linear.py 51.2 KB
Newer Older
1
"""Adapted from https://github.com/vllm-project/vllm/blob/v0.6.4.post1/vllm/model_executor/layers/linear.py"""
2

3
4
from __future__ import annotations

5
import itertools
6
import logging
7
from typing import TYPE_CHECKING, Dict, List, Optional, Tuple
8
9
10

import torch
from torch.nn.parameter import Parameter, UninitializedParameter
11
12

from sglang.srt.distributed import (
13
14
15
16
17
18
19
    divide,
    get_tensor_model_parallel_rank,
    get_tensor_model_parallel_world_size,
    split_tensor_along_last_dim,
    tensor_model_parallel_all_gather,
    tensor_model_parallel_all_reduce,
)
20
from sglang.srt.layers.parameter import (
21
    BasevLLMParameter,
HandH1998's avatar
HandH1998 committed
22
    BlockQuantScaleParameter,
23
    PackedColumnParameter,
24
25
    PackedvLLMParameter,
    PerTensorScaleParameter,
26
    RowvLLMParameter,
27
    _ColumnvLLMParameter,
28
)
29
30
31
32
33
34
35
36
from sglang.srt.layers.quantization.unquant import UnquantizedLinearMethod
from sglang.srt.utils import is_cpu, is_npu, set_weight_attrs

if TYPE_CHECKING:
    from sglang.srt.layers.quantization.base_config import (
        QuantizationConfig,
        QuantizeMethodBase,
    )
37
38
39
40
41
42
43
44
45

logger = logging.getLogger(__name__)

WEIGHT_LOADER_V2_SUPPORTED = [
    "CompressedTensorsLinearMethod",
    "AWQMarlinLinearMethod",
    "AWQLinearMethod",
    "GPTQMarlinLinearMethod",
    "Fp8LinearMethod",
46
    "BlockInt8LinearMethod",
47
    "MarlinLinearMethod",
48
    "QQQLinearMethod",
49
50
51
52
    "GPTQMarlin24LinearMethod",
    "TPUInt8LinearMethod",
    "GPTQLinearMethod",
    "FBGEMMFp8LinearMethod",
53
    "ModelOptFp8LinearMethod",
54
    "ModelOptFp4LinearMethod",
55
    "IPEXAWQLinearMethod",
56
    "PetitNvFp4LinearMethod",
57
58
]

59
_is_cpu = is_cpu()
60
_is_npu = is_npu()
61

62
63
64
65
66
67
68
69
70

def adjust_marlin_shard(param, shard_size, shard_offset):
    marlin_tile_size = getattr(param, "marlin_tile_size", None)
    if marlin_tile_size is None:
        return shard_size, shard_offset

    return shard_size * marlin_tile_size, shard_offset * marlin_tile_size


71
def adjust_bitsandbytes_4bit_shard(
72
    param: Parameter, shard_offsets: Dict[str, Tuple[int, int]], loaded_shard_id: str
73
74
75
) -> Tuple[int, int]:
    """Adjust the quantization offsets and sizes for BitsAndBytes sharding."""

76
77
    total, _ = shard_offsets["total"]
    orig_offset, orig_size = shard_offsets[loaded_shard_id]
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108

    quantized_total = param.data.shape[0]
    quantized_offset = orig_offset * quantized_total // total
    quantized_size = orig_size * quantized_total // total

    return quantized_size, quantized_offset


def adjust_scalar_to_fused_array(param, loaded_weight, shard_id):
    """For fused modules (QKV and MLP) we have an array of length
    N that holds 1 scale for each "logical" matrix. So the param
    is an array of length N. The loaded_weight corresponds to
    one of the shards on disk. Here, we slice the param based on
    the shard_id for loading.
    """
    qkv_idxs = {"q": 0, "k": 1, "v": 2}

    if isinstance(shard_id, str):
        shard_id = qkv_idxs[shard_id]
    elif not isinstance(shard_id, int):
        raise ValueError(f"Unknown Shard Id {shard_id}")

    # AutoFP8 scales do not have a shape
    # compressed-tensors scales do have a shape
    if len(loaded_weight.shape) != 0:
        assert loaded_weight.shape[0] == 1
        loaded_weight = loaded_weight[0]

    return param[shard_id], loaded_weight


Yineng Zhang's avatar
Yineng Zhang committed
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
class LinearBase(torch.nn.Module):
    """Base linear layer.

    Args:
        input_size: input dimension of the linear layer.
        output_size: output dimension of the linear layer.
        bias: If true, add bias.
        skip_bias_add: If true, skip adding bias but instead return it.
        params_dtype: Data type for the parameters.
        quant_config: Quantization configure.
    """

    def __init__(
        self,
        input_size: int,
        output_size: int,
        skip_bias_add: bool = False,
        params_dtype: Optional[torch.dtype] = None,
        quant_config: Optional[QuantizationConfig] = None,
        prefix: str = "",
    ):
        super().__init__()

        # Keep input parameters
        self.input_size = input_size
        self.output_size = output_size
        self.skip_bias_add = skip_bias_add
        if params_dtype is None:
            params_dtype = torch.get_default_dtype()
        self.params_dtype = params_dtype
        if quant_config is None:
            self.quant_method: Optional[QuantizeMethodBase] = UnquantizedLinearMethod()
        else:
            self.quant_method = quant_config.get_quant_method(self, prefix=prefix)

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        raise NotImplementedError


148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
class ReplicatedLinear(LinearBase):
    """Replicated linear layer.

    Args:
        input_size: input dimension of the linear layer.
        output_size: output dimension of the linear layer.
        bias: If true, add bias.
        skip_bias_add: If true, skip adding bias but instead return it.
        params_dtype: Data type for the parameters.
        quant_config: Quantization configure.
        prefix: The name of the layer in the state dict, including all parents
                        (e.g. model.layers.0.qkv_proj)
    """

    def __init__(
        self,
        input_size: int,
        output_size: int,
        bias: bool = True,
        skip_bias_add: bool = False,
        params_dtype: Optional[torch.dtype] = None,
        quant_config: Optional[QuantizationConfig] = None,
        prefix: str = "",
    ):
        super().__init__(
            input_size,
            output_size,
            skip_bias_add,
            params_dtype,
            quant_config,
            prefix=prefix,
        )

        # All the linear layer supports quant method.
        assert self.quant_method is not None
        self.quant_method.create_weights(
            self,
            self.input_size,
            [self.output_size],
            self.input_size,
            self.output_size,
            self.params_dtype,
            weight_loader=self.weight_loader,
        )

        if bias:
            self.bias = Parameter(
                torch.empty(self.output_size, dtype=self.params_dtype)
            )
            set_weight_attrs(
                self.bias,
                {
                    "output_dim": 0,
                    "weight_loader": self.weight_loader,
                },
            )
        else:
            self.register_parameter("bias", None)

    def weight_loader(self, param: Parameter, loaded_weight: torch.Tensor):
        # If the weight on disk does not have a shape, give it one
        # (such scales for AutoFp8).
        if len(loaded_weight.shape) == 0:
            loaded_weight = loaded_weight.reshape(1)

213
214
215
216
217
218
219
220
        # The per-tensor quant-scale must be 1 dimension
        if _is_npu:
            if param.size() != loaded_weight.size() and param.size(0) == 1:
                if torch.allclose(loaded_weight, loaded_weight[0]):
                    loaded_weight = loaded_weight[:1]
                else:
                    raise ValueError(f"{loaded_weight} are not all equal")

221
222
223
        assert param.size() == loaded_weight.size()
        param.data.copy_(loaded_weight)

224
    def forward(self, x: torch.Tensor) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
        bias = self.bias if not self.skip_bias_add else None
        assert self.quant_method is not None
        output = self.quant_method.apply(self, x, bias)
        output_bias = self.bias if self.skip_bias_add else None
        return output, output_bias

    def extra_repr(self) -> str:
        s = f"in_features={self.input_size}"
        s += f", output_features={self.output_size}"
        s += f", bias={self.bias is not None}"
        return s


class ColumnParallelLinear(LinearBase):
    """Linear layer with column parallelism.

    The linear layer is defined as Y = XA + b. A is parallelized along
    its second dimension as A = [A_1, ..., A_p].

    Args:
        input_size: first dimension of matrix A.
        output_size: second dimension of matrix A.
        bias: If true, add bias.
        gather_output: If true, call all-gather on output and make Y available
                       to all GPUs, otherwise, every GPU will have its output
                       which is Y_i = XA_i
        skip_bias_add: This was added to enable performance optimizations where
                       bias can be fused with other element-wise operations. we
                       skip adding bias but instead return it.
        params_dtype: Data type for the parameters.
        quant_config: Quantization configure.
        output_sizes: list of output sizes packed into one output, like for QKV
                       the list would be size 3.
        prefix: The name of the layer in the state dict, including all parents
                        (e.g. model.layers.0.qkv_proj)
    """

    def __init__(
        self,
        input_size: int,
        output_size: int,
        bias: bool = True,
        gather_output: bool = False,
        skip_bias_add: bool = False,
        params_dtype: Optional[torch.dtype] = None,
        quant_config: Optional[QuantizationConfig] = None,
        output_sizes: Optional[List[int]] = None,
        prefix: str = "",
273
274
        tp_rank: Optional[int] = None,
        tp_size: Optional[int] = None,
275
        use_presharded_weights: bool = False,
276
277
278
279
280
281
    ):
        super().__init__(
            input_size, output_size, skip_bias_add, params_dtype, quant_config, prefix
        )

        self.gather_output = gather_output
282
        self.use_presharded_weights = use_presharded_weights
283
284

        # Divide the weight matrix along the last dimension.
285
286
287
288
289
        if tp_rank is None:
            tp_rank = get_tensor_model_parallel_rank()
        if tp_size is None:
            tp_size = get_tensor_model_parallel_world_size()
        self.tp_rank, self.tp_size = tp_rank, tp_size
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
        assert self.quant_method is not None
        self.output_size_per_partition = divide(self.output_size, tp_size)
        self.output_partition_sizes = [self.output_size_per_partition]
        # If QKV or MergedColumn, use output size of each partition.
        if hasattr(self, "output_sizes"):
            self.output_partition_sizes = [
                divide(output_size, tp_size) for output_size in self.output_sizes
            ]

        if output_sizes is None:
            output_sizes = [output_size]

        self.quant_method.create_weights(
            layer=self,
            input_size_per_partition=self.input_size,
            output_partition_sizes=self.output_partition_sizes,
            input_size=self.input_size,
            output_size=self.output_size,
            params_dtype=self.params_dtype,
            weight_loader=(
                self.weight_loader_v2
                if self.quant_method.__class__.__name__ in WEIGHT_LOADER_V2_SUPPORTED
                else self.weight_loader
            ),
        )
        if bias:
            self.bias = Parameter(
                torch.empty(self.output_size_per_partition, dtype=params_dtype)
            )
            set_weight_attrs(
                self.bias,
                {
                    "output_dim": 0,
                    "weight_loader": self.weight_loader,
                },
            )
        else:
            self.register_parameter("bias", None)

    def weight_loader(self, param: Parameter, loaded_weight: torch.Tensor):
        output_dim = getattr(param, "output_dim", None)

        # Special case for GGUF
        is_gguf_weight = getattr(param, "is_gguf_weight", False)
        is_gguf_weight_type = getattr(param, "is_gguf_weight_type", False)
        if is_gguf_weight_type:
            param.weight_type = loaded_weight.item()

        # Materialize GGUF UninitializedParameter
        if is_gguf_weight and isinstance(param, UninitializedParameter):
            param.materialize(loaded_weight.shape, dtype=loaded_weight.dtype)

342
343
        use_bitsandbytes_4bit = getattr(param, "use_bitsandbytes_4bit", False)

344
        param_data = param.data
345
346
347
        # bitsandbytes loads the weights of the specific portion
        # no need to narrow here
        if output_dim is not None and not use_bitsandbytes_4bit:
348
            shard_size = param_data.shape[output_dim]
349
            start_idx = self.tp_rank * shard_size
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369

            if _is_cpu:
                from sglang.srt.model_loader.weight_utils import (
                    narrow_padded_param_and_loaded_weight,
                )

                param_data, loaded_weight = narrow_padded_param_and_loaded_weight(
                    param_data,
                    loaded_weight,
                    0,  # param_data_start
                    start_idx,
                    output_dim,
                    shard_size,
                    not self.use_presharded_weights,
                )
            else:
                if not self.use_presharded_weights:
                    loaded_weight = loaded_weight.narrow(
                        output_dim, start_idx, shard_size
                    )
370
371
372
373
374
375

        # Special case for loading scales off disk, which often do not
        # have a shape (such as in the case of AutoFP8).
        if len(loaded_weight.shape) == 0:
            loaded_weight = loaded_weight.reshape(1)

376
        assert param_data.shape == loaded_weight.shape
377
378
379
380
381
382
383
384
        param_data.copy_(loaded_weight)

    def weight_loader_v2(self, param: Parameter, loaded_weight: torch.Tensor):
        # Special case for loading scales off disk, which often do not
        # have a shape (such as in the case of AutoFP8).
        if len(loaded_weight.shape) == 0:
            assert loaded_weight.numel() == 1
            loaded_weight = loaded_weight.reshape(1)
Liangsheng Yin's avatar
Liangsheng Yin committed
385
386
387
388
389
390
391
392

        if isinstance(param, _ColumnvLLMParameter):
            param.load_column_parallel_weight(
                loaded_weight,
                tp_rank=self.tp_rank,
                use_presharded_weights=self.use_presharded_weights,
            )
        else:
393
394
            # FIXME: This branch is needed to load deepseek v3 awq.
            # However, we should fix this and avoid the branching here.
Liangsheng Yin's avatar
Liangsheng Yin committed
395
            param.load_column_parallel_weight(loaded_weight)
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414

    def forward(self, input_):
        bias = self.bias if not self.skip_bias_add else None

        # Matrix multiply.
        assert self.quant_method is not None
        output_parallel = self.quant_method.apply(self, input_, bias)
        if self.gather_output:
            # All-gather across the partitions.
            output = tensor_model_parallel_all_gather(output_parallel)
        else:
            output = output_parallel
        output_bias = self.bias if self.skip_bias_add else None
        return output, output_bias

    def extra_repr(self) -> str:
        s = f"in_features={self.input_size}"
        s += f", output_features={self.output_size_per_partition}"
        s += f", bias={self.bias is not None}"
415
        s += f", tp_size={self.tp_size}"
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
        s += f", gather_output={self.gather_output}"
        return s


class MergedColumnParallelLinear(ColumnParallelLinear):
    """Packed linear layers with column parallelism.

    Similar to ColumnParallelLinear, but the weight matrix is concatenated
    along the output dimension. When the weight matrix is loaded, the
    different partitions are sharded separately.

    Args:
        input_size: input dimension of the linear layer.
        output_sizes: list of output dimensions of the linear layer.
        bias: If true, add bias.
        gather_output: If true, call all-gather on output and make the output
                       available to all GPUs, otherwise, every GPU will have
                       its own output.
        skip_bias_add: This was added to enable performance optimizations where
                       bias can be fused with other element-wise operations. we
                       skip adding bias but instead return it.
        params_dtype: Data type for the parameters.
        quant_config: Quantization configure.
        prefix: The name of the layer in the state dict, including all parents
                        (e.g. model.layers.0.qkv_proj)
    """

    def __init__(
        self,
        input_size: int,
        output_sizes: List[int],
        bias: bool = True,
        gather_output: bool = False,
        skip_bias_add: bool = False,
        params_dtype: Optional[torch.dtype] = None,
        quant_config: Optional[QuantizationConfig] = None,
        prefix: str = "",
453
454
455
        tp_rank: Optional[int] = None,
        tp_size: Optional[int] = None,
        use_presharded_weights: bool = False,
456
457
    ):
        self.output_sizes = output_sizes
458
459
460
461
462
        if tp_rank is None:
            tp_rank = get_tensor_model_parallel_rank()
        if tp_size is None:
            tp_size = get_tensor_model_parallel_world_size()
        self.tp_rank, self.tp_size = tp_rank, tp_size
463
        assert all(output_size % tp_size == 0 for output_size in output_sizes)
464
        self.use_presharded_weights = use_presharded_weights
465
466
467
468
469
470
471
472
473
        super().__init__(
            input_size=input_size,
            output_size=sum(output_sizes),
            bias=bias,
            gather_output=gather_output,
            skip_bias_add=skip_bias_add,
            params_dtype=params_dtype,
            quant_config=quant_config,
            prefix=prefix,
474
475
            tp_rank=tp_rank,
            tp_size=tp_size,
476
            use_presharded_weights=use_presharded_weights,
477
        )
478
        self.prefix = prefix
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495

    def weight_loader(
        self,
        param: Parameter,
        loaded_weight: torch.Tensor,
        loaded_shard_id: Optional[int] = None,
    ):

        # Special case for GGUF
        # initialize GGUF param after we know the quantize type
        is_gguf_weight = getattr(param, "is_gguf_weight", False)
        is_gguf_weight_type = getattr(param, "is_gguf_weight_type", False)
        if is_gguf_weight_type:
            param.data[loaded_shard_id].copy_(loaded_weight)
            param.shard_weight_type[loaded_shard_id] = loaded_weight.item()
            return

496
497
        if is_gguf_weight:
            output_dim = getattr(param, "output_dim", None)
498
499
            shard_size = loaded_weight.size(output_dim) // self.tp_size
            start_idx = self.tp_rank * shard_size
500

501
502
503
504
505
506
            loaded_weight = loaded_weight.narrow(output_dim, start_idx, shard_size)

            param.shard_id.append(loaded_shard_id)
            param.shard_id_map[loaded_shard_id] = len(param.data_container)
            param.data_container.append(loaded_weight)
            return
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522

        param_data = param.data
        output_dim = getattr(param, "output_dim", None)
        # Special case for AQLM codebooks.
        is_metadata = getattr(param, "is_metadata", False)
        # Special case for per-tensor scale to load scalar into fused array.
        needs_scalar_to_array = getattr(param, "needs_scalar_to_array", False)

        if loaded_shard_id is None:
            # Loaded weight is already fused on disk (qkv/mlp).
            if output_dim is None:
                if needs_scalar_to_array:
                    param_data, loaded_weight = adjust_scalar_to_fused_array(
                        param_data, loaded_weight, 0
                    )

523
                assert param_data.shape == loaded_weight.shape
524
525
526
527
528
529
530
531
                param_data.copy_(loaded_weight)
                return
            current_shard_offset = 0
            shard_offsets: List[Tuple[int, int, int]] = []
            for i, output_size in enumerate(self.output_sizes):
                shard_offsets.append((i, current_shard_offset, output_size))
                current_shard_offset += output_size
            packed_dim = getattr(param, "packed_dim", None)
532
533

            use_bitsandbytes_4bit = getattr(param, "use_bitsandbytes_4bit", False)
534
535
536
537
538
539
540
541
542
543
544
545
            for shard_id, shard_offset, shard_size in shard_offsets:
                # Special case for Quantization.
                # If quantized, we need to adjust the offset and size to account
                # for the packing.
                if packed_dim == output_dim:
                    shard_size = shard_size // param.pack_factor
                    shard_offset = shard_offset // param.pack_factor
                    # Special case for Marlin.
                    shard_size, shard_offset = adjust_marlin_shard(
                        param, shard_size, shard_offset
                    )

546
547
548
549
550
551
552
553
554
555
556
                if use_bitsandbytes_4bit:
                    index = list(itertools.accumulate([0] + self.output_sizes))
                    orig_offsets = {
                        str(i): (index[i], size)
                        for i, size in enumerate(self.output_sizes)
                    }
                    orig_offsets["total"] = (self.output_size, 0)
                    shard_size, shard_offset = adjust_bitsandbytes_4bit_shard(
                        param, orig_offsets, str(shard_id)
                    )

557
558
559
560
561
562
563
564
                loaded_weight_shard = loaded_weight.narrow(
                    output_dim, shard_offset, shard_size
                )
                self.weight_loader(param, loaded_weight_shard, shard_id)
            return

        assert loaded_shard_id < len(self.output_sizes)
        if output_dim is not None:
565
566
            shard_offset = sum(self.output_sizes[:loaded_shard_id]) // self.tp_size
            shard_size = self.output_sizes[loaded_shard_id] // self.tp_size
567
568
569
570
571
572
573
574
575
576
577
578
            # Special case for quantization.
            # If quantized, we need to adjust the offset and size to account
            # for the packing.
            packed_dim = getattr(param, "packed_dim", None)
            if packed_dim == output_dim:
                shard_size = shard_size // param.pack_factor
                shard_offset = shard_offset // param.pack_factor
                # Special case for Marlin.
                shard_size, shard_offset = adjust_marlin_shard(
                    param, shard_size, shard_offset
                )

579
580
            use_bitsandbytes_4bit = getattr(param, "use_bitsandbytes_4bit", False)
            if use_bitsandbytes_4bit:
581
582
583
584
                shard_size = loaded_weight.shape[output_dim]
                shard_offset = loaded_weight.shape[output_dim] * loaded_shard_id

            param_data = param_data.narrow(output_dim, shard_offset, shard_size)
585
            start_idx = self.tp_rank * shard_size
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608

            if _is_cpu:
                from sglang.srt.model_loader.weight_utils import (
                    narrow_padded_param_and_loaded_weight,
                )

                param_data, loaded_weight = narrow_padded_param_and_loaded_weight(
                    param_data,
                    loaded_weight,
                    0,  # param_data_start
                    start_idx,
                    output_dim,
                    shard_size,
                    not use_bitsandbytes_4bit and not self.use_presharded_weights,
                )
            else:
                # bitsandbytes loads the weights of the specific portion
                # no need to narrow here
                if not use_bitsandbytes_4bit and not self.use_presharded_weights:
                    loaded_weight = loaded_weight.narrow(
                        output_dim, start_idx, shard_size
                    )

609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
        # Special case for AQLM codebooks.
        elif is_metadata:
            # metadata indicates fixed size concatenated along dim 0
            shard_size = loaded_weight.shape[0]
            shard_offset = loaded_shard_id * shard_size
            param_data = param_data.narrow(0, shard_offset, shard_size)

        # Special case for per-tensor scales in fused case.
        elif needs_scalar_to_array:
            param_data, loaded_weight = adjust_scalar_to_fused_array(
                param_data, loaded_weight, loaded_shard_id
            )

        else:
            ignore_warning = getattr(param, "ignore_warning", False)
            if not ignore_warning:
                logger.warning(
                    "Loading a weight without `output_dim` attribute in "
                    "MergedColumnParallelLinear, assume the weight is "
                    "the same for all partitions."
                )

631
        assert param_data.shape == loaded_weight.shape
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
        param_data.copy_(loaded_weight)

    def _load_fused_module_from_checkpoint(
        self, param: BasevLLMParameter, loaded_weight: torch.Tensor
    ):
        """
        Handle special case for models where MLP layers are already
        fused on disk. In this case, we have no shard id. This function
        determmines the shard id by splitting these layers and then calls
        the weight loader using the shard id.

        An example of a model with these fused layers:
        https://huggingface.co/microsoft/Phi-3-mini-4k-instruct
        """

        current_shard_offset = 0
        shard_offsets: List[Tuple[int, int, int]] = []
        for i, output_size in enumerate(self.output_sizes):
            shard_offsets.append((i, current_shard_offset, output_size))
            current_shard_offset += output_size

        for shard_id, shard_offset, shard_size in shard_offsets:
            # Special case for Quantization.
            # If quantized, we need to adjust the offset and size to account
            # for the packing.
            if (
658
                isinstance(param, (PackedColumnParameter, PackedvLLMParameter))
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
                and param.packed_dim == param.output_dim
            ):
                shard_size, shard_offset = param.adjust_shard_indexes_for_packing(
                    shard_size=shard_size, shard_offset=shard_offset
                )

            loaded_weight_shard = loaded_weight.narrow(
                param.output_dim, shard_offset, shard_size
            )
            self.weight_loader_v2(param, loaded_weight_shard, shard_id)

    def weight_loader_v2(
        self,
        param: BasevLLMParameter,
        loaded_weight: torch.Tensor,
        loaded_shard_id: Optional[int] = None,
    ):
        if loaded_shard_id is None:
            if isinstance(param, PerTensorScaleParameter):
678
679
680
681
682
683
                param.load_merged_column_weight(
                    loaded_weight=loaded_weight,
                    shard_id=0,
                    tp_rank=self.tp_rank,
                    tp_size=self.tp_size,
                )
684
                return
685
            elif type(param) in (RowvLLMParameter, BasevLLMParameter):
686
687
688
689
690
                param.load_merged_column_weight(
                    loaded_weight=loaded_weight,
                    tp_rank=self.tp_rank,
                    tp_size=self.tp_size,
                )
691
                return
692
            # TODO: @dsikka - move to parameter.py
693
694
695
696
697
            self._load_fused_module_from_checkpoint(param, loaded_weight)
            return

        assert loaded_shard_id < len(self.output_sizes)

HandH1998's avatar
HandH1998 committed
698
699
700
701
702
        if isinstance(param, BlockQuantScaleParameter):
            weight_block_size = self.quant_method.quant_config.weight_block_size
            block_n, _ = weight_block_size[0], weight_block_size[1]
            shard_offset = (
                (sum(self.output_sizes[:loaded_shard_id]) + block_n - 1) // block_n
703
            ) // self.tp_size
HandH1998's avatar
HandH1998 committed
704
            shard_size = (
705
706
707
                (self.output_sizes[loaded_shard_id] + block_n - 1)
                // block_n
                // self.tp_size
HandH1998's avatar
HandH1998 committed
708
709
            )
        else:
710
711
            shard_offset = sum(self.output_sizes[:loaded_shard_id]) // self.tp_size
            shard_size = self.output_sizes[loaded_shard_id] // self.tp_size
712
713
714
715
716
717

        param.load_merged_column_weight(
            loaded_weight=loaded_weight,
            shard_id=loaded_shard_id,
            shard_offset=shard_offset,
            shard_size=shard_size,
718
            use_presharded_weights=self.use_presharded_weights,
719
720
            tp_rank=self.tp_rank,
            tp_size=self.tp_size,
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
        )


class QKVParallelLinear(ColumnParallelLinear):
    """Linear layers for the attention's QKV transformation.

    Linear layers for the linear transformation of the query, key, and value
    vectors in the attention layer. The weight matrix is concatenated along
    the output dimension. The layer is parallelized along the head dimension.
    When the number of key/value heads is smaller than the number of query
    heads (e.g., multi-query/grouped-query attention), the key/value head may
    be replicated while the query heads are partitioned.

    Args:
        hidden_size: input hidden state size of the transformer.
        head_size: size of each attention head.
        total_num_heads: total number of attention query heads.
        total_num_kv_heads: total number of attention key/value heads. If
                            None, assume total_num_kv_heads = total_num_heads.
        bias: If true, add bias.
        skip_bias_add: This was added to enable performance optimizations where
                       bias can be fused with other element-wise operations. we
                       skip adding bias but instead return it.
        params_dtype: Data type for the parameters.
        quant_config: Quantization configure.
        prefix: The name of the layer in the state dict, including all parents
                        (e.g. model.layers.0.qkv_proj)
    """

    def __init__(
        self,
        hidden_size: int,
        head_size: int,
        total_num_heads: int,
        total_num_kv_heads: Optional[int] = None,
        bias: bool = True,
        skip_bias_add: bool = False,
        params_dtype: Optional[torch.dtype] = None,
759
        quant_config: Optional[QuantizationConfig] = None,
760
        prefix: str = "",
761
762
        tp_rank: Optional[int] = None,
        tp_size: Optional[int] = None,
763
        load_presharded_attn: bool = False,
764
765
766
767
768
769
770
771
    ):
        self.hidden_size = hidden_size
        self.head_size = head_size
        self.total_num_heads = total_num_heads
        if total_num_kv_heads is None:
            total_num_kv_heads = total_num_heads
        self.total_num_kv_heads = total_num_kv_heads
        # Divide the weight matrix along the last dimension.
772
773
774
775
776
        if tp_rank is None:
            tp_rank = get_tensor_model_parallel_rank()
        if tp_size is None:
            tp_size = get_tensor_model_parallel_world_size()
        self.tp_rank, self.tp_size = tp_rank, tp_size
777
778
779
780
781
782
783
        self.num_heads = divide(self.total_num_heads, tp_size)
        if tp_size >= self.total_num_kv_heads:
            self.num_kv_heads = 1
            self.num_kv_head_replicas = divide(tp_size, self.total_num_kv_heads)
        else:
            self.num_kv_heads = divide(self.total_num_kv_heads, tp_size)
            self.num_kv_head_replicas = 1
784
785
        self.q_proj_shard_size = self.num_heads * self.head_size
        self.kv_proj_shard_size = self.num_kv_heads * self.head_size
786
787
788
789
790
791
792
793
794
        input_size = self.hidden_size
        output_size = (
            (self.num_heads + 2 * self.num_kv_heads) * tp_size * self.head_size
        )
        self.output_sizes = [
            self.num_heads * self.head_size * tp_size,  # q_proj
            self.num_kv_heads * self.head_size * tp_size,  # k_proj
            self.num_kv_heads * self.head_size * tp_size,  # v_proj
        ]
795
        self.use_presharded_weights = load_presharded_attn
796
797
798
799
800
801
802
803
804
805

        super().__init__(
            input_size=input_size,
            output_size=output_size,
            bias=bias,
            gather_output=False,
            skip_bias_add=skip_bias_add,
            params_dtype=params_dtype,
            quant_config=quant_config,
            prefix=prefix,
806
807
            tp_rank=tp_rank,
            tp_size=tp_size,
808
            use_presharded_weights=self.use_presharded_weights,
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
        )

    def _get_shard_offset_mapping(self, loaded_shard_id: str):
        shard_offset_mapping = {
            "q": 0,
            "k": self.num_heads * self.head_size,
            "v": (self.num_heads + self.num_kv_heads) * self.head_size,
            "total": (self.num_heads + 2 * self.num_kv_heads) * self.head_size,
        }
        return shard_offset_mapping.get(loaded_shard_id)

    def _get_shard_size_mapping(self, loaded_shard_id: str):
        shard_size_mapping = {
            "q": self.num_heads * self.head_size,
            "k": self.num_kv_heads * self.head_size,
            "v": self.num_kv_heads * self.head_size,
        }
        return shard_size_mapping.get(loaded_shard_id)

    def _load_fused_module_from_checkpoint(
        self, param: BasevLLMParameter, loaded_weight: torch.Tensor
    ):
        """
        Handle special case for models where QKV layers are already
        fused on disk. In this case, we have no shard id. This function
        determmines the shard id by splitting these layers and then calls
        the weight loader using the shard id.

        An example of a model with these fused layers:
        https://huggingface.co/microsoft/Phi-3-mini-4k-instruct
        """
        shard_offsets = [
            # (shard_id, shard_offset, shard_size)
            ("q", 0, self.total_num_heads * self.head_size),
            (
                "k",
                self.total_num_heads * self.head_size,
                self.total_num_kv_heads * self.head_size,
            ),
            (
                "v",
                (self.total_num_heads + self.total_num_kv_heads) * self.head_size,
                self.total_num_kv_heads * self.head_size,
            ),
        ]

        for shard_id, shard_offset, shard_size in shard_offsets:
            # Special case for Quantization.
            # If quantized, we need to adjust the offset and size to account
            # for the packing.
            if (
860
                isinstance(param, (PackedColumnParameter, PackedvLLMParameter))
861
862
863
864
865
866
                and param.packed_dim == param.output_dim
            ):
                shard_size, shard_offset = param.adjust_shard_indexes_for_packing(
                    shard_size=shard_size, shard_offset=shard_offset
                )

867
868
869
870
            if not self.use_presharded_weights:
                loaded_weight_shard = loaded_weight.narrow(
                    param.output_dim, shard_offset, shard_size
                )
871
872
873
874
875
876
877
878
879
880
            self.weight_loader_v2(param, loaded_weight_shard, shard_id)

    def weight_loader_v2(
        self,
        param: BasevLLMParameter,
        loaded_weight: torch.Tensor,
        loaded_shard_id: Optional[str] = None,
    ):
        if loaded_shard_id is None:  # special case for certain models
            if isinstance(param, PerTensorScaleParameter):
881
                param.load_qkv_weight(loaded_weight=loaded_weight, shard_id=0)
882
                return
883
884
            elif type(param) in (RowvLLMParameter, BasevLLMParameter):
                param.load_qkv_weight(loaded_weight=loaded_weight)
885
                return
886
            # TODO: @dsikka - move to parameter.py
887
888
889
890
891
892
893
894
            self._load_fused_module_from_checkpoint(param, loaded_weight)
            return

        assert loaded_shard_id in ["q", "k", "v"]

        shard_offset = self._get_shard_offset_mapping(loaded_shard_id)
        shard_size = self._get_shard_size_mapping(loaded_shard_id)

HandH1998's avatar
HandH1998 committed
895
896
897
898
899
900
        if isinstance(param, BlockQuantScaleParameter):
            weight_block_size = self.quant_method.quant_config.weight_block_size
            block_n, _ = weight_block_size[0], weight_block_size[1]
            shard_offset = (shard_offset + block_n - 1) // block_n
            shard_size = (shard_size + block_n - 1) // block_n

901
902
903
904
905
906
907
        param.load_qkv_weight(
            loaded_weight=loaded_weight,
            num_heads=self.num_kv_head_replicas,
            shard_id=loaded_shard_id,
            shard_offset=shard_offset,
            shard_size=shard_size,
            tp_rank=self.tp_rank,
908
            use_presharded_weights=self.use_presharded_weights,
909
        )
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927

    def weight_loader(
        self,
        param: Parameter,
        loaded_weight: torch.Tensor,
        loaded_shard_id: Optional[str] = None,
    ):

        # Special case for GGUF
        # initialize GGUF param after we know the quantize type
        is_gguf_weight = getattr(param, "is_gguf_weight", False)
        is_gguf_weight_type = getattr(param, "is_gguf_weight_type", False)
        if is_gguf_weight_type and loaded_shard_id is not None:
            idx_map = {"q": 0, "k": 1, "v": 2}
            param.data[idx_map[loaded_shard_id]].copy_(loaded_weight)
            param.shard_weight_type[loaded_shard_id] = loaded_weight.item()
            return

928
929
        if is_gguf_weight:
            output_dim = getattr(param, "output_dim", None)
930
931
            shard_size = loaded_weight.size(output_dim) // self.tp_size
            start_idx = self.tp_rank * shard_size
932
933

            loaded_weight = loaded_weight.narrow(output_dim, start_idx, shard_size)
934

935
936
937
938
            param.shard_id.append(loaded_shard_id)
            param.shard_id_map[loaded_shard_id] = len(param.data_container)
            param.data_container.append(loaded_weight)
            return
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955

        param_data = param.data
        output_dim = getattr(param, "output_dim", None)
        # Special case for AQLM codebooks.
        is_metadata = getattr(param, "is_metadata", False)

        # Special case for per-tensor scales in fused case.
        needs_scalar_to_array = getattr(param, "needs_scalar_to_array", False)

        if loaded_shard_id is None:
            # Loaded weight is already fused on disk (qkv/mlp).
            if output_dim is None:
                if needs_scalar_to_array:
                    param_data, loaded_weight = adjust_scalar_to_fused_array(
                        param_data, loaded_weight, 0
                    )

956
                assert param_data.shape == loaded_weight.shape
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
                param_data.copy_(loaded_weight)
                return
            shard_offsets = [
                # (shard_id, shard_offset, shard_size)
                ("q", 0, self.total_num_heads * self.head_size),
                (
                    "k",
                    self.total_num_heads * self.head_size,
                    self.total_num_kv_heads * self.head_size,
                ),
                (
                    "v",
                    (self.total_num_heads + self.total_num_kv_heads) * self.head_size,
                    self.total_num_kv_heads * self.head_size,
                ),
            ]
973
974
            use_bitsandbytes_4bit = getattr(param, "use_bitsandbytes_4bit", False)

975
976
977
978
979
980
981
982
983
984
985
986
987
988
            packed_dim = getattr(param, "packed_dim", None)
            for shard_id, shard_offset, shard_size in shard_offsets:
                # Special case for Quantized Weights.
                # If quantized, we need to adjust the offset and size to account
                # for the packing.
                if packed_dim == output_dim:
                    shard_size = shard_size // param.pack_factor
                    shard_offset = shard_offset // param.pack_factor

                    # Special case for Marlin.
                    shard_size, shard_offset = adjust_marlin_shard(
                        param, shard_size, shard_offset
                    )

989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
                if use_bitsandbytes_4bit:
                    orig_qkv_offsets = {
                        "q": (0, self.total_num_heads * self.head_size),
                        "k": (
                            self.total_num_heads * self.head_size,
                            self.total_num_kv_heads * self.head_size,
                        ),
                        "v": (
                            (self.total_num_heads + self.total_num_kv_heads)
                            * self.head_size,
                            self.total_num_kv_heads * self.head_size,
                        ),
                        "total": (
                            (self.total_num_heads + 2 * self.total_num_kv_heads)
                            * self.head_size,
                            0,
                        ),
                    }

                    shard_size, shard_offset = adjust_bitsandbytes_4bit_shard(
                        param, orig_qkv_offsets, shard_id
                    )

1012
1013
1014
1015
                if not self.use_presharded_weights:
                    loaded_weight_shard = loaded_weight.narrow(
                        output_dim, shard_offset, shard_size
                    )
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
                self.weight_loader(param, loaded_weight_shard, shard_id)
            return

        assert loaded_shard_id in ["q", "k", "v"]

        # If output dim is defined, use the default loading process.
        if output_dim is not None:
            if loaded_shard_id == "q":
                shard_offset = 0
                shard_size = self.num_heads * self.head_size
            elif loaded_shard_id == "k":
                shard_offset = self.num_heads * self.head_size
                shard_size = self.num_kv_heads * self.head_size
            elif loaded_shard_id == "v":
                shard_offset = (self.num_heads + self.num_kv_heads) * self.head_size
                shard_size = self.num_kv_heads * self.head_size
            # Special case for Quantized Weights.
            # If quantized, we need to adjust the offset and size to account
            # for the packing.
            packed_dim = getattr(param, "packed_dim", None)
            if packed_dim == output_dim:
                shard_size = shard_size // param.pack_factor
                shard_offset = shard_offset // param.pack_factor

                # Special case for Marlin.
                shard_size, shard_offset = adjust_marlin_shard(
                    param, shard_size, shard_offset
                )

1045
1046
            use_bitsandbytes_4bit = getattr(param, "use_bitsandbytes_4bit", False)
            if use_bitsandbytes_4bit:
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
                orig_qkv_offsets = {
                    "q": (0, self.num_heads * self.head_size),
                    "k": (
                        self.num_heads * self.head_size,
                        self.num_kv_heads * self.head_size,
                    ),
                    "v": (
                        (self.num_heads + self.num_kv_heads) * self.head_size,
                        self.num_kv_heads * self.head_size,
                    ),
                    "total": (
                        (self.num_heads + 2 * self.num_kv_heads) * self.head_size,
                        0,
                    ),
                }
1062
                shard_size, shard_offset = adjust_bitsandbytes_4bit_shard(
1063
1064
1065
1066
1067
                    param, orig_qkv_offsets, loaded_shard_id
                )

            param_data = param_data.narrow(output_dim, shard_offset, shard_size)
            if loaded_shard_id == "q":
1068
                shard_id = self.tp_rank
1069
            else:
1070
                shard_id = self.tp_rank // self.num_kv_head_replicas
1071
            start_idx = shard_id * shard_size
1072

1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
            if _is_cpu:
                from sglang.srt.model_loader.weight_utils import (
                    narrow_padded_param_and_loaded_weight,
                )

                param_data, loaded_weight = narrow_padded_param_and_loaded_weight(
                    param_data,
                    loaded_weight,
                    0,  # param_data_start
                    start_idx,
                    output_dim,
                    shard_size,
                    not use_bitsandbytes_4bit and not self.use_presharded_weights,
                )
            else:
                # bitsandbytes loads the weights of the specific portion
                # no need to narrow here
                if not use_bitsandbytes_4bit and not self.use_presharded_weights:
                    loaded_weight = loaded_weight.narrow(
                        output_dim, start_idx, shard_size
                    )
1094

1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
        # Special case for for AQLM codebooks.
        elif is_metadata:
            # metadata indicates fixed size concatenated along dim 0
            shard_size = loaded_weight.shape[0]
            shard_index = ["q", "k", "v"].index(loaded_shard_id)
            param_data = param_data.narrow(0, shard_index * shard_size, shard_size)
        # Special case for per-tensor scales in fused case.
        elif needs_scalar_to_array:
            param_data, loaded_weight = adjust_scalar_to_fused_array(
                param_data, loaded_weight, loaded_shard_id
            )
        else:
            ignore_warning = getattr(param, "ignore_warning", False)
            if not ignore_warning:
                logger.warning(
                    "Loading a weight without `output_dim` attribute in "
                    "QKVParallelLinear, assume the weight is the same "
                    "for all partitions."
                )

1115
        assert param_data.shape == loaded_weight.shape
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
        param_data.copy_(loaded_weight)


class RowParallelLinear(LinearBase):
    """Linear layer with row parallelism.

    The linear layer is defined as Y = XA + b. A is parallelized along
    its first dimension and X along its second dimension as:
               -   -
              | A_1 |
              | .   |
          A = | .   |        X = [X_1, ..., X_p]
              | .   |
              | A_p |
               -   -
    Arguments:
        input_size: first dimension of matrix A.
        output_size: second dimension of matrix A.
        bias: If true, add bias. Note that bias is not parallelized.
        input_is_parallel: If true, we assume that the input is already
                           split across the GPUs and we do not split
                           again.
        skip_bias_add: This was added to enable performance optimization where
                       bias can be fused with other element-wise operations.
                       We skip adding bias but instead return it.
        params_dtype: Data type for the parameters.
        quant_config: Quantization configure.
    """

    def __init__(
        self,
        input_size: int,
        output_size: int,
        bias: bool = True,
        input_is_parallel: bool = True,
        skip_bias_add: bool = False,
        params_dtype: Optional[torch.dtype] = None,
        reduce_results: bool = True,
        quant_config: Optional[QuantizationConfig] = None,
        prefix: str = "",
1156
1157
1158
        tp_rank: Optional[int] = None,
        tp_size: Optional[int] = None,
        use_presharded_weights: bool = False,
1159
1160
1161
1162
1163
1164
1165
1166
1167
    ):
        super().__init__(
            input_size, output_size, skip_bias_add, params_dtype, quant_config, prefix
        )

        self.input_is_parallel = input_is_parallel
        self.reduce_results = reduce_results

        # Divide the weight matrix along the last dimension.
1168
1169
1170
1171
1172
        if tp_rank is None:
            tp_rank = get_tensor_model_parallel_rank()
        if tp_size is None:
            tp_size = get_tensor_model_parallel_world_size()
        self.tp_rank, self.tp_size = tp_rank, tp_size
1173
1174
        self.input_size_per_partition = divide(input_size, self.tp_size)
        assert self.quant_method is not None
1175
        self.use_presharded_weights = use_presharded_weights
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209

        self.quant_method.create_weights(
            layer=self,
            input_size_per_partition=self.input_size_per_partition,
            output_partition_sizes=[self.output_size],
            input_size=self.input_size,
            output_size=self.output_size,
            params_dtype=self.params_dtype,
            weight_loader=(
                self.weight_loader_v2
                if self.quant_method.__class__.__name__ in WEIGHT_LOADER_V2_SUPPORTED
                else self.weight_loader
            ),
        )
        if not reduce_results and (bias and not skip_bias_add):
            raise ValueError(
                "When not reduce the results, adding bias to the "
                "results can lead to incorrect results"
            )

        if bias:
            self.bias = Parameter(torch.empty(self.output_size, dtype=params_dtype))
            set_weight_attrs(
                self.bias,
                {
                    "output_dim": 0,
                    "weight_loader": self.weight_loader,
                },
            )
        else:
            self.register_parameter("bias", None)

    def weight_loader(self, param: Parameter, loaded_weight: torch.Tensor):
        input_dim = getattr(param, "input_dim", None)
1210
        use_bitsandbytes_4bit = getattr(param, "use_bitsandbytes_4bit", False)
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221

        # Special case for GGUF
        is_gguf_weight = getattr(param, "is_gguf_weight", False)
        is_gguf_weight_type = getattr(param, "is_gguf_weight_type", False)
        if is_gguf_weight_type:
            param.weight_type = loaded_weight.item()

        # Materialize GGUF UninitializedParameter
        if is_gguf_weight and isinstance(param, UninitializedParameter):
            weight_shape = list(loaded_weight.shape)
            if input_dim:
1222
                weight_shape[input_dim] = weight_shape[input_dim] // self.tp_size
1223
1224
1225
            param.materialize(tuple(weight_shape), dtype=loaded_weight.dtype)

        param_data = param.data
1226
1227
        # bitsandbytes loads the weights of the specific portion
        # no need to narrow here
1228
1229
1230
1231
1232
        if (
            input_dim is not None
            and not use_bitsandbytes_4bit
            and not self.use_presharded_weights
        ):
1233
            shard_size = param_data.shape[input_dim]
1234
            start_idx = self.tp_rank * shard_size
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250

            if _is_cpu:
                from sglang.srt.model_loader.weight_utils import (
                    narrow_padded_param_and_loaded_weight,
                )

                param_data, loaded_weight = narrow_padded_param_and_loaded_weight(
                    param_data,
                    loaded_weight,
                    0,  # param_data_start
                    start_idx,
                    input_dim,
                    shard_size,
                )
            else:
                loaded_weight = loaded_weight.narrow(input_dim, start_idx, shard_size)
1251
1252
1253
1254
1255
1256

        # Special case for loading scales off disk, which often do not
        # have a shape (such as in the case of AutoFP8).
        if len(loaded_weight.shape) == 0:
            loaded_weight = loaded_weight.reshape(1)

1257
        assert param_data.shape == loaded_weight.shape
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
        param_data.copy_(loaded_weight)

    def weight_loader_v2(self, param: BasevLLMParameter, loaded_weight: torch.Tensor):

        # Special case for loading scales off disk, which often do not
        # have a shape (such as in the case of AutoFP8).
        if len(loaded_weight.shape) == 0:
            assert loaded_weight.numel() == 1
            loaded_weight = loaded_weight.reshape(1)

1268
        if isinstance(param, RowvLLMParameter):
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
            # This `BasevLLMParameter` is defined in sglang/srt/layers/parameter.py,
            # It supports additional parameters like tp_rank and use_presharded_weights.
            param.load_row_parallel_weight(
                loaded_weight,
                tp_rank=self.tp_rank,
                use_presharded_weights=self.use_presharded_weights,
            )
        else:
            # `params` is defined in `vllm/model_executor/parameter.py`,
            # It does not support additional parameters.
            param.load_row_parallel_weight(loaded_weight)
1280

1281
    def forward(self, input_, can_fuse_mlp_allreduce=False):
1282
1283
1284
1285
1286
1287
        if self.input_is_parallel:
            input_parallel = input_
        else:
            splitted_input = split_tensor_along_last_dim(
                input_, num_partitions=self.tp_size
            )
1288
            input_parallel = splitted_input[self.tp_rank].contiguous()
1289
1290
1291
1292
1293
1294
1295

        # Matrix multiply.
        assert self.quant_method is not None
        # Only fuse bias add into GEMM for rank 0 (this ensures that
        # bias will not get added more than once in TP>1 case)
        bias_ = None if (self.tp_rank > 0 or self.skip_bias_add) else self.bias
        output_parallel = self.quant_method.apply(self, input_parallel, bias=bias_)
1296
        if self.reduce_results and self.tp_size > 1 and not can_fuse_mlp_allreduce:
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
            output = tensor_model_parallel_all_reduce(output_parallel)
        else:
            output = output_parallel

        output_bias = self.bias if self.skip_bias_add else None

        return output, output_bias

    def extra_repr(self) -> str:
        s = f"input_features={self.input_size_per_partition}"
        s += f", output_features={self.output_size}"
        s += f", bias={self.bias is not None}"
        s += f", tp_size={self.tp_size}"
        s += f", reduce_results={self.reduce_results}"
        return s