radix_attention.py 6.09 KB
Newer Older
Lianmin Zheng's avatar
Lianmin Zheng committed
1
"""Radix attention."""
2

3
import numpy as np
4
import torch
Liangsheng Yin's avatar
Liangsheng Yin committed
5
6
from torch import nn

Lianmin Zheng's avatar
Lianmin Zheng committed
7
8
9
from sglang.srt.layers.context_flashattention_nopad import context_attention_fwd
from sglang.srt.layers.extend_attention import extend_attention_fwd
from sglang.srt.layers.token_attention import token_attention_fwd
10
from sglang.srt.managers.controller.model_runner import ForwardMode, InputMetadata
Lianmin Zheng's avatar
Lianmin Zheng committed
11
12
13


class RadixAttention(nn.Module):
14
    def __init__(
15
16
        self, num_heads: int, head_dim: int, scaling: float, num_kv_heads: int,
        layer_id: int, logit_cap: int = -1
17
    ):
Lianmin Zheng's avatar
Lianmin Zheng committed
18
19
20
21
22
23
        super().__init__()
        self.tp_q_head_num = num_heads
        self.tp_k_head_num = num_kv_heads
        self.tp_v_head_num = num_kv_heads
        self.head_dim = head_dim
        self.layer_id = layer_id
24
25

        assert np.allclose(scaling, 1.0 / (head_dim**0.5))
Lianmin Zheng's avatar
Lianmin Zheng committed
26

27
        from sglang.srt.managers.controller.model_runner import global_server_args_dict
Lianmin Zheng's avatar
Lianmin Zheng committed
28

29
        if global_server_args_dict.get("enable_flashinfer", False):
Lianmin Zheng's avatar
Lianmin Zheng committed
30
31
32
            self.prefill_forward = self.prefill_forward_flashinfer
            self.extend_forward = self.prefill_forward_flashinfer
            self.decode_forward = self.decode_forward_flashinfer
33
34
35
36
37
38
            # flashinfer only accepts a boolean logit_cap argument
            if logit_cap > 0:
                assert logit_cap == 30
                self.logit_cap = True
            else:
                self.logit_cap = False
Lianmin Zheng's avatar
Lianmin Zheng committed
39
40
41
42
        else:
            self.prefill_forward = self.prefill_forward_triton
            self.extend_forward = self.extend_forward_triton
            self.decode_forward = self.decode_forward_triton
43
            self.logit_cap = logit_cap
Lianmin Zheng's avatar
Lianmin Zheng committed
44
45
46
47
48
49
50
51
52
53
54
55

    def prefill_forward_triton(self, q, k, v, input_metadata: InputMetadata):
        o = torch.empty_like(q)

        context_attention_fwd(
            q.view(-1, self.tp_q_head_num, self.head_dim),
            k,
            v,
            o.view(-1, self.tp_q_head_num, self.head_dim),
            input_metadata.start_loc,
            input_metadata.seq_lens,
            input_metadata.max_seq_len,
56
            self.logit_cap,
Lianmin Zheng's avatar
Lianmin Zheng committed
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
        )
        self.store_kv_cache(k, v, input_metadata)

        return o

    def extend_forward_triton(self, q, k, v, input_metadata: InputMetadata):
        o = torch.empty_like(q)
        self.store_kv_cache(k, v, input_metadata)
        extend_attention_fwd(
            q.view(-1, self.tp_q_head_num, self.head_dim),
            k.contiguous(),
            v.contiguous(),
            o.view(-1, self.tp_q_head_num, self.head_dim),
            input_metadata.token_to_kv_pool.get_key_buffer(self.layer_id),
            input_metadata.token_to_kv_pool.get_value_buffer(self.layer_id),
            input_metadata.req_to_token_pool.req_to_token,
            input_metadata.req_pool_indices,
            input_metadata.start_loc,
            input_metadata.seq_lens,
            input_metadata.prefix_lens,
            input_metadata.extend_start_loc,
            input_metadata.extend_seq_lens,
            input_metadata.max_seq_len,
            input_metadata.max_extend_len,
81
            self.logit_cap,
Lianmin Zheng's avatar
Lianmin Zheng committed
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
        )

        return o

    def decode_forward_triton(self, q, k, v, input_metadata: InputMetadata):
        o = torch.empty_like(q)
        self.store_kv_cache(k, v, input_metadata)

        token_attention_fwd(
            q.view(-1, self.tp_q_head_num, self.head_dim),
            input_metadata.token_to_kv_pool.get_key_buffer(self.layer_id),
            input_metadata.token_to_kv_pool.get_value_buffer(self.layer_id),
            o.view(-1, self.tp_q_head_num, self.head_dim),
            input_metadata.req_to_token_pool.req_to_token,
            input_metadata.req_pool_indices,
            input_metadata.start_loc,
            input_metadata.seq_lens,
            input_metadata.max_seq_len,
            input_metadata.other_kv_index,
            input_metadata.total_num_tokens,
102
            self.logit_cap,
Lianmin Zheng's avatar
Lianmin Zheng committed
103
104
105
106
107
108
109
        )

        return o

    def prefill_forward_flashinfer(self, q, k, v, input_metadata: InputMetadata):
        self.store_kv_cache(k, v, input_metadata)

110
        o = input_metadata.flashinfer_prefill_wrapper.forward(
Lianmin Zheng's avatar
Lianmin Zheng committed
111
112
            q.contiguous().view(-1, self.tp_q_head_num, self.head_dim),
            input_metadata.token_to_kv_pool.kv_data[self.layer_id],
113
            logits_cap=self.logit_cap,
Lianmin Zheng's avatar
Lianmin Zheng committed
114
115
116
117
118
119
120
        )

        return o.view(-1, self.tp_q_head_num * self.head_dim)

    def decode_forward_flashinfer(self, q, k, v, input_metadata: InputMetadata):
        self.store_kv_cache(k, v, input_metadata)

121
        o = input_metadata.flashinfer_decode_wrapper.forward(
Lianmin Zheng's avatar
Lianmin Zheng committed
122
123
            q.contiguous().view(-1, self.tp_q_head_num, self.head_dim),
            input_metadata.token_to_kv_pool.kv_data[self.layer_id],
124
            logits_cap=self.logit_cap,
Lianmin Zheng's avatar
Lianmin Zheng committed
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
        )

        return o.view(-1, self.tp_q_head_num * self.head_dim)

    def forward(self, q, k, v, input_metadata: InputMetadata):
        k = k.view(-1, self.tp_k_head_num, self.head_dim)
        v = v.view(-1, self.tp_v_head_num, self.head_dim)

        if input_metadata.forward_mode == ForwardMode.PREFILL:
            return self.prefill_forward(q, k, v, input_metadata)
        elif input_metadata.forward_mode == ForwardMode.EXTEND:
            return self.extend_forward(q, k, v, input_metadata)
        elif input_metadata.forward_mode == ForwardMode.DECODE:
            return self.decode_forward(q, k, v, input_metadata)

    def store_kv_cache(self, cache_k, cache_v, input_metadata: InputMetadata):
        key_buffer = input_metadata.token_to_kv_pool.get_key_buffer(self.layer_id)
        value_buffer = input_metadata.token_to_kv_pool.get_value_buffer(self.layer_id)
        if input_metadata.out_cache_loc is not None:
            key_buffer[input_metadata.out_cache_loc] = cache_k
            value_buffer[input_metadata.out_cache_loc] = cache_v
        elif input_metadata.out_cache_cont_start is not None:
            key_buffer[
                input_metadata.out_cache_cont_start : input_metadata.out_cache_cont_end
            ] = cache_k
            value_buffer[
                input_metadata.out_cache_cont_start : input_metadata.out_cache_cont_end
            ] = cache_v
        else:
            raise RuntimeError()