatar
tarinkk committed
1815
1816
1817
1818
                self._update_local_attn_metadata_for_replay(
                    metadata,
                    bs,
                )
1819
        elif forward_mode.is_target_verify():
1820
1821
1822
            if self.topk <= 1:
                metadata = self.target_verify_metadata[bs]
                metadata.cache_seqlens_int32.copy_(
1823
                    (seq_lens + self.speculative_num_draft_tokens)
1824
                )
1825

1826
1827
1828
                metadata.max_seq_len_k = (
                    seq_lens_cpu.max().item() + self.speculative_num_draft_tokens
                )
1829
1830
                metadata.cu_seqlens_k[1:].copy_(
                    torch.cumsum(metadata.cache_seqlens_int32, dim=0, dtype=torch.int32)
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
                )
                max_seq_pages = (
                    metadata.max_seq_len_k + self.page_size - 1
                ) // self.page_size
                page_indices = self.req_to_token[
                    req_pool_indices[:, None],
                    self.decode_cuda_graph_metadata["strided_indices"][:max_seq_pages],
                ]
                page_indices //= self.page_size
                metadata.page_table[:, :max_seq_pages].copy_(page_indices)
            else:
                # When topk > 1, we need two specific target verify metadata, and then merge states
                # 1. The first half of metadata for prefix tokens
                metadata = self.target_verify_metadata_topk_normal[bs]
1845
                metadata.cache_seqlens_int32.copy_(seq_lens)
1846
1847
1848
                # metadata.max_seq_len_q = self.speculative_num_draft_tokens, already set in capture
                metadata.max_seq_len_k = seq_lens_cpu.max().item()
                # metadata.cu_seqlens_q already set in capture
1849
1850
                metadata.cu_seqlens_k[1:].copy_(
                    torch.cumsum(metadata.cache_seqlens_int32, dim=0, dtype=torch.int32)
1851
1852
1853
1854
1855
1856
1857
1858
                )
                page_table = self.req_to_token[
                    req_pool_indices, : metadata.max_seq_len_k
                ]
                metadata.page_table[:, : metadata.max_seq_len_k].copy_(page_table)

                # 2. The second half of metadata for draft tokens (per_batch_num_tokens = topk)
                metadata_expand = self.target_verify_metadata_topk_expand[bs]
1859

1860
1861
1862
1863
1864
1865
1866
                # metadata_expand.max_seq_len_q = 1, already set in capture
                # metadata_expand.cu_seqlens_q already set in capture
                offsets = torch.arange(
                    self.speculative_num_draft_tokens, device=device
                ).unsqueeze(
                    0
                )  # shape: (1, self.speculative_num_draft_tokens)
1867

1868
1869
                cols = offsets.expand(seq_lens.numel(), -1) + seq_lens.unsqueeze(1)
                cum_len = torch.nn.functional.pad(
1870
                    torch.cumsum(
1871
1872
1873
1874
                        (
                            seq_lens + self.speculative_num_draft_tokens
                        ).repeat_interleave(self.speculative_num_draft_tokens),
                        dim=0,
1875
1876
                    ),
                    (1, 0),
1877
1878
1879
1880
1881
1882
1883
                )[:-1]
                mask_extraction_indices = (
                    cols.repeat_interleave(self.speculative_num_draft_tokens, dim=0)
                    + cum_len[:, None]
                ).view(1, -1)
                # avoid extracting padded seq indices which will be out of boundary
                mask_extraction_indices[
1884
1885
                    :,
                    spec_info.positions.numel() * self.speculative_num_draft_tokens :,
1886
1887
1888
1889
                ].fill_(0)
                mask = spec_info.custom_mask[mask_extraction_indices].view(
                    -1, self.speculative_num_draft_tokens
                )  # (bsz * draft_num, draft_num)
1890

1891
1892
1893
1894
                col_indices = offsets.expand(
                    mask.shape[0], self.speculative_num_draft_tokens
                )
                keys = torch.where(
1895
1896
1897
                    mask,
                    col_indices,
                    col_indices + self.speculative_num_draft_tokens,
1898
1899
1900
1901
1902
1903
1904
1905
                )
                _, sort_order = torch.sort(keys, dim=1)

                non_masked_page_table = (
                    self.req_to_token[req_pool_indices, :]
                    .gather(1, cols)
                    .repeat_interleave(self.speculative_num_draft_tokens, dim=0)
                )  # (bsz, draft_num)
1906

1907
1908
1909
                metadata_expand.page_table.copy_(
                    non_masked_page_table.gather(1, sort_order)
                )
1910
                metadata_expand.cache_seqlens_int32.copy_(mask.sum(dim=1))
1911
1912
1913
1914
1915
                metadata_expand.cu_seqlens_k[1:].copy_(
                    torch.cumsum(
                        metadata_expand.cache_seqlens_int32,
                        dim=0,
                        dtype=torch.int32,
1916
1917
                    )
                )
1918

1919
1920
1921
1922
1923
1924
                if self.has_swa:
                    metadata_swa = self.target_verify_metadata_topk_swa[bs]
                    self._init_sliding_window_attn_spec_metadata(
                        metadata, metadata_expand, metadata_swa
                    )

1925
1926
        elif forward_mode.is_draft_extend():
            metadata = self.draft_extend_metadata[bs]
1927
            metadata.cache_seqlens_int32.copy_(seq_lens)
1928
1929
1930
1931
1932
1933

            metadata.max_seq_len_k = seq_lens_cpu.max().item()
            metadata.cu_seqlens_k[1:].copy_(
                torch.cumsum(metadata.cache_seqlens_int32, dim=0, dtype=torch.int32)
            )
            accept_length = spec_info.accept_length[:bs]
1934
1935
1936
1937
1938
            if spec_info.accept_length_cpu:
                metadata.max_seq_len_q = max(spec_info.accept_length_cpu) + 1
            else:
                metadata.max_seq_len_q = 1

1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
            metadata.cu_seqlens_q[1:].copy_(
                torch.cumsum(accept_length, dim=0, dtype=torch.int32)
            )

            max_seq_pages = (
                metadata.max_seq_len_k + self.page_size - 1
            ) // self.page_size
            page_indices = self.req_to_token[
                req_pool_indices[:, None],
                self.draft_extend_metadata["strided_indices"][:max_seq_pages],
            ]
1950
            metadata.page_table[:, :max_seq_pages].copy_(page_indices // self.page_size)
1951

1952
1953
1954
1955
        if encoder_lens is not None:
            # Only support encoder size 1 for now
            metadata.encoder_max_seq_len_k = encoder_lens[0]
            metadata.encoder_lens_int32.copy_(encoder_lens[:1])
1956
1957
            metadata.encoder_cu_seqlens_k[1:].copy_(
                torch.cumsum(metadata.encoder_lens_int32, dim=0, dtype=torch.int32)
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
            )

            metadata.encoder_page_table[:, : metadata.encoder_max_seq_len_k].copy_(
                self.req_to_token[req_pool_indices, : metadata.encoder_max_seq_len_k]
            )

            # Update the regular page table
            page_table = self.req_to_token[
                req_pool_indices,
                metadata.encoder_max_seq_len_k : (
                    metadata.encoder_max_seq_len_k + metadata.max_seq_len_k
                ),
            ]
            metadata.page_table[:, : metadata.max_seq_len_k].copy_(page_table)

1973
        self.forward_metadata = metadata
1974
        self.forward_metadata_spec_decode_expand = metadata_expand
1975
1976
1977

    def get_cuda_graph_seq_len_fill_value(self):
        """Get the fill value for sequence length in CUDA graph."""
1978
        return 1
1979

tarinkk's avatar
tarinkk committed
1980
1981
1982
    def _init_local_attn_metadata(
        self, forwardbatch: ForwardBatch, metadata: FlashAttentionMetadata, device
    ):
1983
1984
1985
1986
1987
1988
1989
        """Centralized utility to initialize local_attn_metadata if chunked attention is enabled."""
        if self.attention_chunk_size is None:
            metadata.local_attn_metadata = None
            return

        cu_seqlens_q = metadata.cu_seqlens_q
        cache_seqlens_int32 = metadata.cache_seqlens_int32
tarinkk's avatar
tarinkk committed
1990
1991
1992
1993
1994
1995
        if self.is_hybrid:
            page_table = self.full_to_swa_index_mapping[metadata.page_table].to(
                torch.int32
            )
        else:
            page_table = metadata.page_table
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
        if cu_seqlens_q is None or cache_seqlens_int32 is None or page_table is None:
            metadata.local_attn_metadata = None
            return

        cu_seqlens_q_np = cu_seqlens_q.cpu().numpy()
        seq_lens_np = cache_seqlens_int32.cpu().numpy()
        (
            seqlens_q_local_np,
            cu_seqlens_q_local_np,
            seqlens_k_local_np,
            block_table_local,
        ) = make_local_attention_virtual_batches(
            self.attention_chunk_size,
            cu_seqlens_q_np,
            seq_lens_np,
            page_table,
            self.page_size,
        )
2014

2015
2016
2017
2018
2019
2020
2021
2022
2023
        local_metadata = FlashAttentionMetadata.LocalAttentionMetadata(
            local_query_start_loc=torch.from_numpy(cu_seqlens_q_local_np).to(device),
            local_seqused_k=torch.from_numpy(seqlens_k_local_np).to(device),
            local_block_table=block_table_local.to(device),
            local_max_query_len=int(seqlens_q_local_np.max()),
            local_max_seq_len=int(seqlens_k_local_np.max()),
        )
        metadata.local_attn_metadata = local_metadata

2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
    def _update_local_attn_metadata_for_capture(
        self, metadata: FlashAttentionMetadata, bs: int
    ):
        """Update local attention metadata during CUDA graph capture phase.

        This method calculates the exact buffer sizes needed for local attention metadata
        during the CUDA graph capture phase, optimizing memory usage by creating views of
        pre-allocated buffers with exactly the sizes needed.
        """
        seq_lens_capture = metadata.cache_seqlens_int32
        max_seq_len = int(seq_lens_capture.max().item())
        page_table_capture = metadata.page_table

        cu_seqlens_q_np = metadata.cu_seqlens_q.cpu().numpy()
        seqlens_np = seq_lens_capture.cpu().numpy()
        (
            seqlens_q_local_np,
            cu_seqlens_q_local_np,
            seqlens_k_local_np,
            block_table_local_np,
        ) = make_local_attention_virtual_batches(
            self.attention_chunk_size,
            cu_seqlens_q_np,
            seqlens_np,
            page_table_capture,
            self.page_size,
        )

        # Get exact dimensions from the calculation
        q_len = len(cu_seqlens_q_local_np)
        k_len = len(seqlens_k_local_np)
        b0 = block_table_local_np.shape[0] if block_table_local_np.shape[0] > 0 else bs
        b1 = block_table_local_np.shape[1] if block_table_local_np.shape[1] > 0 else 1

        # Create views of the pre-allocated buffers with exactly these sizes
        # This is the key optimization - we only use the memory we actually need
        local_query_start_loc = self.decode_cuda_graph_local_attn_metadata[
            "local_query_start_loc"
        ][:q_len]

        local_seqused_k = self.decode_cuda_graph_local_attn_metadata["local_seqused_k"][
            :k_len
        ]

        local_block_table = self.decode_cuda_graph_local_attn_metadata[
            "local_block_table"
        ][:b0, :b1]

        metadata.local_attn_metadata = FlashAttentionMetadata.LocalAttentionMetadata(
            local_query_start_loc=local_query_start_loc,
            local_seqused_k=local_seqused_k,
            local_block_table=local_block_table,
            local_max_query_len=1,
            local_max_seq_len=max_seq_len,
        )

2080
    def _update_local_attn_metadata_for_replay(
tarinkk's avatar
tarinkk committed
2081
2082
2083
        self,
        metadata: FlashAttentionMetadata,
        bs: int,
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
    ):
        """Update preallocated local attention metadata in-place before CUDA graph replay."""
        if self.attention_chunk_size is None:
            return

        # Access preallocated buffers
        local_q_buf = self.decode_cuda_graph_local_attn_metadata[
            "local_query_start_loc"
        ]
        local_k_buf = self.decode_cuda_graph_local_attn_metadata["local_seqused_k"]
        local_block_buf = self.decode_cuda_graph_local_attn_metadata[
            "local_block_table"
        ]
        cu_seqlens_q = self.decode_cuda_graph_metadata["cu_seqlens_q"]

        # Create a modified version for local attention that only processes the last token
        # This mimics the normal decode pattern
        cu_seqlens_q = torch.arange(
            bs + 1, device=cu_seqlens_q.device, dtype=cu_seqlens_q.dtype
        )
        seqlens = metadata.cache_seqlens_int32[:bs]
        # Slice the page_table to match the batch size and actual sequence length
        # This serves three important purposes:
        # 1. Ensures we only process the actual batch size (bs) and not the maximum batch size
        # 2. Limits the sequence length to prevent processing padding tokens or garbage values
        # 3. Prevents zeros in the block table which can cause garbage output during replay
        #
        # Without this slicing, the pre-allocated page_table may contain zeros or invalid indices
        # beyond the actual sequence length, leading to incorrect attention calculations
        max_seq_len = int(seqlens.max().item())
tarinkk's avatar
tarinkk committed
2114
2115
2116
2117
2118
2119
        if self.is_hybrid:
            sliced_page_table = self.full_to_swa_index_mapping[
                metadata.page_table[:bs, :max_seq_len]
            ].to(torch.int32)
        else:
            sliced_page_table = metadata.page_table[:bs, :max_seq_len]
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

        cu_seqlens_q_np = cu_seqlens_q.cpu().numpy()
        seqlens_np = seqlens.cpu().numpy()
        (
            seqlens_q_local_np,
            cu_seqlens_q_local_np,
            seqlens_k_local_np,
            block_table_local,
        ) = make_local_attention_virtual_batches(
            self.attention_chunk_size,
            cu_seqlens_q_np,
            seqlens_np,
            sliced_page_table,
            self.page_size,
        )

        # Convert back to tensors
        device = local_q_buf.device
        cu_seqlens_q_local = torch.from_numpy(cu_seqlens_q_local_np).to(device)
        seqlens_k_local = torch.from_numpy(seqlens_k_local_np).to(device)
        block_table_local = block_table_local.to(device)
        # Get sizes
        q_len = cu_seqlens_q_local.shape[0]
        k_len = seqlens_k_local.shape[0]
        b0, b1 = block_table_local.shape

        # In-place updates into preallocated tensors and zero out the unused space
        local_q_buf[:q_len].copy_(cu_seqlens_q_local)
        local_q_buf[q_len:].fill_(0)
        local_k_buf[:k_len].copy_(seqlens_k_local)
        local_k_buf[k_len:].fill_(0)
        local_block_buf[:b0, :b1].copy_(block_table_local)
        local_block_buf[b0:, :].fill_(0)
        local_block_buf[:b0, b1:].fill_(0)

        if metadata.local_attn_metadata is not None:
            lam = metadata.local_attn_metadata
            lam.local_max_query_len = int(seqlens_q_local_np.max())
            lam.local_max_seq_len = int(seqlens_k_local_np.max())

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
    def _init_sliding_window_attn_spec_metadata(
        self,
        metadata: FlashAttentionMetadata,
        metadata_expand: FlashAttentionMetadata,
        metadata_swa: Optional[FlashAttentionMetadata] = None,
    ):
        # TODO: support page_size > 1 for swa spec
        assert (
            self.page_size == 1
        ), "FlashAttention backend doesn't support topk > 1 speculative decoding with page size > 1 sliding window attention"

        cache_seqlens_int32 = (
            metadata.cache_seqlens_int32.repeat_interleave(
                self.speculative_num_draft_tokens
            )
            + metadata_expand.cache_seqlens_int32
        )
        cu_seqlens_k = torch.nn.functional.pad(
            torch.cumsum(cache_seqlens_int32, dim=0, dtype=torch.int32), (1, 0)
        )
        bs = cache_seqlens_int32.shape[0]
        page_table = (
            metadata.page_table.new_zeros(
                (bs, metadata.max_seq_len_k + metadata_expand.page_table.shape[1])
            )
            if metadata_swa is None
            else metadata_swa.page_table
        )

        prepare_swa_spec_page_table_triton(
            page_table,
            metadata.page_table,
            metadata_expand.page_table,
            metadata.cache_seqlens_int32,
            metadata_expand.cache_seqlens_int32,
            self.speculative_num_draft_tokens,
        )

        if metadata_swa is None:
            metadata_swa = FlashAttentionMetadata()
            metadata_swa.max_seq_len_q = 1
            metadata_swa.cu_seqlens_q = metadata_expand.cu_seqlens_q
            metadata_swa.cache_seqlens_int32 = cache_seqlens_int32
            metadata_swa.cu_seqlens_k = cu_seqlens_k
            metadata_swa.page_table = page_table
        else:
            metadata_swa.cache_seqlens_int32.copy_(cache_seqlens_int32)
            metadata_swa.cu_seqlens_k.copy_(cu_seqlens_k)

        metadata.swa_spec_metadata = metadata_swa


@triton.jit
def _prepare_swa_spec_page_table_kernel(
    dst_ptr,
    src_a_ptr,
    src_b_ptr,
    seq_len_a_ptr,
    seq_len_b_ptr,
    dst_stride_m,
    dst_stride_n,
    a_stride_m,
    a_stride_n,
    b_stride_m,
    b_stride_n,
    LEN_A: tl.constexpr,
    LEN_B: tl.constexpr,
    REPEAT_STEP: tl.constexpr,
    BLOCK_N: tl.constexpr,
):
    pid_m = tl.program_id(0)
    pid_n = tl.program_id(1)

    idx_a = pid_m // REPEAT_STEP
    idx_b = pid_m
    seq_len_a = tl.load(seq_len_a_ptr + idx_a)
    seq_len_b = tl.load(seq_len_b_ptr + idx_b)

    offs_n = pid_n * BLOCK_N + tl.arange(0, BLOCK_N)
    total_len = seq_len_a + seq_len_b

    if pid_n * BLOCK_N >= total_len:
        return

    mask = offs_n < total_len
    dst = dst_ptr + pid_m * dst_stride_m + offs_n * dst_stride_n

    if (pid_n + 1) * BLOCK_N < seq_len_a:
        a_ptr = src_a_ptr + idx_a * a_stride_m + offs_n * a_stride_n
        a_mask = mask & (offs_n < LEN_A)
        val = tl.load(a_ptr, mask=a_mask, other=0)
        tl.store(dst, val, mask=mask)
    elif pid_n * BLOCK_N >= seq_len_a:
        offs_b = offs_n - seq_len_a
        b_ptr = src_b_ptr + idx_b * b_stride_m + offs_b * b_stride_n
        b_mask = mask & (offs_b < LEN_B)
        val = tl.load(b_ptr, mask=b_mask, other=0)
        tl.store(dst, val, mask=mask)
    else:
        # mixed part
        a_offs = offs_n
        a_mask = (a_offs < seq_len_a) & (a_offs < LEN_A)
        a_ptr = src_a_ptr + idx_a * a_stride_m + a_offs * a_stride_n
        a_val = tl.load(a_ptr, mask=a_mask, other=0)

        b_offs = offs_n - seq_len_a
        b_mask = (b_offs >= 0) & (b_offs < seq_len_b) & (b_offs < LEN_B)
        b_ptr = src_b_ptr + idx_b * b_stride_m + b_offs * b_stride_n
        b_val = tl.load(b_ptr, mask=b_mask, other=0)

        result = tl.where(offs_n < seq_len_a, a_val, b_val)
        tl.store(dst, result, mask=mask)


def prepare_swa_spec_page_table_triton(
    page_table_dst: torch.Tensor,
    page_table_a: torch.Tensor,
    page_table_b: torch.Tensor,  # expand page table
    seq_len_a: torch.Tensor,
    seq_len_b: torch.Tensor,  # expand seq lens
    speculative_num_draft_tokens: int,
):
    # concat page_table and expand page_table by kv seq length
    bs = seq_len_a.numel()
    bs_expand = seq_len_b.numel()
    assert bs_expand == bs * speculative_num_draft_tokens

    LEN_A = page_table_a.shape[1]
    LEN_B = page_table_b.shape[1]
    LEN_OUT = LEN_A + LEN_B
    REPEAT_STEP = speculative_num_draft_tokens
    BLOCK_N = 256

    grid = (bs_expand, triton.cdiv(LEN_OUT, BLOCK_N))
    _prepare_swa_spec_page_table_kernel[grid](
        page_table_dst,
        page_table_a,
        page_table_b,
        seq_len_a,
        seq_len_b,
        page_table_dst.stride(0),
        page_table_dst.stride(1),
        page_table_a.stride(0),
        page_table_a.stride(1),
        page_table_b.stride(0),
        page_table_b.stride(1),
        LEN_A=LEN_A,
        LEN_B=LEN_B,
        REPEAT_STEP=REPEAT_STEP,
        BLOCK_N=BLOCK_N,
        num_warps=4,
    )

2313
2314
2315
2316
2317
2318
2319
2320
2321
2322

class FlashAttentionMultiStepBackend:

    def __init__(
        self, model_runner: ModelRunner, topk: int, speculative_num_steps: int
    ):
        self.model_runner = model_runner
        self.topk = topk
        self.speculative_num_steps = speculative_num_steps
        self.attn_backends = []
2323
        for i in range(self.speculative_num_steps - 1):
2324
2325
2326
            self.attn_backends.append(
                FlashAttentionBackend(
                    model_runner,
2327
                    speculative_step_id=i,
2328
2329
2330
2331
2332
2333
2334
2335
2336
                    topk=self.topk,
                    speculative_num_steps=self.speculative_num_steps,
                )
            )

    def init_forward_metadata(self, forward_batch: ForwardBatch):
        for i in range(self.speculative_num_steps - 1):
            self.attn_backends[i].init_forward_metadata(forward_batch)

2337
    def init_cuda_graph_state(self, max_bs: int, max_num_tokens: int):
2338
        for i in range(self.speculative_num_steps - 1):
2339
            self.attn_backends[i].init_cuda_graph_state(max_bs, max_num_tokens)
2340

2341
2342
2343
2344
    def init_forward_metadata_capture_cuda_graph(
        self,
        forward_batch: ForwardBatch,
    ):
2345
        assert forward_batch.spec_info is not None
2346
        assert forward_batch.spec_info.is_draft_input()
2347
2348
2349
2350
2351
2352
2353

        for i in range(self.speculative_num_steps - 1):
            self.attn_backends[i].init_forward_metadata_capture_cuda_graph(
                forward_batch.batch_size,
                forward_batch.batch_size * self.topk,
                forward_batch.req_pool_indices,
                forward_batch.seq_lens,
2354
                encoder_lens=forward_batch.encoder_lens,
2355
2356
2357
2358
2359
2360
2361
2362
                forward_mode=ForwardMode.DECODE,
                spec_info=forward_batch.spec_info,
            )

    def init_forward_metadata_replay_cuda_graph(
        self, forward_batch: ForwardBatch, bs: int
    ):
        assert forward_batch.spec_info is not None
2363
        assert forward_batch.spec_info.is_draft_input()
2364
2365

        for i in range(self.speculative_num_steps - 1):
2366
2367
            # TODO: incrementally update the metadata for the later steps,
            # so that they do not need to recompute everything from scratch.
2368
2369
2370
2371
2372
            self.attn_backends[i].init_forward_metadata_replay_cuda_graph(
                bs,
                forward_batch.req_pool_indices,
                forward_batch.seq_lens,
                forward_batch.seq_lens_sum,
2373
                encoder_lens=forward_batch.encoder_lens,
2374
2375
2376
                forward_mode=ForwardMode.DECODE,
                spec_info=forward_batch.spec_info,
                seq_lens_cpu=forward_batch.seq_lens_cpu,
2377
                out_cache_loc=forward_batch.out_cache_loc,
2378
            )
2379
2380


2381
2382
2383
# @torch.compile(dynamic=True, backend=get_compiler_backend())
# TODO: fuse these kernels
# NOTE: torch.compile makes it slower in speculative decoding
fzyzcjy's avatar
fzyzcjy committed
2384
def normal_decode_set_metadata(
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
    cache_seqlens_int32: torch.Tensor,
    cu_seqlens_k: torch.Tensor,
    page_table: torch.Tensor,
    req_to_token: torch.Tensor,
    req_pool_indices: torch.Tensor,
    strided_indices: torch.Tensor,
    max_seq_pages: torch.Tensor,
    seq_lens: torch.Tensor,
    seq_len_delta: int,
    page_size: int,
2395
):
2396
2397
    cache_seqlens_int32.copy_(seq_lens + seq_len_delta)
    cu_seqlens_k[1:].copy_(torch.cumsum(cache_seqlens_int32, dim=0, dtype=torch.int32))
2398
2399
2400
2401
    page_indices = req_to_token[
        req_pool_indices[:, None],
        strided_indices[:max_seq_pages][None, :],
    ]
2402
    page_table[:, :max_seq_pages].copy_(page_indices // page_size)