test_utils.py 22.5 KB
Newer Older
Lianmin Zheng's avatar
Lianmin Zheng committed
1
"""Common utilities for testing and benchmarking"""
2

3
import argparse
Liangsheng Yin's avatar
Liangsheng Yin committed
4
import asyncio
5
import os
6
import random
7
import subprocess
8
import threading
9
import time
10
from concurrent.futures import ThreadPoolExecutor
Liangsheng Yin's avatar
Liangsheng Yin committed
11
from functools import partial
12
from types import SimpleNamespace
13
from typing import Callable, List, Optional
Liangsheng Yin's avatar
Liangsheng Yin committed
14

Lianmin Zheng's avatar
Lianmin Zheng committed
15
16
import numpy as np
import requests
17
18
import torch
import torch.nn.functional as F
Liangsheng Yin's avatar
Liangsheng Yin committed
19

20
from sglang.bench_serving import run_benchmark
Lianmin Zheng's avatar
Lianmin Zheng committed
21
from sglang.global_config import global_config
Ying Sheng's avatar
Ying Sheng committed
22
23
from sglang.lang.backend.openai import OpenAI
from sglang.lang.backend.runtime_endpoint import RuntimeEndpoint
Mingyi's avatar
Mingyi committed
24
from sglang.srt.utils import kill_child_process
25
from sglang.test.run_eval import run_eval
26
from sglang.utils import get_exception_traceback
Liangsheng Yin's avatar
Liangsheng Yin committed
27

28
DEFAULT_FP8_MODEL_NAME_FOR_TEST = "neuralmagic/Meta-Llama-3.1-8B-FP8"
29
DEFAULT_MODEL_NAME_FOR_TEST = "meta-llama/Llama-3.1-8B-Instruct"
Yineng Zhang's avatar
Yineng Zhang committed
30
DEFAULT_MOE_MODEL_NAME_FOR_TEST = "mistralai/Mixtral-8x7B-Instruct-v0.1"
Ke Bao's avatar
Ke Bao committed
31
DEFAULT_MLA_MODEL_NAME_FOR_TEST = "deepseek-ai/DeepSeek-Coder-V2-Lite-Instruct"
Yineng Zhang's avatar
Yineng Zhang committed
32
DEFAULT_MLA_FP8_MODEL_NAME_FOR_TEST = "neuralmagic/DeepSeek-Coder-V2-Lite-Instruct-FP8"
33
DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH = 600
34
35
DEFAULT_MODEL_NAME_FOR_NIGHTLY_EVAL_TP1 = "meta-llama/Llama-3.1-8B-Instruct,mistralai/Mistral-7B-Instruct-v0.3,deepseek-ai/DeepSeek-Coder-V2-Lite-Instruct,google/gemma-2-27b-it"
DEFAULT_MODEL_NAME_FOR_NIGHTLY_EVAL_TP2 = "meta-llama/Llama-3.1-70B-Instruct,mistralai/Mixtral-8x7B-Instruct-v0.1,Qwen/Qwen2-57B-A14B-Instruct,deepseek-ai/DeepSeek-Coder-V2-Lite-Instruct"
36
DEFAULT_MODEL_NAME_FOR_NIGHTLY_EVAL_FP8_TP1 = "neuralmagic/Meta-Llama-3.1-8B-Instruct-FP8,neuralmagic/Mistral-7B-Instruct-v0.3-FP8,neuralmagic/DeepSeek-Coder-V2-Lite-Instruct-FP8,neuralmagic/gemma-2-2b-it-FP8"
Ke Bao's avatar
Ke Bao committed
37
DEFAULT_MODEL_NAME_FOR_NIGHTLY_EVAL_FP8_TP2 = "neuralmagic/Meta-Llama-3.1-70B-Instruct-FP8,neuralmagic/Mixtral-8x7B-Instruct-v0.1-FP8,neuralmagic/Qwen2-72B-Instruct-FP8,neuralmagic/Qwen2-57B-A14B-Instruct-FP8,neuralmagic/DeepSeek-Coder-V2-Lite-Instruct-FP8"
38
DEFAULT_MODEL_NAME_FOR_NIGHTLY_EVAL_QUANT_TP1 = "hugging-quants/Meta-Llama-3.1-8B-Instruct-AWQ-INT4,hugging-quants/Meta-Llama-3.1-8B-Instruct-GPTQ-INT4"
39

40
41
42
43
44
45
46

def is_in_ci():
    """Return whether it is in CI runner."""
    return os.getenv("SGLANG_IS_IN_CI", "false") == "true"


if is_in_ci():
Lianmin Zheng's avatar
Lianmin Zheng committed
47
    DEFAULT_PORT_FOR_SRT_TEST_RUNNER = 5157
48
    DEFAULT_URL_FOR_TEST = "http://127.0.0.1:6157"
49
else:
50
51
    DEFAULT_PORT_FOR_SRT_TEST_RUNNER = 1157
    DEFAULT_URL_FOR_TEST = "http://127.0.0.1:2157"
52

Lianmin Zheng's avatar
Lianmin Zheng committed
53

Liangsheng Yin's avatar
Liangsheng Yin committed
54
55
def call_generate_lightllm(prompt, temperature, max_tokens, stop=None, url=None):
    assert url is not None
Lianmin Zheng's avatar
Lianmin Zheng committed
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70

    data = {
        "inputs": prompt,
        "parameters": {
            "temperature": temperature,
            "max_new_tokens": max_tokens,
            "stop_sequences": stop,
        },
    }
    res = requests.post(url, json=data)
    assert res.status_code == 200
    pred = res.json()["generated_text"][0]
    return pred


Liangsheng Yin's avatar
Liangsheng Yin committed
71
72
73
def call_generate_vllm(prompt, temperature, max_tokens, stop=None, n=1, url=None):
    assert url is not None

Lianmin Zheng's avatar
Lianmin Zheng committed
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
    data = {
        "prompt": prompt,
        "temperature": temperature,
        "max_tokens": max_tokens,
        "stop": stop,
        "n": n,
    }
    res = requests.post(url, json=data)
    assert res.status_code == 200
    if n == 1:
        pred = res.json()["text"][0][len(prompt) :]
    else:
        pred = [x[len(prompt) :] for x in res.json()["text"]]
    return pred


90
def call_generate_outlines(
91
    prompt, temperature, max_tokens, stop=None, regex=None, n=1, url=None
92
):
Liangsheng Yin's avatar
Liangsheng Yin committed
93
94
    assert url is not None

95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
    data = {
        "prompt": prompt,
        "temperature": temperature,
        "max_tokens": max_tokens,
        "stop": stop,
        "regex": regex,
        "n": n,
    }
    res = requests.post(url, json=data)
    assert res.status_code == 200
    if n == 1:
        pred = res.json()["text"][0][len(prompt) :]
    else:
        pred = [x[len(prompt) :] for x in res.json()["text"]]
    return pred


Liangsheng Yin's avatar
Liangsheng Yin committed
112
113
114
def call_generate_srt_raw(prompt, temperature, max_tokens, stop=None, url=None):
    assert url is not None

Lianmin Zheng's avatar
Lianmin Zheng committed
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
    data = {
        "text": prompt,
        "sampling_params": {
            "temperature": temperature,
            "max_new_tokens": max_tokens,
            "stop": stop,
        },
    }
    res = requests.post(url, json=data)
    assert res.status_code == 200
    obj = res.json()
    pred = obj["text"]
    return pred


130
def call_generate_gserver(prompt, temperature, max_tokens, stop=None, url=None):
Lianmin Zheng's avatar
Lianmin Zheng committed
131
    raise NotImplementedError()
132
133


Liangsheng Yin's avatar
Liangsheng Yin committed
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
def call_generate_guidance(
    prompt, temperature, max_tokens, stop=None, n=1, regex=None, model=None
):
    assert model is not None
    from guidance import gen

    rets = []
    for _ in range(n):
        out = (
            model
            + prompt
            + gen(
                name="answer",
                max_tokens=max_tokens,
                temperature=temperature,
                stop=stop,
                regex=regex,
            )
        )
        rets.append(out["answer"])
    return rets if n > 1 else rets[0]


async def call_generate_lmql(
    prompt, temperature, max_tokens, stop=None, n=1, max_len=4096, model=None, **kwargs
):
    assert model is not None
    import lmql

    if stop != None:

        @lmql.query(model=model)
        async def program(question, max_tokens, stop):
            '''lmql
            """{question}[ANSWER]""" where len(TOKENS(ANSWER)) < max_tokens and STOPS_AT(ANSWER, stop)
            return ANSWER
            '''

    else:

        @lmql.query(model=model)
        async def program(question, max_tokens):
            '''lmql
            """{question}[ANSWER]""" where len(TOKENS(ANSWER)) < max_tokens
            return ANSWER
            '''

    tasks = [
        program(
            question=prompt,
            temperature=temperature,
            max_tokens=max_tokens,
            stop=stop,
            max_len=max_len,
            **kwargs,
        )
        for _ in range(n)
    ]
    rets = await asyncio.gather(*tasks)
    return rets if n > 1 else rets[0]


def call_select_lightllm(context, choices, url=None):
    assert url is not None

Lianmin Zheng's avatar
Lianmin Zheng committed
199
200
201
202
203
204
205
206
207
208
209
210
211
212
    scores = []
    for i in range(len(choices)):
        data = {
            "inputs": context + choices[i],
            "parameters": {
                "max_new_tokens": 1,
            },
        }
        res = requests.post(url, json=data)
        assert res.status_code == 200
        scores.append(0)
    return np.argmax(scores)


Liangsheng Yin's avatar
Liangsheng Yin committed
213
214
215
def call_select_vllm(context, choices, url=None):
    assert url is not None

Lianmin Zheng's avatar
Lianmin Zheng committed
216
217
218
219
220
221
222
223
224
    scores = []
    for i in range(len(choices)):
        data = {
            "prompt": context + choices[i],
            "max_tokens": 1,
            "prompt_logprobs": 1,
        }
        res = requests.post(url, json=data)
        assert res.status_code == 200
Lianmin Zheng's avatar
Lianmin Zheng committed
225
        scores.append(res.json().get("prompt_score", 0))
Lianmin Zheng's avatar
Lianmin Zheng committed
226
227
228
229
230
231
232
233
234
235
236
    return np.argmax(scores)

    """
    Modify vllm/entrypoints/api_server.py

    if final_output.prompt_logprobs is not None:
        score = np.mean([prob[t_id] for t_id, prob in zip(final_output.prompt_token_ids[1:], final_output.prompt_logprobs[1:])])
        ret["prompt_score"] = score
    """


Liangsheng Yin's avatar
Liangsheng Yin committed
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
def call_select_guidance(context, choices, model=None):
    assert model is not None
    from guidance import select

    out = model + context + select(choices, name="answer")
    return choices.index(out["answer"])


async def call_select_lmql(context, choices, temperature=0, max_len=4096, model=None):
    assert model is not None
    import lmql

    @lmql.query(model=model)
    async def program(ctx, choices):
        '''lmql
        """{ctx}[ANSWER]""" where ANSWER in set(choices)
        return ANSWER
        '''

    answer = await program(
        ctx=context, choices=choices, temperature=temperature, max_len=max_len
    )
    return choices.index(answer)


262
def add_common_other_args_and_parse(parser: argparse.ArgumentParser):
Lianmin Zheng's avatar
Lianmin Zheng committed
263
    parser.add_argument("--parallel", type=int, default=64)
Lianmin Zheng's avatar
Lianmin Zheng committed
264
265
266
267
268
269
    parser.add_argument("--host", type=str, default="http://127.0.0.1")
    parser.add_argument("--port", type=int, default=None)
    parser.add_argument(
        "--backend",
        type=str,
        required=True,
Liangsheng Yin's avatar
Liangsheng Yin committed
270
271
272
273
        choices=[
            "vllm",
            "outlines",
            "lightllm",
274
            "gserver",
Liangsheng Yin's avatar
Liangsheng Yin committed
275
276
277
278
279
            "guidance",
            "lmql",
            "srt-raw",
            "llama.cpp",
        ],
Lianmin Zheng's avatar
Lianmin Zheng committed
280
    )
Liangsheng Yin's avatar
Liangsheng Yin committed
281
    parser.add_argument("--n-ctx", type=int, default=4096)
Lianmin Zheng's avatar
Lianmin Zheng committed
282
283
284
285
286
287
288
289
290
    parser.add_argument(
        "--model-path", type=str, default="meta-llama/Llama-2-7b-chat-hf"
    )
    parser.add_argument("--result-file", type=str, default="result.jsonl")
    args = parser.parse_args()

    if args.port is None:
        default_port = {
            "vllm": 21000,
Liangsheng Yin's avatar
Liangsheng Yin committed
291
            "outlines": 21000,
Lianmin Zheng's avatar
Lianmin Zheng committed
292
293
294
            "lightllm": 22000,
            "lmql": 23000,
            "srt-raw": 30000,
295
            "gserver": 9988,
Lianmin Zheng's avatar
Lianmin Zheng committed
296
297
298
299
300
        }
        args.port = default_port.get(args.backend, None)
    return args


301
def add_common_sglang_args_and_parse(parser: argparse.ArgumentParser):
Lianmin Zheng's avatar
Lianmin Zheng committed
302
303
304
305
306
307
308
309
310
    parser.add_argument("--parallel", type=int, default=64)
    parser.add_argument("--host", type=str, default="http://127.0.0.1")
    parser.add_argument("--port", type=int, default=30000)
    parser.add_argument("--backend", type=str, default="srt")
    parser.add_argument("--result-file", type=str, default="result.jsonl")
    args = parser.parse_args()
    return args


311
def select_sglang_backend(args: argparse.Namespace):
Lianmin Zheng's avatar
Lianmin Zheng committed
312
313
314
315
    if args.backend.startswith("srt"):
        if args.backend == "srt-no-parallel":
            global_config.enable_parallel_encoding = False
        backend = RuntimeEndpoint(f"{args.host}:{args.port}")
316
    elif args.backend.startswith("gpt-"):
Lianmin Zheng's avatar
Lianmin Zheng committed
317
318
319
320
        backend = OpenAI(args.backend)
    else:
        raise ValueError(f"Invalid backend: {args.backend}")
    return backend
Liangsheng Yin's avatar
Liangsheng Yin committed
321
322


323
def _get_call_generate(args: argparse.Namespace):
Liangsheng Yin's avatar
Liangsheng Yin committed
324
325
326
327
328
329
    if args.backend == "lightllm":
        return partial(call_generate_lightllm, url=f"{args.host}:{args.port}/generate")
    elif args.backend == "vllm":
        return partial(call_generate_vllm, url=f"{args.host}:{args.port}/generate")
    elif args.backend == "srt-raw":
        return partial(call_generate_srt_raw, url=f"{args.host}:{args.port}/generate")
330
331
    elif args.backend == "gserver":
        return partial(call_generate_gserver, url=f"{args.host}:{args.port}")
Liangsheng Yin's avatar
Liangsheng Yin committed
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
    elif args.backend == "outlines":
        return partial(call_generate_outlines, url=f"{args.host}:{args.port}/generate")
    elif args.backend == "guidance":
        from guidance import models

        model = models.LlamaCpp(args.model_path, n_gpu_layers=-1, n_ctx=args.n_ctx)
        call_generate = partial(call_generate_guidance, model=model)
        call_generate("Hello,", 1.0, 8, ".")
        return call_generate
    elif args.backend == "lmql":
        import lmql

        model = lmql.model(args.model_path, endpoint=f"{args.host}:{args.port}")
        return partial(call_generate_lmql, model=model)
    else:
        raise ValueError(f"Invalid backend: {args.backend}")


350
def _get_call_select(args: argparse.Namespace):
Liangsheng Yin's avatar
Liangsheng Yin committed
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
    if args.backend == "lightllm":
        return partial(call_select_lightllm, url=f"{args.host}:{args.port}/generate")
    elif args.backend == "vllm":
        return partial(call_select_vllm, url=f"{args.host}:{args.port}/generate")
    elif args.backend == "guidance":
        from guidance import models

        model = models.LlamaCpp(args.model_path, n_gpu_layers=-1, n_ctx=args.n_ctx)
        call_select = partial(call_select_guidance, model=model)

        call_select("Hello,", ["world", "earth"])
        return call_select

    elif args.backend == "lmql":
        import lmql

        model = lmql.model(args.model_path, endpoint=f"{args.host}:{args.port}")
        return partial(call_select_lmql, model=model)
    else:
        raise ValueError(f"Invalid backend: {args.backend}")


373
def get_call_generate(args: argparse.Namespace):
Liangsheng Yin's avatar
Liangsheng Yin committed
374
375
376
377
378
379
380
381
382
383
384
385
    call_generate = _get_call_generate(args)

    def func(*args, **kwargs):
        try:
            return call_generate(*args, **kwargs)
        except Exception:
            print("Exception in call_generate:\n" + get_exception_traceback())
            raise

    return func


386
def get_call_select(args: argparse.Namespace):
Liangsheng Yin's avatar
Liangsheng Yin committed
387
388
389
390
391
392
393
394
395
396
    call_select = _get_call_select(args)

    def func(*args, **kwargs):
        try:
            return call_select(*args, **kwargs)
        except Exception:
            print("Exception in call_select:\n" + get_exception_traceback())
            raise

    return func
397
398


399
def popen_launch_server(
400
401
402
403
404
    model: str,
    base_url: str,
    timeout: float,
    api_key: Optional[str] = None,
    other_args: tuple = (),
405
    env: Optional[dict] = None,
406
    return_stdout_stderr: Optional[tuple] = None,
Yudi Xue's avatar
Yudi Xue committed
407
    enable_metrics: bool = False,
408
409
410
411
):
    _, host, port = base_url.split(":")
    host = host[2:]

412
413
414
415
416
417
418
    command = [
        "python3",
        "-m",
        "sglang.launch_server",
        "--model-path",
        model,
        "--host",
419
        host,
420
        "--port",
421
422
        port,
        *other_args,
423
    ]
424
425
    if api_key:
        command += ["--api-key", api_key]
Yudi Xue's avatar
Yudi Xue committed
426
427
    if enable_metrics:
        command += ["--enable-metrics"]
428

429
430
431
    if return_stdout_stderr:
        process = subprocess.Popen(
            command,
432
433
            stdout=return_stdout_stderr[0],
            stderr=return_stdout_stderr[1],
434
435
436
437
438
            env=env,
            text=True,
        )
    else:
        process = subprocess.Popen(command, stdout=None, stderr=None, env=env)
439
440
441
442

    start_time = time.time()
    while time.time() - start_time < timeout:
        try:
443
444
445
446
447
            headers = {
                "Content-Type": "application/json; charset=utf-8",
                "Authorization": f"Bearer {api_key}",
            }
            response = requests.get(f"{base_url}/v1/models", headers=headers)
448
449
450
451
452
453
            if response.status_code == 200:
                return process
        except requests.RequestException:
            pass
        time.sleep(10)
    raise TimeoutError("Server failed to start within the timeout period.")
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479


def run_with_timeout(
    func: Callable,
    args: tuple = (),
    kwargs: Optional[dict] = None,
    timeout: float = None,
):
    """Run a function with timeout."""
    ret_value = []

    def _target_func():
        ret_value.append(func(*args, **(kwargs or {})))

    t = threading.Thread(target=_target_func)
    t.start()
    t.join(timeout=timeout)
    if t.is_alive():
        raise TimeoutError()

    if not ret_value:
        raise RuntimeError()

    return ret_value[0]


480
def run_unittest_files(files: List[str], timeout_per_file: float):
481
482
483
484
    tic = time.time()
    success = True

    for filename in files:
Mingyi's avatar
Mingyi committed
485
        global process
486

Mingyi's avatar
Mingyi committed
487
488
        def run_one_file(filename):
            filename = os.path.join(os.getcwd(), filename)
489
            print(f"\n\nRun:\npython3 {filename}\n\n", flush=True)
Mingyi's avatar
Mingyi committed
490
491
492
493
494
            process = subprocess.Popen(
                ["python3", filename], stdout=None, stderr=None, env=os.environ
            )
            process.wait()
            return process.returncode
495
496

        try:
Mingyi's avatar
Mingyi committed
497
498
499
500
            ret_code = run_with_timeout(
                run_one_file, args=(filename,), timeout=timeout_per_file
            )
            assert ret_code == 0
501
        except TimeoutError:
Lianmin Zheng's avatar
Lianmin Zheng committed
502
            kill_child_process(process.pid, include_self=True)
503
504
            time.sleep(5)
            print(
505
506
                f"\nTimeout after {timeout_per_file} seconds when running {filename}\n",
                flush=True,
507
            )
Mingyi's avatar
Mingyi committed
508
509
            success = False
            break
510
511

    if success:
512
        print(f"Success. Time elapsed: {time.time() - tic:.2f}s", flush=True)
513
    else:
514
        print(f"Fail. Time elapsed: {time.time() - tic:.2f}s", flush=True)
515
516

    return 0 if success else -1
517
518
519
520


def get_similarities(vec1, vec2):
    return F.cosine_similarity(torch.tensor(vec1), torch.tensor(vec2), dim=0)
521
522


523
524
525
526
527
528
529
530
531
532
def run_bench_serving(
    model,
    num_prompts,
    request_rate,
    other_server_args,
    dataset_name="random",
    random_input_len=4096,
    random_output_len=2048,
    disable_stream=False,
):
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
    # Launch the server
    base_url = DEFAULT_URL_FOR_TEST
    process = popen_launch_server(
        model,
        base_url,
        timeout=DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
        other_args=other_server_args,
    )

    # Run benchmark
    args = SimpleNamespace(
        backend="sglang",
        base_url=base_url,
        host=None,
        port=None,
548
        dataset_name=dataset_name,
549
550
551
552
553
        dataset_path="",
        model=None,
        tokenizer=None,
        num_prompts=num_prompts,
        sharegpt_output_len=None,
554
555
        random_input_len=random_input_len,
        random_output_len=random_output_len,
556
557
558
559
560
561
        random_range_ratio=0.0,
        request_rate=request_rate,
        multi=None,
        seed=0,
        output_file=None,
        disable_tqdm=False,
562
        disable_stream=disable_stream,
563
564
565
566
567
568
569
        disable_ignore_eos=False,
        extra_request_body=None,
    )

    try:
        res = run_benchmark(args)
    finally:
Lianmin Zheng's avatar
Lianmin Zheng committed
570
        kill_child_process(process.pid, include_self=True)
571
572
573

    assert res["completed"] == num_prompts
    return res
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602


def run_bench_latency(model, other_args):
    command = [
        "python3",
        "-m",
        "sglang.bench_latency",
        "--model-path",
        model,
        "--batch-size",
        "1",
        "--input",
        "128",
        "--output",
        "8",
        *other_args,
    ]
    process = subprocess.Popen(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE)

    try:
        stdout, stderr = process.communicate()
        output = stdout.decode()
        error = stderr.decode()
        print(f"Output: {output}", flush=True)
        print(f"Error: {error}", flush=True)

        lastline = output.split("\n")[-3]
        output_throughput = float(lastline.split(" ")[-2])
    finally:
Lianmin Zheng's avatar
Lianmin Zheng committed
603
        kill_child_process(process.pid, include_self=True)
604
605

    return output_throughput
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639


def lcs(X, Y):
    m = len(X)
    n = len(Y)
    L = [[0] * (n + 1) for _ in range(m + 1)]

    for i in range(m + 1):
        for j in range(n + 1):
            if i == 0 or j == 0:
                L[i][j] = 0
            elif X[i - 1] == Y[j - 1]:
                L[i][j] = L[i - 1][j - 1] + 1
            else:
                L[i][j] = max(L[i - 1][j], L[i][j - 1])

    return L[m][n]


def calculate_rouge_l(output_strs_list1, output_strs_list2):
    """calculate the ROUGE-L score"""
    rouge_l_scores = []

    for s1, s2 in zip(output_strs_list1, output_strs_list2):
        lcs_len = lcs(s1, s2)
        precision = lcs_len / len(s1) if len(s1) > 0 else 0
        recall = lcs_len / len(s2) if len(s2) > 0 else 0
        if precision + recall > 0:
            fmeasure = (2 * precision * recall) / (precision + recall)
        else:
            fmeasure = 0.0
        rouge_l_scores.append(fmeasure)

    return rouge_l_scores
640
641
642
643
644
645
646


STDOUT_FILENAME = "stdout.txt"
STDERR_FILENAME = "stderr.txt"


def read_output(output_lines):
647
    """Print the output in real time with another thread."""
648
649
650
    while not os.path.exists(STDERR_FILENAME):
        time.sleep(1)

651
652
    pt = 0
    while pt >= 0:
653
        if pt > 0 and not os.path.exists(STDERR_FILENAME):
654
655
656
657
            break
        lines = open(STDERR_FILENAME).readlines()
        for line in lines[pt:]:
            print(line, end="", flush=True)
658
            output_lines.append(line)
659
            pt += 1
660
        time.sleep(0.1)
661
662


663
664
def run_and_check_memory_leak(
    workload_func,
665
    disable_radix_cache,
666
667
668
    enable_mixed_chunk,
    enable_overlap,
    chunked_prefill_size,
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
):
    other_args = ["--chunked-prefill-size", str(chunked_prefill_size)]
    if disable_radix_cache:
        other_args += ["--disable-radix-cache"]
    if enable_mixed_chunk:
        other_args += ["--enable-mixed-chunk"]
    if enable_overlap:
        other_args += ["--enable-overlap-scheduler"]

    model = DEFAULT_MODEL_NAME_FOR_TEST
    port = random.randint(4000, 5000)
    base_url = f"http://127.0.0.1:{port}"

    # Create files and launch the server
    stdout = open(STDOUT_FILENAME, "w")
    stderr = open(STDERR_FILENAME, "w")
    process = popen_launch_server(
        model,
        base_url,
        timeout=DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
        other_args=other_args,
        return_stdout_stderr=(stdout, stderr),
    )

    # Launch a thread to stream the output
    output_lines = []
    t = threading.Thread(target=read_output, args=(output_lines,))
    t.start()

698
699
    # Run the workload
    workload_func(base_url, model)
700
701

    # Clean up everything
Lianmin Zheng's avatar
Lianmin Zheng committed
702
703
    kill_child_process(process.pid, include_self=True)
    kill_child_process(process.pid, include_self=True)
704
705
    stdout.close()
    stderr.close()
706
707
708
709
    if os.path.exists(STDOUT_FILENAME):
        os.remove(STDOUT_FILENAME)
    if os.path.exists(STDERR_FILENAME):
        os.remove(STDERR_FILENAME)
710
711
712
713
714
715
716
717
718
719
720
721
    t.join()

    # Assert success
    has_new_server = False
    has_leak = False
    for line in output_lines:
        if "The server is fired" in line:
            has_new_server = True
        if "leak" in line:
            has_leak = True

    assert has_new_server
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
    assert not has_leak


def run_mmlu_test(
    disable_radix_cache=False,
    enable_mixed_chunk=False,
    enable_overlap=False,
    chunked_prefill_size=32,
):
    def workload_func(base_url, model):
        # Run the eval
        args = SimpleNamespace(
            base_url=base_url,
            model=model,
            eval_name="mmlu",
            num_examples=128,
            num_threads=128,
        )

        try:
            metrics = run_eval(args)
            print(f"{metrics=}")
            assert metrics["score"] >= 0.65
        finally:
            pass

Chayenne's avatar
Chayenne committed
748
749
750
751
752
753
754
    run_and_check_memory_leak(
        workload_func,
        disable_radix_cache,
        enable_mixed_chunk,
        enable_overlap,
        chunked_prefill_size,
    )
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786


def run_mulit_request_test(
    disable_radix_cache=False,
    enable_mixed_chunk=False,
    enable_overlap=False,
    chunked_prefill_size=32,
):

    def workload_func(base_url, model):
        def run_one(_):
            prompt = """
            System: You are a helpful assistant.
            User: What is the capital of France?
            Assistant: The capital of France is
            """

            response = requests.post(
                f"{base_url}/generate",
                json={
                    "text": prompt,
                    "sampling_params": {
                        "temperature": 0,
                        "max_new_tokens": 8,
                    },
                },
            )
            ret = response.json()

        with ThreadPoolExecutor(2) as executor:
            list(executor.map(run_one, list(range(4))))

Chayenne's avatar
Chayenne committed
787
788
789
790
791
792
793
    run_and_check_memory_leak(
        workload_func,
        disable_radix_cache,
        enable_mixed_chunk,
        enable_overlap,
        chunked_prefill_size,
    )