fp8_utils.py 11.5 KB
Newer Older
HandH1998's avatar
HandH1998 committed
1
from typing import List, Optional, Tuple
HAI's avatar
HAI committed
2
3

import torch
HandH1998's avatar
HandH1998 committed
4
5

from sglang.srt.layers.quantization.fp8_kernel import (
6
    _enable_jit_deepgemm,
HandH1998's avatar
HandH1998 committed
7
    per_token_group_quant_fp8,
HandH1998's avatar
HandH1998 committed
8
    static_quant_fp8,
HandH1998's avatar
HandH1998 committed
9
10
    w8a8_block_fp8_matmul,
)
HandH1998's avatar
HandH1998 committed
11
12
13
14
from sglang.srt.utils import (
    get_bool_env_var,
    get_cuda_version,
    get_device_capability,
Lianmin Zheng's avatar
Lianmin Zheng committed
15
    is_cuda,
HandH1998's avatar
HandH1998 committed
16
17
18
    is_hip,
)

19
20
21
22
23
24
25
try:
    import vllm

    VLLM_AVAILABLE = True
except ImportError:
    VLLM_AVAILABLE = False

Lianmin Zheng's avatar
Lianmin Zheng committed
26
use_vllm_cutlass_w8a8_fp8_kernel = get_bool_env_var("USE_VLLM_CUTLASS_W8A8_FP8_KERNEL")
27

28
29
_is_hip = is_hip()
if _is_hip and get_bool_env_var("CK_MOE"):
yigex's avatar
yigex committed
30
31
    from aiter import gemm_a8w8_blockscale

Lianmin Zheng's avatar
Lianmin Zheng committed
32
_is_cuda = is_cuda()
33
34
if _is_cuda:
    from sgl_kernel import fp8_blockwise_scaled_mm
HAI's avatar
HAI committed
35

HandH1998's avatar
HandH1998 committed
36
37
    from sglang.srt.layers.quantization.fp8_kernel import sglang_per_token_quant_fp8

38
39
    if use_vllm_cutlass_w8a8_fp8_kernel and VLLM_AVAILABLE:
        from vllm import _custom_ops as ops
HandH1998's avatar
HandH1998 committed
40
41
42
    else:
        from sgl_kernel import fp8_scaled_mm

HandH1998's avatar
HandH1998 committed
43
44
45
46
# Input scaling factors are no longer optional in _scaled_mm starting
# from pytorch 2.5. Allocating a dummy tensor to pass as input_scale
TORCH_DEVICE_IDENTITY = torch.ones(1, dtype=torch.float32)

HandH1998's avatar
HandH1998 committed
47
48
49
50
51
52
53
54
55
56
57
58

def cutlass_fp8_supported():
    if not _is_cuda:
        return False
    major, minor = get_device_capability()
    cuda_version = get_cuda_version()
    if major >= 9:
        return cuda_version >= (12, 0)
    elif major == 8 and minor == 9:
        return cuda_version >= (12, 4)
    return False

HAI's avatar
HAI committed
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81

def normalize_e4m3fn_to_e4m3fnuz(
    weight: torch.Tensor,
    weight_scale: torch.Tensor,
    input_scale: Optional[torch.Tensor] = None,
) -> Tuple[torch.Tensor, torch.Tensor, Optional[torch.Tensor]]:
    assert weight.dtype == torch.float8_e4m3fn
    # The bits pattern 10000000(-128) represents zero in e4m3fn
    # but NaN in e4m3fnuz. So here we set it to 0.
    # https://onnx.ai/onnx/technical/float8.html
    weight_as_int8 = weight.view(torch.int8)
    ROCM_FP8_NAN_AS_INT = -128
    weight_as_int8[weight_as_int8 == ROCM_FP8_NAN_AS_INT] = 0
    weight = weight_as_int8.view(torch.float8_e4m3fnuz)

    # For the same bits representation, e4m3fnuz value is half of
    # the e4m3fn value, so we should double the scaling factor to
    # get the same dequantized value.
    # https://onnx.ai/onnx/technical/float8.html
    weight_scale = weight_scale * 2.0
    if input_scale is not None:
        input_scale = input_scale * 2.0
    return weight, weight_scale, input_scale
HandH1998's avatar
HandH1998 committed
82
83


84
def cutlass_block_fp8_supported() -> bool:
Lianmin Zheng's avatar
Lianmin Zheng committed
85
    if get_bool_env_var("SUPPORT_CUTLASS_BLOCK_FP8"):
86
        return False
87
88
89
90
91
92
93
94
95
96
97
98
    if _is_cuda:
        major, minor = torch.cuda.get_device_capability()
        sm_version = major * 10 + minor
        cuda_version = tuple(map(int, torch.version.cuda.split(".")))
        if cuda_version >= (12, 0) and sm_version >= 90:
            return True
    return False


CUTLASS_BLOCK_FP8_SUPPORTED = cutlass_block_fp8_supported()


HandH1998's avatar
HandH1998 committed
99
100
101
102
103
104
105
106
107
108
109
110
def apply_w8a8_block_fp8_linear(
    input: torch.Tensor,
    weight: torch.Tensor,
    block_size: List[int],
    weight_scale: torch.Tensor,
    input_scale: Optional[torch.Tensor] = None,
    bias: Optional[torch.Tensor] = None,
) -> torch.Tensor:
    assert input_scale is None
    # View input as 2D matrix for fp8 methods
    input_2d = input.view(-1, input.shape[-1])
    output_shape = [*input.shape[:-1], weight.shape[0]]
111
112
113
    # TODO: add more robust shape check here
    shape_supported_by_cutlass = (
        weight.shape[0] % 128 == 0 and weight.shape[1] % 128 == 0
HandH1998's avatar
HandH1998 committed
114
    )
115
116
117
118
119
120
121
    if CUTLASS_BLOCK_FP8_SUPPORTED and shape_supported_by_cutlass:
        q_input, x_scale = per_token_group_quant_fp8(
            input_2d, block_size[1], column_major_scales=True
        )
        output = fp8_blockwise_scaled_mm(
            q_input, weight.T, x_scale, weight_scale.T, out_dtype=input.dtype
        )
122
    elif _is_hip and get_bool_env_var("CK_MOE"):
yigex's avatar
yigex committed
123
124
125
126
127
128
129
130
131
        q_input, x_scale = per_token_group_quant_fp8(
            input_2d, block_size[1], column_major_scales=False
        )
        output = torch.zeros(
            [q_input.shape[0], weight.shape[0]],
            dtype=input.dtype,
            device=q_input.device,
        )
        gemm_a8w8_blockscale(q_input, weight, x_scale, weight_scale, output)
132
    else:
133
134
135
136
137
138
139
140
141
142
143
        if _enable_jit_deepgemm:
            q_input, x_scale = per_token_group_quant_fp8(
                input_2d,
                block_size[1],
                column_major_scales=True,
                scale_tma_aligned=True,
            )
        else:
            q_input, x_scale = per_token_group_quant_fp8(
                input_2d, block_size[1], column_major_scales=False
            )
144
145
146
        output = w8a8_block_fp8_matmul(
            q_input, weight, x_scale, weight_scale, block_size, output_dtype=input.dtype
        )
HandH1998's avatar
HandH1998 committed
147
148
149
150
151
152
153
154
155
156
157
158
159

    if bias is not None:
        output = output + bias
    return output.to(dtype=input.dtype).view(*output_shape)


def input_to_float8(
    x: torch.Tensor, dtype: torch.dtype = torch.float8_e4m3fn
) -> Tuple[torch.Tensor, torch.Tensor]:
    """This function quantizes input values to float8 values with tensor-wise quantization."""
    finfo = torch.finfo(dtype)
    min_val, max_val = x.aminmax()
    amax = torch.maximum(min_val.abs(), max_val.abs()).clamp(min=1e-12)
160
    fp8_max = finfo.max
161
    if _is_hip:
162
163
164
        fp8_max = 224.0
    scale = fp8_max / amax
    x_scl_sat = (x * scale).clamp(min=-fp8_max, max=fp8_max)
HandH1998's avatar
HandH1998 committed
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
    return x_scl_sat.to(dtype).contiguous(), scale.float().reciprocal()


def block_quant_to_tensor_quant(
    x_q_block: torch.Tensor,
    x_s: torch.Tensor,
    block_size: List[int],
) -> Tuple[torch.Tensor, torch.Tensor]:
    """This function converts block-wise quantization to tensor-wise quantization.
    The inputs are block-wise quantization tensor `x_q_block`, block-wise quantization scale
    and the block size.
    The outputs are tensor-wise quantization tensor and tensor-wise quantization scale.
    Note only float8 is supported for now.
    """
    block_n, block_k = block_size[0], block_size[1]
    n, k = x_q_block.shape
    n_tiles = (n + block_n - 1) // block_n
    k_tiles = (k + block_k - 1) // block_k
    assert n_tiles == x_s.shape[0]
    assert k_tiles == x_s.shape[1]

    x_dq_block = x_q_block.to(torch.float32)

    x_dq_block_tiles = [
        [
            x_dq_block[
                j * block_n : min((j + 1) * block_n, n),
                i * block_k : min((i + 1) * block_k, k),
            ]
            for i in range(k_tiles)
        ]
        for j in range(n_tiles)
    ]

    for i in range(k_tiles):
        for j in range(n_tiles):
            x_dq_block_tiles[j][i][:, :] = x_dq_block_tiles[j][i] * x_s[j][i]

    x_q_tensor, scale = input_to_float8(x_dq_block, dtype=x_q_block.dtype)
    return x_q_tensor, scale


HandH1998's avatar
HandH1998 committed
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
def apply_fp8_linear(
    input: torch.Tensor,
    weight: torch.Tensor,
    weight_scale: torch.Tensor,
    input_scale: Optional[torch.Tensor] = None,
    input_scale_ub: Optional[torch.Tensor] = None,
    bias: Optional[torch.Tensor] = None,
    cutlass_fp8_supported: bool = True,
    use_per_token_if_dynamic: bool = False,
) -> torch.Tensor:
    # View input as 2D matrix for fp8 methods
    input_2d = input.view(-1, input.shape[-1])
    output_shape = [*input.shape[:-1], weight.shape[1]]

    # cutlass w8a8 fp8 sgl-kernel only supports per-token scale
    if input_scale is not None:
        assert input_scale.numel() == 1
        # broadcast per-tensor scale to per-token scale when supporting cutlass
        qinput, x_scale = static_quant_fp8(
            input_2d, input_scale, repeat_scale=cutlass_fp8_supported
        )
    else:
        # default use per-token quantization if dynamic
        if _is_cuda:
            qinput, x_scale = sglang_per_token_quant_fp8(input_2d)
        else:
            qinput, x_scale = per_token_group_quant_fp8(
                input_2d, group_size=input_2d.shape[1]
            )

    if cutlass_fp8_supported:
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
        try:
            if VLLM_AVAILABLE and use_vllm_cutlass_w8a8_fp8_kernel:
                # Fall back to vllm cutlass w8a8 fp8 kernel
                output = ops.cutlass_scaled_mm(
                    qinput,
                    weight,
                    out_dtype=input.dtype,
                    scale_a=x_scale,
                    scale_b=weight_scale,
                    bias=bias,
                )
            else:
                assert (
                    weight_scale.numel() == weight.shape[1]
                ), "cutlass w8a8 fp8 sgl-kernel only supports per-channel scale"
                output = fp8_scaled_mm(
                    qinput,
                    weight,
                    x_scale,
                    weight_scale,
                    out_dtype=input.dtype,
                    bias=bias,
                )
            return output.view(*output_shape)
        except (ImportError, NameError, AttributeError):
            pass
HandH1998's avatar
HandH1998 committed
264
265
266

    # torch.scaled_mm supports per tensor weights + activations only
    # so fallback to naive if per channel or per token
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
    else:
        per_tensor_weights = weight_scale.numel() == 1
        per_tensor_activations = x_scale.numel() == 1

        if per_tensor_weights and per_tensor_activations:
            # Fused GEMM_DQ
            output = torch._scaled_mm(
                qinput,
                weight,
                out_dtype=input.dtype,
                scale_a=x_scale,
                scale_b=weight_scale,
                bias=bias,
            )
            # A fix for discrepancy in scaled_mm which returns tuple
            # for torch < 2.5 and a single value in torch >= 2.5
            if type(output) is tuple and len(output) == 2:
                output = output[0]
HandH1998's avatar
HandH1998 committed
285

286
            return torch.narrow(output, 0, 0, input_2d.shape[0]).view(*output_shape)
HandH1998's avatar
HandH1998 committed
287

288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
        else:
            # Fallback for channelwise case, where we use unfused DQ
            # due to limitations with scaled_mm

            # Symmetric quantized GEMM by definition computes the following:
            #   C = (s_x * X) (s_w * W) + bias
            # This is equivalent to dequantizing the weights and activations
            # before applying a GEMM.
            #
            # In order to compute quantized operands, a quantized kernel
            # will rewrite the above like so:
            #   C = s_w * s_x * (X * W) + bias
            #
            # For the scaled_mm fallback case, we break this down, since it
            # does not support s_w being a vector.

            # Making sure the dummy tensor is on the same device as the weight
            global TORCH_DEVICE_IDENTITY
            if TORCH_DEVICE_IDENTITY.device != weight.device:
                TORCH_DEVICE_IDENTITY = TORCH_DEVICE_IDENTITY.to(weight.device)

            # GEMM
            # This computes C = (X * W).
            # Output in fp32 to allow subsequent ops to happen in-place
            output = torch._scaled_mm(
                qinput,
                weight,
                scale_a=TORCH_DEVICE_IDENTITY,
                scale_b=TORCH_DEVICE_IDENTITY,
                out_dtype=torch.float32,
            )
            # A fix for discrepancy in scaled_mm which returns tuple
            # for torch < 2.5 and a single value in torch >= 2.5
            if type(output) is tuple and len(output) == 2:
                output = output[0]
            # Unpad (undo num_token_padding)
            output = torch.narrow(output, 0, 0, input_2d.shape[0])
            x_scale = torch.narrow(x_scale, 0, 0, input_2d.shape[0])

            # DQ
            # C = sw * sx * (X * W) + bias
            output = output * x_scale * weight_scale.t()
            if bias is not None:
                output = output + bias
            return output.to(dtype=input.dtype).view(*output_shape)