model_rpc.py 18.8 KB
Newer Older
Lianmin Zheng's avatar
Lianmin Zheng committed
1
2
3
4
import asyncio
import logging
import multiprocessing
import time
Lianmin Zheng's avatar
Lianmin Zheng committed
5
import warnings
Lianmin Zheng's avatar
Lianmin Zheng committed
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
from concurrent.futures import ThreadPoolExecutor
from enum import Enum, auto
from typing import Dict, List, Optional, Tuple, Union

import numpy as np
import rpyc
import torch
from rpyc.utils.classic import obtain
from rpyc.utils.server import ThreadedServer
from sglang.srt.constrained.fsm_cache import FSMCache
from sglang.srt.hf_transformers_utils import get_processor, get_tokenizer
from sglang.srt.managers.io_struct import BatchTokenIDOut, TokenizedGenerateReqInput
from sglang.srt.managers.router.infer_batch import Batch, ForwardMode, Req
from sglang.srt.managers.router.model_runner import ModelRunner
from sglang.srt.managers.router.radix_cache import RadixCache
from sglang.srt.managers.router.scheduler import Scheduler
from sglang.srt.model_config import ModelConfig
from sglang.srt.server_args import PortArgs, ServerArgs
from sglang.srt.utils import (
    get_exception_traceback,
    get_int_token_logit_bias,
    is_multimodal_model,
    set_random_seed,
)

logger = logging.getLogger("model_rpc")


class ModelRpcServer(rpyc.Service):
    def exposed_init_model(
        self,
        tp_rank: int,
        server_args: ServerArgs,
        port_args: PortArgs,
    ):
        server_args, port_args = [obtain(x) for x in [server_args, port_args]]

        # Copy arguments
        self.model_mode = server_args.model_mode
        self.tp_rank = tp_rank
        self.tp_size = server_args.tp_size
        self.schedule_heuristic = server_args.schedule_heuristic

        # Init model and tokenizer
        self.model_config = ModelConfig(
            server_args.model_path, server_args.trust_remote_code
        )
        self.model_runner = ModelRunner(
            self.model_config,
            server_args.mem_fraction_static,
            tp_rank,
            server_args.tp_size,
            port_args.nccl_port,
            server_args.load_format,
            server_args.trust_remote_code,
            server_args.model_mode,
        )
        if is_multimodal_model(server_args.model_path):
            self.processor = get_processor(
                server_args.tokenizer_path,
                tokenizer_mode=server_args.tokenizer_mode,
                trust_remote_code=server_args.trust_remote_code,
            )
            self.tokenizer = self.processor.tokenizer
        else:
            self.tokenizer = get_tokenizer(
                server_args.tokenizer_path,
                tokenizer_mode=server_args.tokenizer_mode,
                trust_remote_code=server_args.trust_remote_code,
            )
        self.eos_token_id = self.tokenizer.eos_token_id
        self.max_total_num_token = self.model_runner.max_total_num_token
        self.max_num_running_seq = self.max_total_num_token // 2
        self.max_prefill_num_token = max(
            self.model_config.context_len, self.max_total_num_token // 6
        )
        self.int_token_logit_bias = torch.tensor(
            get_int_token_logit_bias(self.tokenizer, self.model_config.vocab_size)
        )
        set_random_seed(server_args.random_seed)
        logger.info(
            f"Rank {self.tp_rank}: "
            f"max_total_num_token={self.max_total_num_token}, "
            f"max_prefill_num_token={self.max_prefill_num_token}, "
            f"context_len={self.model_config.context_len}, "
            f"model_mode={self.model_mode}"
        )

        # Init cache
        self.tree_cache = RadixCache(disable="no-cache" in self.model_mode)
        self.scheduler = Scheduler(
            self.schedule_heuristic,
            self.max_num_running_seq,
            self.max_prefill_num_token,
            self.max_total_num_token,
            self.tree_cache,
        )
        self.req_to_token_pool = self.model_runner.req_to_token_pool
        self.token_to_kv_pool = self.model_runner.token_to_kv_pool

        # Init running status
        self.forward_queue: List[Req] = []
        self.running_batch: Batch = None
        self.out_pyobjs = []
        self.decode_forward_ct = 0
        self.stream_interval = 2

        # Init the FSM cache for constrained generation
        self.regex_fsm_cache = FSMCache(self.tokenizer)

    def exposed_step(self, recv_reqs):
        if self.tp_size != 1:
            recv_reqs = obtain(recv_reqs)

        try:
            # Recv requests
            for recv_req in recv_reqs:
                if isinstance(recv_req, TokenizedGenerateReqInput):
                    self.handle_generate_request(recv_req)
                else:
                    raise ValueError(f"Invalid request: {recv_req}")

            # Forward
            self.forward_step()
        except Exception:
            logger.error("Exception in ModelRpcClient:\n" + get_exception_traceback())

        # Return results
        ret = self.out_pyobjs
        self.out_pyobjs = []
        return ret

    @torch.inference_mode()
    def forward_step(self):
        new_batch = self.get_new_fill_batch()

        if new_batch is not None:
            # Run new fill batch
            self.forward_fill_batch(new_batch)

            if not new_batch.is_empty():
                if self.running_batch is None:
                    self.running_batch = new_batch
                else:
                    self.running_batch.merge(new_batch)
        else:
            # Run decode batch
            if self.running_batch is not None:
                # Run a few decode batches continuously for reducing overhead
                for _ in range(10):
                    self.forward_decode_batch(self.running_batch)

                    if self.running_batch.is_empty():
                        self.running_batch = None
                        break
161
162
163
164
165
166
167
            else:
                # check the available size
                available_size = (
                    self.token_to_kv_pool.available_size()
                    + self.tree_cache.evictable_size()
                )
                if available_size != self.max_total_num_token:
Ying Sheng's avatar
Ying Sheng committed
168
                    warnings.warn(
169
170
171
172
                        "Warning: "
                        f"available_size={available_size}, max_total_num_token={self.max_total_num_token}\n"
                        "KV cache pool leak detected!"
                    )
Lianmin Zheng's avatar
Lianmin Zheng committed
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422

        if self.running_batch is not None and self.tp_rank == 0:
            if self.decode_forward_ct >= 20:
                self.decode_forward_ct = 0
                num_used = self.max_total_num_token - (
                    self.token_to_kv_pool.available_size()
                    + self.tree_cache.evictable_size()
                )
                logger.info(
                    f"#running-req: {len(self.running_batch.reqs)}, "
                    f"#token: {num_used}, "
                    f"token usage: {num_used / self.max_total_num_token:.2f}, "
                    f"#queue-req: {len(self.forward_queue)}"
                )

    def handle_generate_request(
        self,
        recv_req: TokenizedGenerateReqInput,
    ):
        req = Req(recv_req.rid)
        req.input_ids = recv_req.input_ids
        req.pixel_values = recv_req.pixel_values
        if req.pixel_values is not None:
            pad_value = [
                (recv_req.image_hash) % self.model_config.vocab_size,
                (recv_req.image_hash >> 16) % self.model_config.vocab_size,
                (recv_req.image_hash >> 32) % self.model_config.vocab_size,
                (recv_req.image_hash >> 64) % self.model_config.vocab_size,
            ]
            req.input_ids, req.image_offset = self.model_runner.model.pad_input_ids(
                req.input_ids, pad_value
            )
        req.sampling_params = recv_req.sampling_params
        req.return_normalized_logprob = recv_req.return_normalized_logprob
        req.normalized_logprob_start_len = recv_req.normalized_logprob_start_len
        req.stream = recv_req.stream
        req.tokenizer = self.tokenizer

        # init the regex fsm
        if req.sampling_params.regex is not None:
            req.regex_fsm_state = 0
            req.regex_fsm = self.regex_fsm_cache.get_fsm(req.sampling_params.regex)

        # Truncate long prompts
        req.input_ids = req.input_ids[: self.model_config.context_len - 1]
        req.sampling_params.max_new_tokens = min(
            req.sampling_params.max_new_tokens,
            self.model_config.context_len - 1 - len(req.input_ids),
        )
        self.forward_queue.append(req)

    def get_new_fill_batch(self):
        if (
            self.running_batch is not None
            and len(self.running_batch.reqs) > self.max_num_running_seq
        ):
            return None

        for req in self.forward_queue:
            prefix_indices, last_node = self.tree_cache.match_prefix(req.input_ids)
            if req.return_normalized_logprob:
                prefix_indices = prefix_indices[: req.normalized_logprob_start_len]
            req.adjust_input_len = len(req.input_ids) - len(prefix_indices)
            req.prefix_indices = prefix_indices
            req.last_node = last_node

        # Get priority queue
        self.forward_queue = self.scheduler.get_priority_queue(self.forward_queue)

        # Add requests if there is available space
        can_run_list = []
        new_batch_total_tokens = 0
        new_batch_input_tokens = 0
        new_batch_prefix_tokens = 0

        available_size = (
            self.token_to_kv_pool.available_size() + self.tree_cache.evictable_size()
        )
        new_ratio = self.scheduler.new_token_estimation_ratio()
        if self.running_batch:
            available_size -= sum(
                [
                    (r.max_new_tokens() - len(r.output_ids)) * new_ratio
                    for r in self.running_batch.reqs
                ]
            )

        for req in self.forward_queue:
            if req.return_normalized_logprob:
                # Need at least two tokens to compute normalized logprob
                if req.adjust_input_len < 2:
                    delta = 2 - req.adjust_input_len
                    req.adjust_input_len += delta
                    req.prefix_indices = req.prefix_indices[:-delta]
                    if req.image_offset is not None:
                        req.image_offset += delta
            if req.adjust_input_len == 0 and req.max_new_tokens() > 0:
                # Need at least one token to compute logits
                req.adjust_input_len = 1
                req.prefix_indices = req.prefix_indices[:-1]
                if req.image_offset is not None:
                    req.image_offset += 1

            if (
                req.adjust_input_len + req.max_new_tokens() + new_batch_total_tokens
                < available_size
                and req.adjust_input_len + new_batch_input_tokens
                < self.max_prefill_num_token
            ):
                delta = self.tree_cache.inc_ref_counter(req.last_node)
                available_size += delta

                if not (
                    req.adjust_input_len + req.max_new_tokens() + new_batch_total_tokens
                    < available_size
                ):
                    delta = self.tree_cache.dec_ref_counter(req.last_node)
                    available_size += delta
                else:
                    self.token_to_kv_pool.add_refs(req.prefix_indices)
                    can_run_list.append(req)
                    new_batch_total_tokens += (
                        req.adjust_input_len + req.max_new_tokens()
                    )
                    new_batch_input_tokens += req.adjust_input_len

        if len(can_run_list) == 0:
            return None

        if self.tp_rank == 0:
            logger.info(
                f"new fill batch. #seq: {len(can_run_list)}. "
                f"#cached_token: {sum(len(x.prefix_indices) for x in can_run_list)}. "
                f"#new_token: {new_batch_input_tokens}. "
                f"#remaining_req: {len(self.forward_queue) - len(can_run_list)}. "
                f"#running_req: {0 if self.running_batch is None else len(self.running_batch.reqs)}"
            )

        new_batch = Batch(
            can_run_list,
            self.req_to_token_pool,
            self.token_to_kv_pool,
            self.tree_cache,
        )
        self.forward_queue = [x for x in self.forward_queue if x not in can_run_list]
        return new_batch

    def forward_fill_batch(self, batch: Batch):
        # Build batch tensors
        batch.init_extend_batch(self.model_config.vocab_size, self.int_token_logit_bias)
        if batch.extend_num_tokens != 0:
            # Forward
            logits, normalized_logprobs = self.model_runner.forward(
                batch, ForwardMode.EXTEND, batch.return_normalized_logprob
            )
            # print("extend logits", logits)
            if normalized_logprobs is not None:
                normalized_logprobs = normalized_logprobs.cpu().tolist()

            next_token_ids, next_token_probs = batch.sample(logits)
            next_token_ids = next_token_ids.cpu().tolist()
        else:
            next_token_ids = [self.tokenizer.eos_token_id] * len(batch.reqs)
            normalized_logprobs = None

        # Check finish condition
        reqs = batch.reqs
        for i in range(len(reqs)):
            reqs[i].output_ids = [next_token_ids[i]]
            reqs[i].check_finished()

            if normalized_logprobs is not None:
                reqs[i].normalized_logprob = normalized_logprobs[i]

        self.handle_finished_requests(batch)

    def forward_decode_batch(self, batch: Batch):
        # Update batch tensors
        self.decode_forward_ct += 1
        batch.update_for_decode()

        # Forward
        logits = self.model_runner.forward(batch, ForwardMode.DECODE)
        next_token_ids, next_token_probs = batch.sample(logits)
        next_token_ids = next_token_ids.cpu().tolist()

        # Check finish condition
        reqs = batch.reqs
        for i in range(len(reqs)):
            reqs[i].output_ids.append(next_token_ids[i])
            reqs[i].check_finished()

        self.handle_finished_requests(batch)

    def handle_finished_requests(self, batch: Batch):
        output_rids = []
        output_tokens = []
        output_hit_stop_str = []
        output_skip_special_tokens = []
        output_meta_info = []
        output_finished = []
        finished_indices = []
        unfinished_indices = []
        for i, req in enumerate(batch.reqs):
            if req.finished:
                finished_indices.append(i)
            else:
                unfinished_indices.append(i)

            if req.finished or (
                req.stream and self.decode_forward_ct % self.stream_interval == 0
            ):
                output_rids.append(req.rid)
                output_tokens.append(req.output_ids)
                output_hit_stop_str.append(req.hit_stop_str)
                output_skip_special_tokens.append(
                    req.sampling_params.skip_special_tokens
                )
                meta_info = {
                    "prompt_tokens": len(req.input_ids),
                    "completion_tokens": len(req.output_ids),
                }
                if req.return_normalized_logprob:
                    meta_info["normalized_logprob"] = req.normalized_logprob
                output_meta_info.append(meta_info)
                output_finished.append(req.finished)

        # Send to detokenizer
        if output_rids:
            self.out_pyobjs.append(
                BatchTokenIDOut(
                    output_rids,
                    output_tokens,
                    output_hit_stop_str,
                    output_skip_special_tokens,
                    output_meta_info,
                    output_finished,
                )
            )

        # Remove finished reqs
        if finished_indices:
            # Update radix cache
            req_pool_indices_cpu = batch.req_pool_indices.cpu().tolist()
            for i in finished_indices:
                req = batch.reqs[i]
                req_pool_idx = req_pool_indices_cpu[i]
                token_ids = tuple(req.input_ids + req.output_ids)
                seq_len = len(token_ids) - 1
                indices = self.req_to_token_pool.req_to_token[req_pool_idx, :seq_len]
423
424
425
                prefix_len = self.tree_cache.insert(
                    token_ids[:seq_len], indices.clone()
                )
Lianmin Zheng's avatar
Lianmin Zheng committed
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511

                self.token_to_kv_pool.free(indices[:prefix_len])
                self.req_to_token_pool.free(req_pool_idx)
                self.tree_cache.dec_ref_counter(req.last_node)

            # Update batch tensors
            if unfinished_indices:
                batch.filter_batch(unfinished_indices)
            else:
                batch.reqs = []


class ModelRpcClient:
    def __init__(self, server_args: ServerArgs, port_args: PortArgs):
        tp_size = server_args.tp_size

        if tp_size == 1:
            # Init model
            self.model_server = ModelRpcServer()
            self.model_server.exposed_init_model(0, server_args, port_args)

            # Wrap functions
            def async_wrap(f):
                async def _func(*args, **kwargs):
                    return f(*args, **kwargs)

                return _func

            self.step = async_wrap(self.model_server.exposed_step)
        else:
            with ThreadPoolExecutor(tp_size) as executor:
                # Launch model processes
                rets = executor.map(start_model_process, port_args.model_rpc_ports)
                self.model_servers = [x[0] for x in rets]
                self.procs = [x[1] for x in rets]

                # Init model
                def init_model(i):
                    return self.model_servers[i].init_model(i, server_args, port_args)

                rets = [obtain(x) for x in executor.map(init_model, range(tp_size))]

            # Wrap functions
            def async_wrap(func_name):
                fs = [rpyc.async_(getattr(m, func_name)) for m in self.model_servers]

                async def _func(*args, **kwargs):
                    tasks = [f(*args, **kwargs) for f in fs]
                    await asyncio.gather(*[asyncio.to_thread(t.wait) for t in tasks])
                    return obtain(tasks[0].value)

                return _func

            self.step = async_wrap("step")


def start_model_process(port):
    def _init_service(port):
        t = ThreadedServer(
            ModelRpcServer(),
            port=port,
            protocol_config={"allow_pickle": True, "sync_request_timeout": 600},
        )
        t.start()

    proc = multiprocessing.Process(target=_init_service, args=(port,))
    proc.start()
    time.sleep(1)

    repeat_count = 0
    while repeat_count < 20:
        try:
            con = rpyc.connect(
                "localhost",
                port,
                config={"allow_pickle": True, "sync_request_timeout": 600},
            )
            break
        except ConnectionRefusedError:
            time.sleep(1)
        repeat_count += 1
    if repeat_count == 20:
        raise RuntimeError("init rpc env error!")

    assert proc.is_alive()
    return con.root, proc