weight_utils.py 44 KB
Newer Older
1
2
3
# Adapted from https://github.com/vllm-project/vllm/blob/v0.6.4.post1/vllm/model_executor/model_loader/weight_utils.py

"""Utilities for downloading and initializing model weights."""
4
import concurrent.futures
5
6
7
8
9
10
import fnmatch
import glob
import hashlib
import json
import logging
import os
11
import re
12
13
import tempfile
from collections import defaultdict
14
15
16
17
18
19
20
21
22
23
24
from typing import (
    Any,
    Callable,
    Dict,
    Generator,
    Iterable,
    List,
    Optional,
    Tuple,
    Union,
)
25
26
27
28

import filelock
import huggingface_hub.constants
import numpy as np
29
import safetensors.torch
30
31
import torch
from huggingface_hub import HfFileSystem, hf_hub_download, snapshot_download
32
from pydantic import BaseModel, ConfigDict, ValidationInfo, model_validator
33
34
35
36
from tqdm.auto import tqdm

from sglang.srt.configs.load_config import LoadConfig
from sglang.srt.configs.model_config import ModelConfig
37
from sglang.srt.distributed import get_tensor_model_parallel_rank
Yi Zhang's avatar
Yi Zhang committed
38
from sglang.srt.layers.dp_attention import get_attention_tp_rank
39
from sglang.srt.layers.quantization import QuantizationConfig, get_quantization_config
40
41
42
43
from sglang.srt.layers.quantization.modelopt_quant import (
    ModelOptFp4Config,
    ModelOptFp8Config,
)
44
from sglang.srt.utils import find_local_repo_dir, log_info_on_rank0, print_warning_once
45
from sglang.utils import is_in_ci
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102

logger = logging.getLogger(__name__)

# use system-level temp directory for file locks, so that multiple users
# can share the same lock without error.
# lock files in the temp directory will be automatically deleted when the
# system reboots, so users will not complain about annoying lock files
temp_dir = tempfile.gettempdir()


def enable_hf_transfer():
    """automatically activates hf_transfer"""
    if "HF_HUB_ENABLE_HF_TRANSFER" not in os.environ:
        try:
            # enable hf hub transfer if available
            import hf_transfer  # type: ignore # noqa

            huggingface_hub.constants.HF_HUB_ENABLE_HF_TRANSFER = True
        except ImportError:
            pass


enable_hf_transfer()


class DisabledTqdm(tqdm):
    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs, disable=True)


def get_lock(model_name_or_path: str, cache_dir: Optional[str] = None):
    lock_dir = cache_dir or temp_dir
    os.makedirs(os.path.dirname(lock_dir), exist_ok=True)
    model_name = model_name_or_path.replace("/", "-")
    hash_name = hashlib.sha256(model_name.encode()).hexdigest()
    # add hash to avoid conflict with old users' lock files
    lock_file_name = hash_name + model_name + ".lock"
    # mode 0o666 is required for the filelock to be shared across users
    lock = filelock.FileLock(os.path.join(lock_dir, lock_file_name), mode=0o666)
    return lock


def _shared_pointers(tensors):
    ptrs = defaultdict(list)
    for k, v in tensors.items():
        ptrs[v.data_ptr()].append(k)
    failing = []
    for _, names in ptrs.items():
        if len(names) > 1:
            failing.append(names)
    return failing


def convert_bin_to_safetensor_file(
    pt_filename: str,
    sf_filename: str,
) -> None:
103
    loaded = torch.load(pt_filename, map_location="cpu", weights_only=True)
104
105
106
107
108
109
110
111
112
113
114
115
    if "state_dict" in loaded:
        loaded = loaded["state_dict"]
    shared = _shared_pointers(loaded)
    for shared_weights in shared:
        for name in shared_weights[1:]:
            loaded.pop(name)

    # For tensors to be contiguous
    loaded = {k: v.contiguous() for k, v in loaded.items()}

    dirname = os.path.dirname(sf_filename)
    os.makedirs(dirname, exist_ok=True)
116
117
118

    from safetensors.torch import save_file

119
120
121
122
123
124
125
126
127
128
129
130
131
132
    save_file(loaded, sf_filename, metadata={"format": "pt"})

    # check file size
    sf_size = os.stat(sf_filename).st_size
    pt_size = os.stat(pt_filename).st_size
    if (sf_size - pt_size) / pt_size > 0.01:
        raise RuntimeError(
            f"""The file size different is more than 1%:
         - {sf_filename}: {sf_size}
         - {pt_filename}: {pt_size}
         """
        )

    # check if the tensors are the same
133
    reloaded = safetensors.torch.load_file(sf_filename)
134
135
136
137
138
139
140
    for k in loaded:
        pt_tensor = loaded[k]
        sf_tensor = reloaded[k]
        if not torch.equal(pt_tensor, sf_tensor):
            raise RuntimeError(f"The output tensors do not match for key {k}")


141
142
143
144
145
146
147
148
149
150
151
152
153
154
def replace_prefix(key: str, prefix_mapping: dict[str, str]) -> str:
    for prefix, new_prefix in prefix_mapping.items():
        if key.startswith(prefix):
            key = key.replace(prefix, new_prefix, 1)
    return key


def replace_substrings(key: str, substring_mapping: dict[str, str]) -> str:
    for substr, new_substr in substring_mapping.items():
        if substr in key:
            key = key.replace(substr, new_substr)
    return key


155
156
# TODO(woosuk): Move this to other place.
def get_quant_config(
157
158
159
    model_config: ModelConfig,
    load_config: LoadConfig,
    packed_modules_mapping: Dict[str, List[str]],
160
    remap_prefix: Dict[str, str] | None = None,
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
) -> QuantizationConfig:
    quant_cls = get_quantization_config(model_config.quantization)

    # GGUF doesn't have config file
    if model_config.quantization == "gguf":
        return quant_cls.from_config({})

    # Read the quantization config from the HF model config, if available.
    hf_quant_config = getattr(model_config.hf_config, "quantization_config", None)
    # some vision model may keep quantization_config in their text_config
    hf_text_config = getattr(model_config.hf_config, "text_config", None)
    if hf_quant_config is None and hf_text_config is not None:
        hf_quant_config = getattr(hf_text_config, "quantization_config", None)
    if hf_quant_config is None:
        # compressed-tensors uses a compressions_config
        hf_quant_config = getattr(model_config.hf_config, "compression_config", None)
    if hf_quant_config is not None:
178
        hf_quant_config["packed_modules_mapping"] = packed_modules_mapping
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
        return quant_cls.from_config(hf_quant_config)
    # In case of bitsandbytes/QLoRA, get quant config from the adapter model.
    if model_config.quantization == "bitsandbytes":
        if (
            not load_config.model_loader_extra_config
            or "qlora_adapter_name_or_path" not in load_config.model_loader_extra_config
        ):
            return quant_cls.from_config({"adapter_name_or_path": ""})
        model_name_or_path = load_config.model_loader_extra_config[
            "qlora_adapter_name_or_path"
        ]

    else:
        model_name_or_path = model_config.model_path
    is_local = os.path.isdir(model_name_or_path)
    if not is_local:
        # Download the config files.
        with get_lock(model_name_or_path, load_config.download_dir):
            hf_folder = snapshot_download(
                model_name_or_path,
                revision=model_config.revision,
                allow_patterns="*.json",
                cache_dir=load_config.download_dir,
                local_files_only=huggingface_hub.constants.HF_HUB_OFFLINE,
                tqdm_class=DisabledTqdm,
            )
    else:
        hf_folder = model_name_or_path

    possible_config_filenames = quant_cls.get_config_filenames()

    # If the quantization config is not found, use the default config.
    if not possible_config_filenames:
        return quant_cls()

    config_files = glob.glob(os.path.join(hf_folder, "*.json"))

    quant_config_files = [
        f for f in config_files if any(f.endswith(x) for x in possible_config_filenames)
    ]
    if len(quant_config_files) == 0:
        raise ValueError(f"Cannot find the config file for {model_config.quantization}")
    if len(quant_config_files) > 1:
        raise ValueError(
            f"Found multiple config files for {model_config.quantization}: "
            f"{quant_config_files}"
        )

    quant_config_file = quant_config_files[0]
    with open(quant_config_file) as f:
        config = json.load(f)
230
231
232
233
234
235
236
        if remap_prefix is not None:
            exclude_modules = [
                replace_prefix(key, remap_prefix)
                for key in config["quantization"]["exclude_modules"]
            ]
            config["quantization"]["exclude_modules"] = exclude_modules
        config["packed_modules_mapping"] = packed_modules_mapping
237
238
239

        if model_config.quantization == "bitsandbytes":
            config["adapter_name_or_path"] = model_name_or_path
240
241
242
243
244
        elif model_config.quantization.startswith("modelopt") and (
            config["producer"]["name"].startswith("modelopt")
        ):
            quant_algo = config["quantization"]["quant_algo"]
            if quant_algo is None:
lukec's avatar
lukec committed
245
                # (yizhang2077) workaround for nvidia/Llama-4-Maverick-17B-128E-Eagle3
246
247
248
249
250
251
252
253
254
255
256
                if model_config.hf_config.architectures[0] != "LlamaForCausalLMEagle3":
                    raise ValueError(
                        f"Invalid quant_config, quantization method: {model_config.quantization},"
                        f"hf architectures: {model_config.hf_config.architectures[0]}. "
                    )
                return None
            elif quant_algo == "FP8" or model_config.quantization == "modelopt_fp8":
                return ModelOptFp8Config.from_config(config)
            elif "FP4" in quant_algo:
                return ModelOptFp4Config.from_config(config)
        return quant_cls.from_config(config)
257
258


259
260
261
262
263
264
def find_local_hf_snapshot_dir(
    model_name_or_path: str,
    cache_dir: Optional[str],
    allow_patterns: List[str],
    revision: Optional[str] = None,
) -> Optional[str]:
265
266
    """If the weights are already local, skip downloading and returns the path."""
    if os.path.isdir(model_name_or_path):
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
        return None

    found_local_snapshot_dir = None

    # Check custom cache_dir (if provided)
    if cache_dir:
        try:
            repo_folder = os.path.join(
                cache_dir,
                huggingface_hub.constants.REPO_ID_SEPARATOR.join(
                    ["models", *model_name_or_path.split("/")]
                ),
            )
            rev_to_use = revision
            if not rev_to_use:
                ref_main = os.path.join(repo_folder, "refs", "main")
                if os.path.isfile(ref_main):
                    with open(ref_main) as f:
                        rev_to_use = f.read().strip()
            if rev_to_use:
                rev_dir = os.path.join(repo_folder, "snapshots", rev_to_use)
                if os.path.isdir(rev_dir):
                    found_local_snapshot_dir = rev_dir
        except Exception as e:
            logger.warning(
                "Failed to find local snapshot in custom cache_dir %s: %s",
                cache_dir,
                e,
            )

    # Check default HF cache as well
    if not found_local_snapshot_dir:
        try:
            rev_dir = find_local_repo_dir(model_name_or_path, revision)
            if rev_dir and os.path.isdir(rev_dir):
                found_local_snapshot_dir = rev_dir
        except Exception as e:
            logger.warning("Failed to find local snapshot in default HF cache: %s", e)

306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
    # if any incomplete file exists, force re-download by returning None
    if found_local_snapshot_dir:
        repo_folder = os.path.abspath(
            os.path.join(found_local_snapshot_dir, "..", "..")
        )
        blobs_dir = os.path.join(repo_folder, "blobs")
        if os.path.isdir(blobs_dir) and glob.glob(
            os.path.join(blobs_dir, "*.incomplete")
        ):
            logger.info(
                "Found .incomplete files in %s for %s. "
                "Considering local snapshot incomplete.",
                blobs_dir,
                model_name_or_path,
            )
            return None

    # if local snapshot exists, validate it contains at least one weight file
324
325
326
327
328
329
330
    # matching allow_patterns before skipping download.
    if found_local_snapshot_dir is None:
        return None

    local_weight_files: List[str] = []
    try:
        for pattern in allow_patterns:
331
332
333
334
335
336
            matched_files = glob.glob(os.path.join(found_local_snapshot_dir, pattern))
            for f in matched_files:
                # os.path.exists returns False for broken symlinks.
                if not os.path.exists(f):
                    continue
                local_weight_files.append(f)
337
338
339
340
341
342
343
344
345
    except Exception as e:
        logger.warning(
            "Failed to scan local snapshot %s with patterns %s: %s",
            found_local_snapshot_dir,
            allow_patterns,
            e,
        )
        local_weight_files = []

346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
    # After we have a list of valid files, check for sharded model completeness.
    # Check if all safetensors with name model-{i}-of-{n}.safetensors exists
    checked_sharded_model = False
    for f in local_weight_files:
        if checked_sharded_model:
            break
        base_name = os.path.basename(f)
        # Regex for files like model-00001-of-00009.safetensors
        match = re.match(r"(.*?)-([0-9]+)-of-([0-9]+)\.(.*)", base_name)
        if match:
            prefix = match.group(1)
            shard_id_str = match.group(2)
            total_shards_str = match.group(3)
            suffix = match.group(4)
            total_shards = int(total_shards_str)

            # Check if all shards are present
            missing_shards = []
            for i in range(1, total_shards + 1):
                # Reconstruct shard name, preserving padding of original shard id
                shard_name = (
                    f"{prefix}-{i:0{len(shard_id_str)}d}-of-{total_shards_str}.{suffix}"
                )
                expected_path = os.path.join(found_local_snapshot_dir, shard_name)
                # os.path.exists returns False for broken symlinks, which is desired.
                if not os.path.exists(expected_path):
                    missing_shards.append(shard_name)

            if missing_shards:
                logger.info(
                    "Found incomplete sharded model %s. Missing shards: %s. "
                    "Will attempt download.",
                    model_name_or_path,
                    missing_shards,
                )
                return None

            # If we found and verified one set of shards, we are done.
            checked_sharded_model = True

386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
    if len(local_weight_files) > 0:
        logger.info(
            "Found local HF snapshot for %s at %s; skipping download.",
            model_name_or_path,
            found_local_snapshot_dir,
        )
        return found_local_snapshot_dir
    else:
        logger.info(
            "Local HF snapshot at %s has no files matching %s; will attempt download.",
            found_local_snapshot_dir,
            allow_patterns,
        )
    return None


402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
def download_weights_from_hf(
    model_name_or_path: str,
    cache_dir: Optional[str],
    allow_patterns: List[str],
    revision: Optional[str] = None,
    ignore_patterns: Optional[Union[str, List[str]]] = None,
) -> str:
    """Download model weights from Hugging Face Hub.

    Args:
        model_name_or_path (str): The model name or path.
        cache_dir (Optional[str]): The cache directory to store the model
            weights. If None, will use HF defaults.
        allow_patterns (List[str]): The allowed patterns for the
            weight files. Files matched by any of the patterns will be
            downloaded.
        revision (Optional[str]): The revision of the model.
        ignore_patterns (Optional[Union[str, List[str]]]): The patterns to
            filter out the weight files. Files matched by any of the patterns
            will be ignored.

    Returns:
        str: The path to the downloaded model weights.
    """
426

427
428
429
430
431
432
433
434
    if is_in_ci():
        # If the weights are already local, skip downloading and returns the path.
        # This is used to skip too-many Huggingface API calls in CI.
        path = find_local_hf_snapshot_dir(
            model_name_or_path, cache_dir, allow_patterns, revision
        )
        if path is not None:
            return path
435

436
437
438
439
440
441
442
443
444
445
446
447
    if not huggingface_hub.constants.HF_HUB_OFFLINE:
        # Before we download we look at that is available:
        fs = HfFileSystem()
        file_list = fs.ls(model_name_or_path, detail=False, revision=revision)

        # depending on what is available we download different things
        for pattern in allow_patterns:
            matching = fnmatch.filter(file_list, pattern)
            if len(matching) > 0:
                allow_patterns = [pattern]
                break

448
    log_info_on_rank0(logger, f"Using model weights format {allow_patterns}")
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
    # Use file lock to prevent multiple processes from
    # downloading the same model weights at the same time.
    with get_lock(model_name_or_path, cache_dir):
        hf_folder = snapshot_download(
            model_name_or_path,
            allow_patterns=allow_patterns,
            ignore_patterns=ignore_patterns,
            cache_dir=cache_dir,
            tqdm_class=DisabledTqdm,
            revision=revision,
            local_files_only=huggingface_hub.constants.HF_HUB_OFFLINE,
        )
    return hf_folder


def download_safetensors_index_file_from_hf(
    model_name_or_path: str,
    index_file: str,
    cache_dir: Optional[str],
    revision: Optional[str] = None,
) -> None:
    """Download hf safetensors index file from Hugging Face Hub.

    Args:
        model_name_or_path (str): The model name or path.
        cache_dir (Optional[str]): The cache directory to store the model
            weights. If None, will use HF defaults.
        revision (Optional[str]): The revision of the model.
    """
    # Use file lock to prevent multiple processes from
    # downloading the same model weights at the same time.
    with get_lock(model_name_or_path, cache_dir):
        try:
            # Download the safetensors index file.
            hf_hub_download(
                repo_id=model_name_or_path,
                filename=index_file,
                cache_dir=cache_dir,
                revision=revision,
                local_files_only=huggingface_hub.constants.HF_HUB_OFFLINE,
            )
        # If file not found on remote or locally, we should not fail since
        # only some models will have index_file.
        except huggingface_hub.utils.EntryNotFoundError:
            logger.info("No %s found in remote.", index_file)
        except huggingface_hub.utils.LocalEntryNotFoundError:
            logger.info("No %s found in local cache.", index_file)


# For models like Mistral-7B-v0.3, there are both sharded
# safetensors files and a consolidated safetensors file.
# Passing both of these to the weight loader functionality breaks.
# So, we use the index_file to
# look up which safetensors files should be used.
def filter_duplicate_safetensors_files(
    hf_weights_files: List[str], hf_folder: str, index_file: str
) -> List[str]:
    # model.safetensors.index.json is a mapping from keys in the
    # torch state_dict to safetensors file holding that weight.
    index_file_name = os.path.join(hf_folder, index_file)
    if not os.path.isfile(index_file_name):
        return hf_weights_files

    # Iterate through the weight_map (weight_name: safetensors files)
    # to identify weights that we should use.
    with open(index_file_name) as f:
        weight_map = json.load(f)["weight_map"]
    weight_files_in_index = set()
    for weight_name in weight_map:
        weight_files_in_index.add(os.path.join(hf_folder, weight_map[weight_name]))
    # Filter out any fields that are not found in the index file.
    hf_weights_files = [f for f in hf_weights_files if f in weight_files_in_index]
    return hf_weights_files


def filter_files_not_needed_for_inference(hf_weights_files: List[str]) -> List[str]:
    """
    Exclude files that are not needed for inference.

    See https://github.com/huggingface/transformers/blob/v4.34.0/src/transformers/trainer.py#L227-L233
    """
    blacklist = [
        "training_args.bin",
        "optimizer.bin",
        "optimizer.pt",
        "scheduler.pt",
        "scaler.pt",
    ]
    hf_weights_files = [
        f for f in hf_weights_files if not any(f.endswith(x) for x in blacklist)
    ]
    return hf_weights_files


# explicitly use pure text format, with a newline at the end
# this makes it impossible to see the animation in the progress bar
# but will avoid messing up with ray or multiprocessing, which wraps
# each line of output with some prefix.
_BAR_FORMAT = "{desc}: {percentage:3.0f}% Completed | {n_fmt}/{total_fmt} [{elapsed}<{remaining}, {rate_fmt}]\n"  # noqa: E501


def np_cache_weights_iterator(
    model_name_or_path: str,
    cache_dir: Optional[str],
    hf_folder: str,
    hf_weights_files: List[str],
) -> Generator[Tuple[str, torch.Tensor], None, None]:
    """Iterate over the weights in the model np files.

    Will dump the model weights to numpy files if they are not already dumped.
    """
    enable_tqdm = (
        not torch.distributed.is_initialized() or torch.distributed.get_rank() == 0
    )
    # Convert the model weights from torch tensors to numpy arrays for
    # faster loading.
    np_folder = os.path.join(hf_folder, "np")
    os.makedirs(np_folder, exist_ok=True)
    weight_names_file = os.path.join(np_folder, "weight_names.json")
    # Use file lock to prevent multiple processes from
    # dumping the same model weights to numpy at the same time.
    with get_lock(model_name_or_path, cache_dir):
        if not os.path.exists(weight_names_file):
            weight_names: List[str] = []
            for bin_file in tqdm(
                hf_weights_files,
                desc="Loading np_cache checkpoint shards",
                disable=not enable_tqdm,
                bar_format=_BAR_FORMAT,
            ):
579
                state = torch.load(bin_file, map_location="cpu", weights_only=True)
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
                for name, param in state.items():
                    param_path = os.path.join(np_folder, name)
                    with open(param_path, "wb") as f:
                        np.save(f, param.cpu().detach().numpy())
                    weight_names.append(name)
            with open(weight_names_file, "w") as f:
                json.dump(weight_names, f)

    with open(weight_names_file) as f:
        weight_names = json.load(f)

    for name in weight_names:
        param_path = os.path.join(np_folder, name)
        with open(param_path, "rb") as f:
            param = np.load(f)
        yield name, torch.from_numpy(param)


598
599
600
601
602
603
604
605
606
607
608
609
def decrypt(fn, key):
    raise NotImplementedError()


def safetensors_encrypted_weights_iterator(
    hf_weights_files: List[str],
    is_all_weights_sharded: bool = False,
    decryption_key: Optional[str] = None,
):
    raise NotImplementedError()


610
611
def safetensors_weights_iterator(
    hf_weights_files: List[str],
612
    is_all_weights_sharded: bool = False,
613
    decryption_key: Optional[str] = None,
614
    disable_mmap: bool = False,
615
) -> Generator[Tuple[str, torch.Tensor], None, None]:
616
617
618
619
620
    """Iterate over the weights in the model safetensor files.

    If is_all_weights_sharded is True, it uses more optimize read by reading an
    entire file instead of reading each tensor one by one.
    """
621
622
623
624
625
626
    if decryption_key:
        yield from safetensors_encrypted_weights_iterator(
            hf_weights_files, is_all_weights_sharded, decryption_key
        )
        return

627
628
629
630
631
632
633
634
635
    enable_tqdm = (
        not torch.distributed.is_initialized() or torch.distributed.get_rank() == 0
    )
    for st_file in tqdm(
        hf_weights_files,
        desc="Loading safetensors checkpoint shards",
        disable=not enable_tqdm,
        bar_format=_BAR_FORMAT,
    ):
636
637
638
        if disable_mmap:
            with open(st_file, "rb") as f:
                result = safetensors.torch.load(f.read())
639
640
                for name, param in result.items():
                    yield name, param
641
        else:
642
643
644
            with safetensors.safe_open(st_file, framework="pt", device="cpu") as f:
                for name in f.keys():
                    yield name, f.get_tensor(name)
645
646


647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
def multi_thread_safetensors_weights_iterator(
    hf_weights_files: List[str],
    is_all_weights_sharded: bool = False,
    decryption_key: Optional[str] = None,
    max_workers: int = 4,
    disable_mmap: bool = False,
) -> Generator[Tuple[str, torch.Tensor], None, None]:
    """Multi-Thread iterate over the weights in the model safetensor files.

    If is_all_weights_sharded is True, it uses more optimize read by reading an
    entire file instead of reading each tensor one by one.
    """
    if decryption_key:
        logger.warning(
            "Multi-Thread loading is not working for encrypted safetensor weights."
        )
        yield from safetensors_encrypted_weights_iterator(
            hf_weights_files, is_all_weights_sharded, decryption_key
        )
        return

    enable_tqdm = (
        not torch.distributed.is_initialized() or torch.distributed.get_rank() == 0
    )

    def _load_file(st_file: str):
        if disable_mmap:
            with open(st_file, "rb") as f:
                result = safetensors.torch.load(f.read())
        else:
677
678
            with safetensors.safe_open(st_file, framework="pt", device="cpu") as f:
                result = {k: f.get_tensor(k) for k in f.keys()}
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

        return result

    with concurrent.futures.ThreadPoolExecutor(max_workers=max_workers) as executor:
        futures = [executor.submit(_load_file, st_file) for st_file in hf_weights_files]

        if enable_tqdm:
            futures_iter = tqdm(
                concurrent.futures.as_completed(futures),
                total=len(hf_weights_files),
                desc="Multi-thread loading shards",
                disable=not enable_tqdm,
                bar_format=_BAR_FORMAT,
            )
        else:
            futures_iter = concurrent.futures.as_completed(futures)

        for future in futures_iter:
            state_dict = future.result()
            for name, param in state_dict.items():
                yield name, param


702
703
704
705
706
707
708
709
710
711
712
713
714
def pt_weights_iterator(
    hf_weights_files: List[str],
) -> Generator[Tuple[str, torch.Tensor], None, None]:
    """Iterate over the weights in the model bin/pt files."""
    enable_tqdm = (
        not torch.distributed.is_initialized() or torch.distributed.get_rank() == 0
    )
    for bin_file in tqdm(
        hf_weights_files,
        desc="Loading pt checkpoint shards",
        disable=not enable_tqdm,
        bar_format=_BAR_FORMAT,
    ):
715
        state = torch.load(bin_file, map_location="cpu", weights_only=True)
716
717
718
719
        yield from state.items()
        del state


720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
def multi_thread_pt_weights_iterator(
    hf_weights_files: List[str],
    max_workers: int = 4,
) -> Generator[Tuple[str, torch.Tensor], None, None]:
    """Multi-Thread iterate over the weights in the model bin/pt files."""
    enable_tqdm = (
        not torch.distributed.is_initialized() or torch.distributed.get_rank() == 0
    )

    def _load_file(bin_file: str):
        return torch.load(bin_file, map_location="cpu", weights_only=True)

    with concurrent.futures.ThreadPoolExecutor(max_workers=max_workers) as executor:
        futures = [
            executor.submit(_load_file, bin_file) for bin_file in hf_weights_files
        ]

        if enable_tqdm:
            futures_iter = tqdm(
                concurrent.futures.as_completed(futures),
                total=len(hf_weights_files),
                desc="Multi-thread loading pt checkpoint shards",
                disable=not enable_tqdm,
                bar_format=_BAR_FORMAT,
            )
        else:
            futures_iter = concurrent.futures.as_completed(futures)

        for future in futures_iter:
            state = future.result()
            yield from state.items()


753
754
755
def get_gguf_extra_tensor_names(
    gguf_file: str, gguf_to_hf_name_map: Dict[str, str]
) -> List[str]:
756
757
    import gguf

758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
    reader = gguf.GGUFReader(gguf_file)
    expected_gguf_keys = set(gguf_to_hf_name_map.keys())
    exact_gguf_keys = set([tensor.name for tensor in reader.tensors])
    extra_keys = expected_gguf_keys - exact_gguf_keys
    return [gguf_to_hf_name_map[key] for key in extra_keys]


def gguf_quant_weights_iterator(
    gguf_file: str, gguf_to_hf_name_map: Dict[str, str]
) -> Generator[Tuple[str, torch.Tensor], None, None]:
    """
    Iterate over the quant weights in the model gguf files and convert
    them to torch tensors
    """

773
774
    import gguf

775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
    reader = gguf.GGUFReader(gguf_file)

    for tensor in reader.tensors:
        if tensor.name in gguf_to_hf_name_map:
            weight_type = tensor.tensor_type
            name = gguf_to_hf_name_map[tensor.name]

            if weight_type.name != "F32":
                weight_type_name = name.replace("weight", "qweight_type")
                weight_type = torch.tensor(weight_type)
                yield weight_type_name, weight_type

    for tensor in reader.tensors:
        if tensor.name in gguf_to_hf_name_map:
            weight = tensor.data
            weight_type = tensor.tensor_type
            name = gguf_to_hf_name_map[tensor.name]

            if weight_type.name != "F32":
                name = name.replace("weight", "qweight")
            param = torch.tensor(weight)
            yield name, param


def convert_pyslice_to_tensor(x: Any) -> torch.Tensor:
    """convert PySafeSlice object from safetensors to torch.Tensor

    PySafeSlice object supports indexing, which is done before loading the
    actual tensor and can reduce the amount of memory being read into the
    memory. However, it does not support more advanced functionalities
    like `.view()` or `.t()`. Therefore, if we need to modify the loaded
    tensor with these more complicated operators, we need to convert to
    tensor first.
    """
    if not isinstance(x, torch.Tensor):
        x = x[:]
    return x


def default_weight_loader(param: torch.Tensor, loaded_weight: torch.Tensor) -> None:
    """Default weight loader."""
    try:
        if param.numel() == 1 and loaded_weight.numel() == 1:
            # Sometimes scalar values aren't considered tensors with shapes
            # so if both param and loaded_weight are a scalar,
            # "broadcast" instead of copy
            param.data.fill_(loaded_weight.item())
        else:
            assert param.size() == loaded_weight.size(), (
                f"Attempted to load weight ({loaded_weight.size()}) "
                f"into parameter ({param.size()})"
            )

            param.data.copy_(loaded_weight)
    except Exception:
        # NOTE: This exception is added for the purpose of setting breakpoint to
        # debug weight loading issues.
        raise


def row_parallel_weight_loader(
    param: torch.Tensor, loaded_weight: torch.Tensor
) -> None:
    """Load weights that are row-parallelized."""
    tp_rank = get_tensor_model_parallel_rank()
    shard_dim = 0 if param.dim() != 1 else None

    if shard_dim is not None:
        shard_size = param.data.shape[shard_dim]
        start_idx = tp_rank * shard_size
        loaded_weight = loaded_weight.narrow(shard_dim, start_idx, shard_size)

    return default_weight_loader(param, loaded_weight)


LoaderFunction = Callable[[torch.Tensor, torch.Tensor], torch.Tensor]


def sharded_weight_loader(shard_axis: int) -> LoaderFunction:
    """Create a weight loader that shards the weights along the given axis"""

    def loader(param: torch.Tensor, loaded_weight: torch.Tensor) -> None:
Yi Zhang's avatar
Yi Zhang committed
857
        tp_rank = get_attention_tp_rank()
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880

        shard_size = param.data.shape[shard_axis]
        start_idx = tp_rank * shard_size
        loaded_weight = loaded_weight.narrow(shard_axis, start_idx, shard_size)

        return default_weight_loader(param, loaded_weight)

    return loader


def composed_weight_loader(
    loader: LoaderFunction, fn: Callable[[torch.Tensor], torch.Tensor]
) -> LoaderFunction:
    """Create a weight loader that post-processes the weights after loading"""

    def composed_loader(param: torch.Tensor, loaded_weight: torch.Tensor) -> None:
        loader(param, loaded_weight)
        param.data.copy_(fn(param))
        return

    return composed_loader


881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
def runai_safetensors_weights_iterator(
    hf_weights_files: List[str],
) -> Generator[Tuple[str, torch.Tensor], None, None]:
    """Iterate over the weights in the model safetensor files."""
    from runai_model_streamer import SafetensorsStreamer

    enable_tqdm = (
        not torch.distributed.is_initialized() or torch.distributed.get_rank() == 0
    )

    with SafetensorsStreamer() as streamer:
        for st_file in tqdm(
            hf_weights_files,
            desc="Loading safetensors using Runai Model Streamer",
            disable=not enable_tqdm,
            bar_format=_BAR_FORMAT,
        ):
            streamer.stream_file(st_file)
            yield from streamer.get_tensors()


def set_runai_streamer_env(load_config: LoadConfig):
    if load_config.model_loader_extra_config:
        extra_config = load_config.model_loader_extra_config

        if "concurrency" in extra_config and isinstance(
            extra_config.get("concurrency"), int
        ):
            os.environ["RUNAI_STREAMER_CONCURRENCY"] = str(
                extra_config.get("concurrency")
            )

        if "memory_limit" in extra_config and isinstance(
            extra_config.get("memory_limit"), int
        ):
            os.environ["RUNAI_STREAMER_MEMORY_LIMIT"] = str(
                extra_config.get("memory_limit")
            )

    runai_streamer_s3_endpoint = os.getenv("RUNAI_STREAMER_S3_ENDPOINT")
    aws_endpoint_url = os.getenv("AWS_ENDPOINT_URL")
    if runai_streamer_s3_endpoint is None and aws_endpoint_url is not None:
        os.environ["RUNAI_STREAMER_S3_ENDPOINT"] = aws_endpoint_url


926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
def initialize_dummy_weights(
    model: torch.nn.Module,
    low: float = -1e-3,
    high: float = 1e-3,
    seed: int = 1234,
) -> None:
    """Initialize model weights with random values.

    The model weights must be randomly initialized for accurate performance
    measurements. Additionally, the model weights should not cause NaNs in the
    forward pass. We empirically found that initializing the weights with
    values between -1e-3 and 1e-3 works well for most models.

    We use per-parameter random seed, so that dummy weights are consistent,
    even if the model is partitioned across multiple devices. When the seed
    is fixed, the random values generated by this function only depends on
    the parameter's number of elements and its data type.
    """
    for param in model.state_dict().values():
        if torch.is_floating_point(param):
            generator = torch.Generator(device=param.data.device)
            generator.manual_seed(seed)
            if torch.finfo(param.data.dtype).bits < 16:
                # uniform_ doesn't support < 16-bit datatypes (FP8)
                dtype = param.data.dtype
                tmp_param = param.data.to(torch.float16)
                tmp_param = tmp_param.uniform_(low, high, generator=generator).to(dtype)
                param.data.copy_(tmp_param)
            else:
                param.uniform_(low, high, generator=generator)


def maybe_remap_kv_scale_name(name: str, params_dict: dict) -> Optional[str]:
    """Remap the name of FP8 k/v_scale parameters.

    This function handles the remapping of FP8 k/v_scale parameter names.
    It detects if the given name ends with a suffix and attempts to remap
    it to the expected name format in the model. If the remapped name is not
    found in the params_dict, a warning is printed and None is returned.

    Args:
        name (str): The original loaded checkpoint parameter name.
        params_dict (dict): Dictionary containing the model's named parameters.

    Returns:
        str: The remapped parameter name if successful, or the original name
             if no remapping is needed.
        None: If the remapped name is not found in params_dict.
    """
    if name.endswith(".kv_scale"):
        print_warning_once(
            "DEPRECATED. Found kv_scale in the checkpoint. "
            "This format is deprecated in favor of separate k_scale and "
            "v_scale tensors and will be removed in a future release. "
            "Functionally, we will remap kv_scale to k_scale and duplicate "
            "k_scale to v_scale"
        )
        # NOTE: we remap the deprecated kv_scale to k_scale
        remapped_name = name.replace(".kv_scale", ".attn.k_scale")
        if remapped_name not in params_dict:
            print_warning_once(
                f"Found kv_scale in the checkpoint (e.g. {name}), "
                "but not found the expected name in the model "
                f"(e.g. {remapped_name}). kv_scale is "
                "not loaded."
            )
            return None
        return remapped_name

    possible_scale_names = [".k_scale", ".v_scale"]
996
    modelopt_scale_names = [".self_attn.k_proj.k_scale", ".self_attn.v_proj.v_scale"]
997
998
    for scale_name in possible_scale_names:
        if name.endswith(scale_name):
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
            # Check and remap the name based on modelopt scale names
            if any(
                modelopt_scale_name in name
                for modelopt_scale_name in modelopt_scale_names
            ):
                remapped_name = name.replace(
                    f".self_attn.{scale_name[1]}_proj{scale_name}",
                    f".self_attn.attn{scale_name}",
                )
            else:
                remapped_name = name.replace(scale_name, f".attn{scale_name}")
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
            if remapped_name not in params_dict:
                print_warning_once(
                    f"Found {scale_name} in the checkpoint (e.g. {name}), "
                    "but not found the expected name in the model "
                    f"(e.g. {remapped_name}). {scale_name} is "
                    "not loaded."
                )
                return None
            return remapped_name

1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
    quark_scale_names = {
        ".q_proj.output_scale": ".attn.q_scale",
        ".k_proj.output_scale": ".attn.k_scale",
        ".v_proj.output_scale": ".attn.v_scale",
        "self_attn.prob_output_scale": ".attn.prob_scale",
    }
    for quark_scale_name, sglang_scale_name in quark_scale_names.items():
        if name.endswith(quark_scale_name):
            return name.replace(quark_scale_name, sglang_scale_name)

1030
1031
    # If there were no matches, return the untouched param name
    return name
1032
1033


1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
# Adapted from https://github.com/vllm-project/vllm/blob/68ad4e3a8d8a66fb2a43be57471ee13a8bec4ec0/vllm/model_executor/layers/quantization/schema.py
class KVCacheQuantSchema(BaseModel):
    dtype: str
    # Each key is a TP rank. Each value is a dictionary mapping a TP rank's
    # layer indices to their per-tensor KV cache scaling factor.
    # TODO: Consider pulling this and its validation methods out into its
    # own schema class (tricky as its members are variable)
    scaling_factor: Dict[int, Dict[int, float]]

    @model_validator(mode="after")
    def check_is_fp8(self) -> "KVCacheQuantSchema":
        assert self.dtype == "float8_e4m3fn", (
            "Loaded scaling factors intended for KV cache dtype = "
            f"{self.dtype} rather than float8_e4m3fn!"
        )
        return self

    @model_validator(mode="after")
    def check_tp_ranks(self, info: ValidationInfo) -> "KVCacheQuantSchema":
        context = info.context
        if context:
            tp_size = context["tp_size"]
            num_hidden_layers = context["num_hidden_layers"]
            assert len(self.scaling_factor) == tp_size, (
                f"Loaded dictionary has TP size {len(self.scaling_factor)} "
                f"but LLM engine is currently running with TP size {tp_size}."
            )
            for tp_rank, layer_maps in self.scaling_factor.items():
                assert len(layer_maps) == num_hidden_layers, (
                    f"KV cache scales map for TP rank {tp_rank} is malformed. "
                    f"Expected {num_hidden_layers} layers, got "
                    f"{len(layer_maps)}."
                )
            for i in range(tp_size):
                assert (
                    i in self.scaling_factor
                ), f"KV cache scales map for TP rank {i} not found."
        return self

    @model_validator(mode="after")
    def check_current_rank(self, info: ValidationInfo) -> "KVCacheQuantSchema":
        context = info.context
        if context:
            tp_rank = context["tp_rank"]
            num_hidden_layers = context["num_hidden_layers"]
            layer_scales_map = self.scaling_factor[tp_rank]
            for i in range(num_hidden_layers):
                assert i in layer_scales_map, (
                    f"Could not find KV cache scales for layer {i} in "
                    f"TP rank {tp_rank}."
                )
        return self


class QuantParamSchema(BaseModel):
    # TODO: Generalize and extend with more fields
    # (e.g. weights/activations params) once functionality is enabled
    model_config = ConfigDict(protected_namespaces=())
    model_type: Optional[str]
    kv_cache: KVCacheQuantSchema

    @model_validator(mode="after")
    def check_model_type(self, info: ValidationInfo) -> "QuantParamSchema":
        context = info.context
        if context:
            model_type = context.get("model_type", None)
            if model_type is not None:
                assert model_type == self.model_type, (
                    f"Model type is {model_type} but loaded "
                    f"scaling factors belonging to different "
                    f"model type {self.model_type}!"
                )
        return self


1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
def kv_cache_scales_loader(
    filename: str,
    tp_rank: int,
    tp_size: int,
    num_hidden_layers: int,
    model_type: Optional[str],
) -> Iterable[Tuple[int, float]]:
    """
    A simple utility to read in KV cache scaling factors that have been
    previously serialized to disk. Used by the model to populate the appropriate
    KV cache scaling factors. The serialization should represent a dictionary
    whose keys are the TP ranks and values are another dictionary mapping layers
    to their KV cache scaling factors.
    """
    try:
        with open(filename) as f:
            context = {
                "model_type": model_type,
                "num_hidden_layers": num_hidden_layers,
                "tp_rank": tp_rank,
                "tp_size": tp_size,
            }
            schema_dct = json.load(f)
            schema = QuantParamSchema.model_validate(schema_dct, context=context)
            layer_scales_map = schema.kv_cache.scaling_factor[tp_rank]
            return layer_scales_map.items()
    except FileNotFoundError:
        logger.error("File or directory '%s' not found.", filename)
    except json.JSONDecodeError:
        logger.error("Error decoding JSON in file '%s'.", filename)
    except Exception:
1140
        logger.error("An error occurred while reading '%s'.", filename)
1141
1142
1143
1144
1145
1146
1147
1148
1149
    # This section is reached if and only if any of the excepts are hit
    # Return an empty iterable (list) => no KV cache scales are loaded
    # which ultimately defaults to 1.0 scales
    logger.warning(
        "Defaulting to KV cache scaling factors = 1.0 for all "
        "layers in TP rank %d as an error occurred during loading.",
        tp_rank,
    )
    return []
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203


def get_actual_shard_size(shard_size, weight_start, weight_end):
    if weight_end < weight_start:
        return 0

    return min(shard_size, weight_end - weight_start)


def reset_param_data_if_needed(param_data, dim, start, length):
    if length == 0:
        return

    assert length > 0, f"Length should be positive, but got {length}"

    param_data.narrow(dim, start, length).zero_()
    return


def narrow_padded_param_and_loaded_weight(
    param_data,
    loaded_weight,
    param_data_start,
    weight_start,
    dim,
    shard_size,
    narrow_weight=True,
):
    actual_shard_size = get_actual_shard_size(
        shard_size, weight_start, loaded_weight.size(dim)
    )

    if narrow_weight:
        if actual_shard_size > 0:
            loaded_weight = loaded_weight.narrow(dim, weight_start, actual_shard_size)
        else:
            # No real data to load; create a dummy tensor filled with zeros
            loaded_weight = torch.zeros_like(
                param_data.narrow(dim, param_data_start, actual_shard_size)
            )

    # [Note] Reset padded weights to zero.
    # If the actual shard size is less than the shard size, we need to reset
    # the padded param_data to zero and then copy the loaded_weight into it.
    reset_param_data_if_needed(
        param_data,
        dim,
        param_data_start + actual_shard_size,
        shard_size - actual_shard_size,
    )

    param_data = param_data.narrow(dim, param_data_start, actual_shard_size)

    return param_data, loaded_weight