"test/srt/vscode:/vscode.git/clone" did not exist on "877e35d7754cd1fa60b3f1226929dbc84146ea70"
modelopt_quant.py 37 KB
Newer Older
1
# Adapted from https://github.com/vllm-project/vllm/blob/main/vllm/model_executor/layers/quantization/modelopt.py
2
from __future__ import annotations
3
4

import logging
5
from typing import TYPE_CHECKING, Any, Callable, Dict, List, Optional
6
7
8
9

import torch
from torch.nn.parameter import Parameter

10
from sglang.srt.layers.moe.cutlass_moe_params import CutlassMoEParams, CutlassMoEType
11
from sglang.srt.layers.parameter import ModelWeightParameter, PerTensorScaleParameter
12
from sglang.srt.layers.quantization.base_config import (
13
14
    FusedMoEMethodBase,
    LinearMethodBase,
15
16
17
    QuantizationConfig,
    QuantizeMethodBase,
)
18
19
20
from sglang.srt.layers.quantization.fp8_utils import (
    apply_fp8_linear,
    cutlass_fp8_supported,
21
    is_sm100_supported,
22
23
)
from sglang.srt.layers.quantization.kv_cache import BaseKVCacheMethod
24
from sglang.srt.layers.quantization.unquant import UnquantizedLinearMethod
25
26
from sglang.srt.layers.quantization.utils import (
    convert_to_channelwise,
27
    is_layer_skipped,
28
    per_tensor_dequantize,
29
30
    requantize_with_max_scale,
)
31
from sglang.srt.layers.radix_attention import RadixAttention
32
from sglang.srt.utils import is_cuda, next_power_of_2
33

34
35
36
if TYPE_CHECKING:
    from sglang.srt.layers.moe.topk import TopKOutput

37
if is_cuda():
38
    from sgl_kernel import cutlass_scaled_fp4_mm, scaled_fp4_quant
39

40
41
42
43
44
45
try:
    from flashinfer import fp4_quantize as fp4_quantize
    from flashinfer.fused_moe import cutlass_fused_moe as flashinfer_cutlass_fused_moe
except ImportError:
    flashinfer_cutlass_fused_moe = None

46
47
48
49
50
51
52
53
54
55
# Initialize logger for the module
logger = logging.getLogger(__name__)

# Supported activation schemes for the current configuration
ACTIVATION_SCHEMES = ["static"]


class ModelOptFp8Config(QuantizationConfig):
    """Configuration for ModelOpt FP8 quantization, including serialization and compatibility checks."""

56
57
58
59
60
61
    def __init__(
        self,
        is_checkpoint_fp8_serialized: bool = False,
        kv_cache_quant_method: Optional[str] = None,
        exclude_modules: Optional[List[str]] = None,
    ) -> None:
62
63
64
65
66
        """
        Args:
            is_checkpoint_fp8_serialized (bool): Indicates if the checkpoint uses serialized FP8 format.
        """
        self.is_checkpoint_fp8_serialized = is_checkpoint_fp8_serialized
67
68
        self.kv_cache_quant_method = kv_cache_quant_method
        self.exclude_modules = exclude_modules
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
        if is_checkpoint_fp8_serialized:
            logger.warning(
                "Detected ModelOpt FP8 checkpoint. The format is experimental and subject to change."
            )

    @classmethod
    def get_name(cls) -> str:
        return "modelopt"

    @classmethod
    def get_supported_act_dtypes(cls) -> List[torch.dtype]:
        return [torch.bfloat16, torch.half]

    @classmethod
    def get_min_capability(cls) -> int:
84
        return 89  # Minimum hardware capability (e.g., Hopper GPUs).
85
86
87
88
89
90

    @classmethod
    def get_config_filenames(cls) -> List[str]:
        return ["hf_quant_config.json"]

    @classmethod
91
    def from_config(cls, config: Dict[str, Any]) -> ModelOptFp8Config:
92
        quant_method = cls.get_from_keys(config, ["quantization"]).get("quant_algo")
93
94
95
96
97
98
        kv_cache_quant_method = cls.get_from_keys(config, ["quantization"]).get(
            "kv_cache_quant_algo"
        )
        exclude_modules = cls.get_from_keys(config, ["quantization"]).get(
            "exclude_modules"
        )
99
100
101
102
103
104
105

        if "FP8" not in quant_method:
            raise ValueError(
                "ModelOpt only supports static FP8 quantization in SGLang. "
                "Check the `hf_quant_config.json` file for your model's configuration."
            )

106
107
108
109
110
        return cls(
            is_checkpoint_fp8_serialized=True,
            kv_cache_quant_method=kv_cache_quant_method,
            exclude_modules=exclude_modules,
        )
111
112
113

    def get_quant_method(
        self, layer: torch.nn.Module, prefix: str
114
115
116
117
118
    ) -> Optional[QuantizeMethodBase]:

        from sglang.srt.layers.linear import LinearBase
        from sglang.srt.layers.moe.fused_moe_triton import FusedMoE

119
        if self.exclude_modules and any(
120
121
122
123
124
125
            module in prefix
            or (
                prefix.startswith("language_model.")
                and module in prefix.removeprefix("language_model.")
            )
            for module in self.exclude_modules
126
127
        ):
            return None
128
129
130

        if isinstance(layer, LinearBase):
            return ModelOptFp8LinearMethod(self)
131
        if self.kv_cache_quant_method and isinstance(layer, RadixAttention):
132
133
            return ModelOptFp8KVCacheMethod(self)

134
135
136
        if isinstance(layer, FusedMoE):
            return ModelOptFp8MoEMethod(self)

137
        return None
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207

    def get_scaled_act_names(self) -> List[str]:
        return []


class ModelOptFp8LinearMethod(LinearMethodBase):
    """Linear method for ModelOpt static FP8 quantization.

    Supports loading FP8 checkpoints with static weight and activation scales.
    Future support may include dynamic scales.

    **Limitations**:
    1. Only supports per-tensor quantization due to `torch._scaled_mm` limitations.
    2. Only supports the `float8_e4m3fn` data type.

    Args:
        quant_config (ModelOptFp8Config): The ModelOpt quantization configuration.
    """

    def __init__(self, quant_config: ModelOptFp8Config):
        super().__init__()
        self.quant_config = quant_config
        self.cutlass_fp8_supported = cutlass_fp8_supported()

    def create_weights(
        self,
        layer: torch.nn.Module,
        input_size_per_partition: int,
        output_partition_sizes: List[int],
        params_dtype: torch.dtype,
        **extra_weight_attrs,
    ) -> None:
        """Creates and registers weights, weight scales, and input scales for FP8 quantization."""
        output_size_per_partition = sum(output_partition_sizes)
        weight_loader = extra_weight_attrs.get("weight_loader")
        weight_dtype = (
            torch.float8_e4m3fn
            if self.quant_config.is_checkpoint_fp8_serialized
            else params_dtype
        )

        # Set layer attributes
        layer.logical_widths = output_partition_sizes
        layer.input_size_per_partition = input_size_per_partition
        layer.output_size_per_partition = output_size_per_partition

        # Register weight
        layer.register_parameter(
            "weight",
            ModelWeightParameter(
                data=torch.empty(
                    output_size_per_partition,
                    input_size_per_partition,
                    dtype=weight_dtype,
                ),
                input_dim=1,
                output_dim=0,
                weight_loader=weight_loader,
            ),
        )

        if self.quant_config.is_checkpoint_fp8_serialized:
            # Register weight and input scales
            for scale_name in ["weight_scale", "input_scale"]:
                layer.register_parameter(
                    scale_name,
                    PerTensorScaleParameter(
                        data=torch.full(
                            (len(output_partition_sizes),),
                            torch.finfo(torch.float32).min,
208
                            dtype=torch.float32,
209
210
211
212
213
214
215
216
217
218
219
                        ),
                        weight_loader=weight_loader,
                    ),
                )

    def process_weights_after_loading(self, layer: torch.nn.Module) -> None:
        """Requantizes weights after loading using the maximum scale."""
        max_w_scale, quantized_weight = requantize_with_max_scale(
            layer.weight, layer.weight_scale, layer.logical_widths
        )
        layer.weight = Parameter(quantized_weight.t(), requires_grad=False)
HandH1998's avatar
HandH1998 committed
220
221
222
        # cutlass sgl-kernel only supports per-channel scale
        if self.cutlass_fp8_supported:
            max_w_scale = convert_to_channelwise(max_w_scale, layer.logical_widths)
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
        layer.weight_scale = Parameter(max_w_scale, requires_grad=False)
        layer.input_scale = Parameter(layer.input_scale.max(), requires_grad=False)

    def apply(
        self,
        layer: torch.nn.Module,
        x: torch.Tensor,
        bias: Optional[torch.Tensor] = None,
    ) -> torch.Tensor:
        """Applies FP8 linear transformation."""
        return apply_fp8_linear(
            input=x,
            weight=layer.weight,
            weight_scale=layer.weight_scale,
            input_scale=layer.input_scale,
            bias=bias,
            cutlass_fp8_supported=self.cutlass_fp8_supported,
        )
241
242
243
244
245
246
247
248
249


class ModelOptFp8KVCacheMethod(BaseKVCacheMethod):
    """
    Handles loading FP8 kv-cache scaling factors from modelopt quantized checkpoints.
    """

    def __init__(self, quant_config: ModelOptFp8Config):
        super().__init__(quant_config)
250
251


252
class ModelOptFp8MoEMethod(FusedMoEMethodBase):
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
    """MoE method for ModelOpt FP8.
    Supports loading FP8 checkpoints with static weight scale and activation scale.

    Args:
        quant_config: The ModelOpt quantization config.
    """

    def __init__(self, quant_config: ModelOptFp8Config):
        self.quant_config = quant_config
        self.cutlass_fp8_supported = cutlass_fp8_supported()

    def create_weights(
        self,
        layer: torch.nn.Module,
        num_experts: int,
        hidden_size: int,
        intermediate_size: int,
        params_dtype: torch.dtype,
        **extra_weight_attrs,
    ):
        from sglang.srt.layers.moe.fused_moe_triton import FusedMoeWeightScaleSupported

        # Use FP8 dtype if checkpoint is serialized, otherwise use the default dtype
        weight_dtype = (
            torch.float8_e4m3fn
            if self.quant_config.is_checkpoint_fp8_serialized
            else params_dtype
        )
        weight_loader = extra_weight_attrs.get("weight_loader")

        w13_weight = ModelWeightParameter(
            data=torch.empty(
                num_experts, 2 * intermediate_size, hidden_size, dtype=weight_dtype
            ),
            input_dim=2,
            output_dim=1,
            weight_loader=weight_loader,
        )
        layer.register_parameter("w13_weight", w13_weight)

        w2_weight = ModelWeightParameter(
            data=torch.empty(
                num_experts, hidden_size, intermediate_size, dtype=weight_dtype
            ),
            input_dim=2,
            output_dim=1,
            weight_loader=weight_loader,
        )
        layer.register_parameter("w2_weight", w2_weight)

        if self.quant_config.is_checkpoint_fp8_serialized:
            # WEIGHT SCALES - Per-tensor scaling for ModelOpts
            # Allocate 2 scales for w1 and w3 respectively.
            # They will be combined to a single scale after weight loading.
            w13_weight_scale = PerTensorScaleParameter(
                data=torch.full(
                    (num_experts, 2),
                    torch.finfo(torch.float32).min,
                    dtype=torch.float32,
                ),
                weight_loader=weight_loader,
            )
            w2_weight_scale = PerTensorScaleParameter(
                data=torch.full(
                    (num_experts,), torch.finfo(torch.float32).min, dtype=torch.float32
                ),
                weight_loader=weight_loader,
            )
            layer.register_parameter("w13_weight_scale", w13_weight_scale)
            layer.register_parameter("w2_weight_scale", w2_weight_scale)

            # Set weight loader attributes for scales
            extra_weight_attrs.update(
                {"quant_method": FusedMoeWeightScaleSupported.TENSOR.value}
            )

            # INPUT SCALES - Per-tensor scaling for ModelOpt
            w13_input_scale = PerTensorScaleParameter(
                data=torch.full((num_experts,), 1.0, dtype=torch.float32),
                weight_loader=weight_loader,
            )
            w2_input_scale = PerTensorScaleParameter(
                data=torch.full((num_experts,), 1.0, dtype=torch.float32),
                weight_loader=weight_loader,
            )
            layer.register_parameter("w13_input_scale", w13_input_scale)
            layer.register_parameter("w2_input_scale", w2_input_scale)

    def process_weights_after_loading(self, layer: torch.nn.Module) -> None:
        """Process FP8 MoE weights after loading from serialized checkpoint.

        Only supports pre-quantized checkpoints with FP8 weights and scales.
        """

        layer.w13_weight = Parameter(layer.w13_weight.data, requires_grad=False)
        layer.w2_weight = Parameter(layer.w2_weight.data, requires_grad=False)

        # Handle scale parameters
        if hasattr(layer, "w13_weight_scale") and layer.w13_weight_scale is not None:
            # Fp8 moe kernel needs single weight scale for w13 per expert.
            # We take the max of the w1 and w3 scales then dequant and requant each expert.
            if layer.w13_weight_scale.dim() == 2:  # Shape: (num_experts, 2)
                from sglang.srt.layers.quantization.fp8_kernel import scaled_fp8_quant

                # Get the maximum scale across w1 and w3 for each expert
                max_w13_scales = layer.w13_weight_scale.max(dim=1).values

                # Requantize each expert's weights using the combined scale
                # w13_weight has shape (num_experts, 2 * intermediate_size, hidden_size)
                # where the first intermediate_size rows are w1, the next are w3
                intermediate_size = layer.w13_weight.shape[1] // 2
                for expert_id in range(layer.w13_weight.shape[0]):
                    start = 0
                    for shard_id in range(2):  # w1 and w3
                        # Dequantize using the original scale for this shard
                        dq_weight = per_tensor_dequantize(
                            layer.w13_weight[expert_id][
                                start : start + intermediate_size, :
                            ],
                            layer.w13_weight_scale[expert_id][shard_id],
                        )
                        # Requantize using the combined max scale
                        (
                            layer.w13_weight[expert_id][
                                start : start + intermediate_size, :
                            ],
                            _,
                        ) = scaled_fp8_quant(dq_weight, max_w13_scales[expert_id])

                        start += intermediate_size

                # Update the scale parameter to be per-expert instead of per-shard
                layer.w13_weight_scale = Parameter(max_w13_scales, requires_grad=False)
            else:
                layer.w13_weight_scale = Parameter(
                    layer.w13_weight_scale.data, requires_grad=False
                )

        if hasattr(layer, "w2_weight_scale") and layer.w2_weight_scale is not None:
            layer.w2_weight_scale = Parameter(
                layer.w2_weight_scale.data, requires_grad=False
            )
        if hasattr(layer, "w13_input_scale") and layer.w13_input_scale is not None:
            layer.w13_input_scale = Parameter(
                layer.w13_input_scale.max(), requires_grad=False
            )
        if hasattr(layer, "w2_input_scale") and layer.w2_input_scale is not None:
            layer.w2_input_scale = Parameter(
                layer.w2_input_scale.max(), requires_grad=False
            )

    def apply(
        self,
        layer: torch.nn.Module,
        x: torch.Tensor,
408
409
        topk_output: TopKOutput,
        *,
410
411
412
413
414
415
416
417
418
419
420
421
        activation: str = "silu",
        apply_router_weight_on_input: bool = False,
        inplace: bool = True,
        no_combine: bool = False,
        routed_scaling_factor: Optional[float] = None,
    ) -> torch.Tensor:
        from sglang.srt.layers.moe.fused_moe_triton.fused_moe import fused_experts

        return fused_experts(
            x,
            layer.w13_weight,
            layer.w2_weight,
422
            topk_output=topk_output,
423
424
425
426
427
428
429
430
431
432
433
434
            inplace=inplace,
            activation=activation,
            use_fp8_w8a8=True,
            per_channel_quant=False,  # ModelOpt uses per-tensor quantization
            w1_scale=layer.w13_weight_scale,
            w2_scale=layer.w2_weight_scale,
            a1_scale=layer.w13_input_scale,
            a2_scale=layer.w2_input_scale,
            no_combine=no_combine,
        )


435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
class ModelOptFp4Config(QuantizationConfig):
    """Config class for FP4."""

    def __init__(
        self,
        is_checkpoint_nvfp4_serialized: bool = False,
        kv_cache_quant_algo: str = None,
        group_size: int = None,
        exclude_modules: List[str] = None,
    ) -> None:
        self.is_checkpoint_nvfp4_serialized = is_checkpoint_nvfp4_serialized
        if is_checkpoint_nvfp4_serialized:
            logger.warning(
                "Detected nvfp4 checkpoint. Please note that the "
                "format is experimental and subject to change."
            )
        self.group_size = group_size
        self.kv_cache_quant_algo = kv_cache_quant_algo
        self.exclude_modules = exclude_modules

    @classmethod
    def get_name(cls) -> str:
        return "modelopt_fp4"

    @classmethod
    def get_supported_act_dtypes(cls) -> List[torch.dtype]:
        return [torch.bfloat16, torch.half, torch.float8_e4m3fn]

    @classmethod
    def get_min_capability(cls) -> int:
        return 100

    @classmethod
    def get_config_filenames(cls) -> List[str]:
        return ["hf_quant_config.json"]

    @classmethod
472
    def from_config(cls, config: Dict[str, Any]) -> ModelOptFp4Config:
473
474
475
476
477
478
479
480
481
482
483
        quant_config = cls.get_from_keys(config, ["quantization"])
        quant_method = quant_config["quant_algo"]
        if not quant_method in ["FP8", "NVFP4"]:
            raise ValueError(
                f"ModelOpt currently only supports: FP8, NVFP4"
                " quantizations in sglang. Please check the "
                "`hf_quant_config.json` file for your model's "
                "quant configuration."
            )
        is_checkpoint_nvfp4_serialized = "NVFP4" in quant_method
        kv_cache_quant_algo = quant_config["kv_cache_quant_algo"]
484
485
        if not kv_cache_quant_algo:
            kv_cache_quant_algo = "auto"
486
487
488
        group_size = quant_config["group_size"]
        exclude_modules = quant_config["exclude_modules"]
        if not (group_size and kv_cache_quant_algo and exclude_modules):
489
490
491
492
493
            logger.warning(
                f"group_size: {group_size},"
                f"kv_cache_quant_algo: {kv_cache_quant_algo},"
                f"exclude_modules: {exclude_modules}"
            )
494
495
496
497
498
499
500
501
502
503
504
505
            raise ValueError(
                "NVFP4 quantization requires group size and "
                "kv_cache_quant_algo specified in "
                "hf_quant_config.json"
            )
        return cls(
            is_checkpoint_nvfp4_serialized,
            kv_cache_quant_algo,
            group_size,
            exclude_modules,
        )

506
507
508
509
510
511
512
513
514
    def is_layer_excluded(self, prefix: str, exclude_modules: list):
        import regex as re

        for pattern in exclude_modules:
            regex_str = pattern.replace(".", r"\.").replace("*", r".*")
            if re.fullmatch(regex_str, prefix):
                return True
        return False

515
516
    def get_quant_method(
        self, layer: torch.nn.Module, prefix: str
517
518
    ) -> Optional[QuantizeMethodBase]:
        from sglang.srt.layers.linear import LinearBase
519
        from sglang.srt.layers.moe.fused_moe_triton import FusedMoE
520
521

        if isinstance(layer, LinearBase):
522
523
524
525
            if is_layer_skipped(prefix, self.exclude_modules) or self.is_layer_excluded(
                prefix, self.exclude_modules
            ):
                return UnquantizedLinearMethod()
526
527
528
            return ModelOptFp4LinearMethod(self)
        if self.kv_cache_quant_algo and isinstance(layer, RadixAttention):
            return ModelOptFp8KVCacheMethod(self)
529
530
        elif isinstance(layer, FusedMoE):
            return ModelOptNvFp4FusedMoEMethod(self)
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
        return None

    def get_scaled_act_names(self) -> List[str]:
        return []


class ModelOptFp4LinearMethod(LinearMethodBase):
    """Linear method for NVFP4.
    Supports loading NVFP4 checkpoints with the following structure:

    |Tensor Name           | datatype      |  shape      |
    |----------------------------------------------------|
    |input_scale           | torch.float32 | scalar      |
    |weight                | NVFP4(SE2M1)  | [1, X, y/2] |
    |weight_scale          | FP8-E4M3      | [X, Y]      |
    |weight_scale_2        | torch.float32 | scalar      |

    The weights are quantized per block of 16 elements.
    Args: quant_config: The ModelOpt quantization config.
    """

    def __init__(self, quant_config: ModelOptFp4Config):
        self.quant_config = quant_config

    def create_weights(
        self,
        layer: torch.nn.Module,
        input_size_per_partition: int,
        output_partition_sizes: List[int],
        input_size: int,
        output_size: int,
        params_dtype: torch.dtype,
        **extra_weight_attrs,
    ):
        del input_size, output_size
        if not self.quant_config.is_checkpoint_nvfp4_serialized:
            raise ValueError(
                "NVFP4 quantization was selected, "
                " dynamic quantization is not supported."
            )

        output_size_per_partition = sum(output_partition_sizes)
        weight_loader = extra_weight_attrs.get("weight_loader")

        layer.logical_widths = output_partition_sizes

        layer.input_size_per_partition = input_size_per_partition
        layer.output_size_per_partition = output_size_per_partition
        if input_size_per_partition % 16 != 0:
            raise ValueError(
                "Unsupported model when in features size is " "not multiple of 16"
            )

        weight_dtype = (
            torch.float8_e4m3fn
            if self.quant_config.is_checkpoint_nvfp4_serialized
            else params_dtype
        )

        weight = ModelWeightParameter(
            data=torch.empty(
                # 2 fp4 data is packed in one uint8 in the input dimension
                output_size_per_partition,
                input_size_per_partition // 2,
                dtype=torch.uint8,
            ),
            input_dim=1,
            output_dim=0,
            weight_loader=weight_loader,
        )
        layer.register_parameter("weight", weight)

        input_scale = PerTensorScaleParameter(
            data=torch.empty(len(output_partition_sizes), dtype=torch.float32),
            weight_loader=weight_loader,
        )

        layer.register_parameter("input_scale", input_scale)

        weight_scale_2 = PerTensorScaleParameter(
            data=torch.empty(len(output_partition_sizes), dtype=torch.float32),
            weight_loader=weight_loader,
        )
        layer.register_parameter("weight_scale_2", weight_scale_2)

        weight_scale = ModelWeightParameter(
            data=torch.empty(
                output_size_per_partition,
                input_size_per_partition // self.quant_config.group_size,
                dtype=weight_dtype,
            ),
            input_dim=1,
            output_dim=0,
            weight_loader=weight_loader,
        )

        layer.register_parameter("weight_scale", weight_scale)

    def process_weights_after_loading(self, layer: torch.nn.Module) -> None:
        input_scale_2 = layer.input_scale.max().to(torch.float32)
        weight_scale_2 = layer.weight_scale_2.max().to(torch.float32)
        layer.input_scale = Parameter(input_scale_2, requires_grad=False)
        layer.weight_scale_2 = Parameter(weight_scale_2, requires_grad=False)
        layer.alpha = Parameter(
            layer.input_scale * layer.weight_scale_2, requires_grad=False
        )
637
638
639
        layer.input_scale_inv = Parameter(
            (1 / input_scale_2).to(torch.float32), requires_grad=False
        )
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677

        # Pad and blockwise interleave weight_scale
        scales = layer.weight_scale
        scale_ndim = scales.ndim
        if scale_ndim == 2:
            scales = scales.unsqueeze(0)
        assert scales.ndim == 3
        B, M, K = scales.shape
        round_up_multiple = lambda x, m: (x + m - 1) // m * m
        M_padded = round_up_multiple(M, 128)
        K_padded = round_up_multiple(K, 4)
        padded_scales = torch.zeros((B, M_padded, K_padded), dtype=scales.dtype)
        padded_scales[:B, :M, :K] = scales
        batches, rows, cols = padded_scales.shape
        assert rows % 128 == 0
        assert cols % 4 == 0
        padded_scales = padded_scales.reshape(batches, rows // 128, 4, 32, cols // 4, 4)
        padded_scales = padded_scales.permute((0, 1, 4, 3, 2, 5))
        padded_scales = padded_scales.contiguous().cuda()
        padded_scales = (
            padded_scales.reshape(M, K)
            if scale_ndim == 2
            else padded_scales.reshape(B, M, K)
        )
        layer.weight_scale_interleaved = Parameter(padded_scales, requires_grad=False)

    def apply(
        self,
        layer: torch.nn.Module,
        x: torch.Tensor,
        bias: Optional[torch.Tensor] = None,
    ) -> torch.Tensor:
        output_dtype = x.dtype
        x_m, _ = x.shape
        w_n, _ = layer.weight.shape
        output_shape = [x_m, w_n]

        # Quantize BF16 or FP16 to (FP4 and interleaved block scale)
678
        x_fp4, x_scale_interleaved = scaled_fp4_quant(x, layer.input_scale_inv)
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696

        assert x_fp4.dtype == torch.uint8
        assert x_scale_interleaved.dtype == torch.float8_e4m3fn
        assert layer.weight.dtype == torch.uint8
        assert layer.weight_scale_interleaved.dtype == torch.float8_e4m3fn
        assert layer.alpha.dtype == torch.float32

        out = cutlass_scaled_fp4_mm(
            x_fp4,
            layer.weight,
            x_scale_interleaved,
            layer.weight_scale_interleaved,
            layer.alpha,
            output_dtype,
        )
        if bias is not None:
            out = out + bias
        return out.view(*output_shape)
697
698


699
class ModelOptNvFp4FusedMoEMethod(FusedMoEMethodBase):
700
701
702
703
704
705
706
707
708
709
710
711
712
713
    """
       MoE Method for FP4 Quantization with Blockscales and PerTensorScales
    Args:
        quant_config: NVFP4 Quant Config
    """

    def __init__(self, quant_config: ModelOptFp4Config):
        self.quant_config = quant_config
        if not is_sm100_supported():
            raise ValueError(
                "Current platform does not support NVFP4"
                " quantization. Please use Blackwell and"
                " above."
            )
714
        self.enable_flashinfer_cutlass_moe = False
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867

    def create_weights(
        self,
        layer: torch.nn.Module,
        num_experts: int,
        hidden_size: int,
        intermediate_size_per_partition: int,
        params_dtype: torch.dtype,
        **extra_weight_attrs,
    ):
        if not self.quant_config.is_checkpoint_nvfp4_serialized:
            raise ValueError(
                "NVFP4 quantization was selected, "
                " dynamic quantization is not supported."
            )

        layer.num_experts = num_experts
        layer.params_dtype = params_dtype
        layer.quant_config = self.quant_config
        weight_dtype = torch.uint8
        weight_scale_dtype = torch.float8_e4m3fn
        weight_loader = extra_weight_attrs.get("weight_loader")
        # GEMM 1
        w13_weight = ModelWeightParameter(
            data=torch.empty(
                num_experts,
                2 * intermediate_size_per_partition,
                # 2 fp4 items are packed in the input dimension
                hidden_size // 2,
                dtype=weight_dtype,
            ),
            input_dim=1,
            output_dim=2,
            weight_loader=weight_loader,
        )
        layer.register_parameter("w13_weight", w13_weight)

        # GEMM 2
        w2_weight = ModelWeightParameter(
            data=torch.empty(
                num_experts,
                hidden_size,
                # 2 fp4 items are packed in the input dimension
                intermediate_size_per_partition // 2,
                dtype=weight_dtype,
            ),
            input_dim=1,
            output_dim=2,
            weight_loader=weight_loader,
        )
        layer.register_parameter("w2_weight", w2_weight)

        w13_weight_scale = ModelWeightParameter(
            data=torch.empty(
                num_experts,
                2 * intermediate_size_per_partition,
                # 2 fp4 items are packed in the input dimension
                hidden_size // self.quant_config.group_size,
                dtype=weight_scale_dtype,
            ),
            input_dim=1,
            output_dim=2,
            weight_loader=weight_loader,
        )
        layer.register_parameter("w13_weight_scale", w13_weight_scale)

        w2_weight_scale = ModelWeightParameter(
            data=torch.empty(
                num_experts,
                hidden_size,
                # 2 fp4 items are packed in the input dimension
                intermediate_size_per_partition // self.quant_config.group_size,
                dtype=weight_scale_dtype,
            ),
            input_dim=1,
            output_dim=2,
            weight_loader=weight_loader,
        )
        layer.register_parameter("w2_weight_scale", w2_weight_scale)

        from sglang.srt.layers.moe.fused_moe_triton import FusedMoeWeightScaleSupported

        extra_weight_attrs.update(
            {"quant_method": FusedMoeWeightScaleSupported.BLOCK.value}
        )

        w13_weight_scale_2 = PerTensorScaleParameter(
            data=torch.empty(num_experts, 2, dtype=torch.float32),
            weight_loader=weight_loader,
        )
        layer.register_parameter("w13_weight_scale_2", w13_weight_scale_2)

        w2_weight_scale_2 = PerTensorScaleParameter(
            data=torch.empty(num_experts, dtype=torch.float32),
            weight_loader=weight_loader,
        )
        layer.register_parameter("w2_weight_scale_2", w2_weight_scale_2)

        extra_weight_attrs.update(
            {"quant_method": FusedMoeWeightScaleSupported.TENSOR.value}
        )

        w13_input_scale = PerTensorScaleParameter(
            data=torch.empty(num_experts, 2, dtype=torch.float32),
            weight_loader=weight_loader,
        )
        layer.register_parameter("w13_input_scale", w13_input_scale)

        w2_input_scale = PerTensorScaleParameter(
            data=torch.empty(num_experts, dtype=torch.float32),
            weight_loader=weight_loader,
        )
        layer.register_parameter("w2_input_scale", w2_input_scale)

    def swizzle_blockscale(self, scale: torch.tensor):
        assert scale.dtype == torch.float8_e4m3fn
        # Pad and blockwise interleave weight_scale
        scale_ndim = scale.ndim
        if scale.ndim == 2:
            scale = scale.unsqueeze(0)
        assert scale.ndim == 3
        B, M, K = scale.shape
        round_up_multiple = lambda x, m: (x + m - 1) // m * m
        M_padded = round_up_multiple(M, 128)
        K_padded = round_up_multiple(K, 4)
        padded_scale = torch.zeros((B, M_padded, K_padded), dtype=scale.dtype)
        padded_scale[:B, :M, :K] = scale
        batches, rows, cols = padded_scale.shape
        assert rows % 128 == 0
        assert cols % 4 == 0
        padded_scale = padded_scale.reshape(batches, rows // 128, 4, 32, cols // 4, 4)
        swizzled_scale = padded_scale.permute((0, 1, 4, 3, 2, 5))
        swizzled_scale = swizzled_scale.contiguous().cuda()
        return (
            swizzled_scale.reshape(M, K)
            if scale_ndim == 2
            else swizzled_scale.reshape(B, M, K)
        )

    def process_weights_after_loading(self, layer: torch.nn.Module) -> None:

        # GEMM 1
        if not torch.allclose(
            layer.w13_weight_scale_2[:, 0], layer.w13_weight_scale_2[:, 1]
        ):
            logger.warning_once(
                "w1_weight_scale_2 must match w3_weight_scale_2. "
                "Accuracy may be affected."
            )

        w13_weight_scale_2 = layer.w13_weight_scale_2[:, 0]
        layer.w13_weight_scale_2 = Parameter(w13_weight_scale_2, requires_grad=False)

868
        if self.enable_flashinfer_cutlass_moe:
869
870
871
            w13_input_scale = layer.w13_input_scale.max().to(torch.float32)
        else:
            w13_input_scale = layer.w13_input_scale.max(dim=1).values.to(torch.float32)
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
        layer.g1_alphas = Parameter(
            (w13_input_scale * w13_weight_scale_2).to(torch.float32),
            requires_grad=False,
        )

        assert (
            layer.w13_weight_scale.shape[2] % 16 == 0
        ), "Expected weight_scale.dim(1) to be divisible by 16"
        assert (
            layer.w13_weight_scale.dtype == torch.float8_e4m3fn
        ), "Weight Blockscale must be represented as FP8-E4M3"
        w13_blockscale_swizzled = self.swizzle_blockscale(layer.w13_weight_scale)

        layer.w13_blockscale_swizzled = Parameter(
            w13_blockscale_swizzled, requires_grad=False
        )

        # This is for quantization, so we need to invert it.
        layer.w13_input_scale_quant = Parameter(
            (1 / w13_input_scale).to(torch.float32), requires_grad=False
        )

        layer.w13_weight = Parameter(layer.w13_weight.data, requires_grad=False)

        # GEMM 2
897
        if self.enable_flashinfer_cutlass_moe:
898
899
900
901
            w2_input_scale = layer.w2_input_scale.max().to(torch.float32)
        else:
            w2_input_scale = layer.w2_input_scale

902
        layer.g2_alphas = Parameter(
903
            (w2_input_scale * layer.w2_weight_scale_2).to(torch.float32),
904
905
906
907
908
            requires_grad=False,
        )

        # This is for quantization, so we need to invert it.
        layer.w2_input_scale_quant = Parameter(
909
            (1 / w2_input_scale).to(torch.float32), requires_grad=False
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
        )

        assert (
            layer.w2_weight_scale.shape[2] % 16 == 0
        ), "Expected weight_scale.dim(1) to be divisible by 16"
        assert (
            layer.w2_weight_scale.dtype == torch.float8_e4m3fn
        ), "Weight Blockscale must be represented as FP8-E4M3"
        w2_blockscale_swizzled = self.swizzle_blockscale(layer.w2_weight_scale)

        layer.w2_blockscale_swizzled = Parameter(
            w2_blockscale_swizzled, requires_grad=False
        )
        layer.w2_weight = Parameter(layer.w2_weight.data, requires_grad=False)

        device = layer.w13_weight.device
        layer.cutlass_moe_params = CutlassMoEParams(
            CutlassMoEType.BlockscaledFP4,
            device,
929
            num_experts=layer.num_experts,  # global num experts
930
931
932
933
            intermediate_size_per_partition=layer.w2_weight.shape[2] * 2,  # n
            hidden_size=layer.w13_weight.shape[2] * 2,
        )  # k

934
935
936
    @property
    def load_up_proj_weight_first(self) -> bool:
        # FlashInfer CUTLASS kernel assumes [Up, Gate] Proj as W13
937
        return self.enable_flashinfer_cutlass_moe
938

939
940
941
942
    def apply(
        self,
        layer: torch.nn.Module,
        x: torch.Tensor,
943
944
        topk_output: TopKOutput,
        *,
945
946
947
948
949
        activation: str = "silu",
        apply_router_weight_on_input: bool = False,
        inplace: bool = True,
        no_combine: bool = False,
        routed_scaling_factor: Optional[float] = None,
950
951
952
953
        ep_rank: Optional[int] = None,
        ep_size: Optional[int] = None,
        tp_rank: Optional[int] = None,
        tp_size: Optional[int] = None,
954
955
956
    ) -> torch.Tensor:
        assert activation == "silu", "Only SiLU activation is supported."

957
        if self.enable_flashinfer_cutlass_moe:
958
959
960
961
962
            assert (
                not apply_router_weight_on_input
            ), "apply_router_weight_on_input is not supported for Flashinfer"
            # TRTLLM Cutlass moe takes in activations in BF16/Half/nvfp4 precision
            # and fp4 quantized weights loaded from the checkpoint
963
            topk_weights, topk_ids, _ = topk_output
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
            output = flashinfer_cutlass_fused_moe(
                x,
                topk_ids.to(torch.int),
                topk_weights,
                layer.w13_weight.view(torch.long),
                layer.w2_weight.view(torch.long),
                x.dtype,
                quant_scales=[
                    layer.w13_input_scale_quant,
                    layer.w13_blockscale_swizzled.view(torch.int32),
                    layer.g1_alphas,
                    layer.w2_input_scale_quant,
                    layer.w2_blockscale_swizzled.view(torch.int32),
                    layer.g2_alphas,
                ],
                ep_size=ep_size,
                ep_rank=ep_rank,
                tp_size=tp_size,
                tp_rank=tp_rank,
                tune_max_num_tokens=next_power_of_2(x.shape[0]),
984
985
986
987
            )[0]
            if routed_scaling_factor is not None:
                output *= routed_scaling_factor
            return output
988

989
990
        from sglang.srt.layers.moe.cutlass_moe import cutlass_moe_fp4

991
        topk_weights, topk_ids, _ = topk_output
992
        output = cutlass_moe_fp4(
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
            a=x,
            a1_gscale=layer.w13_input_scale_quant,
            w1_fp4=layer.w13_weight,
            w1_blockscale=layer.w13_blockscale_swizzled,
            w1_alphas=layer.g1_alphas,
            a2_gscale=layer.w2_input_scale_quant,
            w2_fp4=layer.w2_weight,
            w2_blockscale=layer.w2_blockscale_swizzled,
            w2_alphas=layer.g2_alphas,
            topk_weights=topk_weights,
            topk_ids=topk_ids,
            params=layer.cutlass_moe_params,
            apply_router_weight_on_input=apply_router_weight_on_input,
        ).to(x.dtype)
1007
1008
1009
        if routed_scaling_factor is not None:
            output *= routed_scaling_factor
        return output