io_struct.py 9.22 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
"""
Copyright 2023-2024 SGLang Team
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
"""

Lianmin Zheng's avatar
Lianmin Zheng committed
16
17
18
19
20
"""
The definition of objects transfered between different
processes (TokenizerManager, DetokenizerManager, Controller).
"""

Lianmin Zheng's avatar
Lianmin Zheng committed
21
22
23
24
import uuid
from dataclasses import dataclass
from typing import Dict, List, Optional, Union

25
26
import torch

27
from sglang.srt.managers.schedule_batch import BaseFinishReason
28
from sglang.srt.sampling_params import SamplingParams
Lianmin Zheng's avatar
Lianmin Zheng committed
29
30
31
32


@dataclass
class GenerateReqInput:
Ying Sheng's avatar
Ying Sheng committed
33
    # The input prompt. It can be a single prompt or a batch of prompts.
34
    text: Optional[Union[List[str], str]] = None
Ying Sheng's avatar
Ying Sheng committed
35
    # The token ids for text; one can either specify text or input_ids.
36
    input_ids: Optional[Union[List[List[int]], List[int]]] = None
Ying Sheng's avatar
Ying Sheng committed
37
38
    # The image input. It can be a file name, a url, or base64 encoded string.
    # See also python/sglang/srt/utils.py:load_image.
Lianmin Zheng's avatar
Lianmin Zheng committed
39
    image_data: Optional[Union[List[str], str]] = None
40
    # The sampling_params. See descriptions below.
Lianmin Zheng's avatar
Lianmin Zheng committed
41
    sampling_params: Union[List[Dict], Dict] = None
Ying Sheng's avatar
Ying Sheng committed
42
    # The request id.
Lianmin Zheng's avatar
Lianmin Zheng committed
43
    rid: Optional[Union[List[str], str]] = None
Ying Sheng's avatar
Ying Sheng committed
44
    # Whether to return logprobs.
45
    return_logprob: Optional[Union[List[bool], bool]] = None
Ying Sheng's avatar
Ying Sheng committed
46
    # The start location of the prompt for return_logprob.
47
    logprob_start_len: Optional[Union[List[int], int]] = None
Ying Sheng's avatar
Ying Sheng committed
48
    # The number of top logprobs to return.
Liangsheng Yin's avatar
Liangsheng Yin committed
49
    top_logprobs_num: Optional[Union[List[int], int]] = None
50
    # Whether to detokenize tokens in text in the returned logprobs.
51
    return_text_in_logprobs: bool = False
Ying Sheng's avatar
Ying Sheng committed
52
    # Whether to stream output.
Lianmin Zheng's avatar
Lianmin Zheng committed
53
54
55
    stream: bool = False

    def post_init(self):
56
57
58
        if (self.text is None and self.input_ids is None) or (
            self.text is not None and self.input_ids is not None
        ):
59
            raise ValueError("Either text or input_ids should be provided.")
Yineng Zhang's avatar
Yineng Zhang committed
60
61
62
63
        if (
            isinstance(self.sampling_params, dict)
            and self.sampling_params.get("n", 1) != 1
        ):
64
            is_single = False
65
        else:
66
67
68
69
            if self.text is not None:
                is_single = isinstance(self.text, str)
            else:
                is_single = isinstance(self.input_ids[0], int)
70
        self.is_single = is_single
Lianmin Zheng's avatar
Lianmin Zheng committed
71
72
73
74
75
76

        if is_single:
            if self.sampling_params is None:
                self.sampling_params = {}
            if self.rid is None:
                self.rid = uuid.uuid4().hex
77
78
79
80
            if self.return_logprob is None:
                self.return_logprob = False
            if self.logprob_start_len is None:
                self.logprob_start_len = 0
Liangsheng Yin's avatar
Liangsheng Yin committed
81
82
            if self.top_logprobs_num is None:
                self.top_logprobs_num = 0
Lianmin Zheng's avatar
Lianmin Zheng committed
83
        else:
84
85
86
87
88
89
90
91
92
93
94
95
96
            parallel_sample_num_list = []
            if isinstance(self.sampling_params, dict):
                parallel_sample_num = self.sampling_params.get("n", 1)
            elif isinstance(self.sampling_params, list):
                for sp in self.sampling_params:
                    parallel_sample_num = sp.get("n", 1)
                    parallel_sample_num_list.append(parallel_sample_num)
                parallel_sample_num = max(parallel_sample_num_list)
                all_equal = all(
                    element == parallel_sample_num
                    for element in parallel_sample_num_list
                )
                if parallel_sample_num > 1 and (not all_equal):
yichuan~'s avatar
yichuan~ committed
97
                    # TODO cope with the case that the parallel_sample_num is different for different samples
98
99
100
101
102
103
                    raise ValueError(
                        "The parallel_sample_num should be the same for all samples in sample params."
                    )
            else:
                parallel_sample_num = 1
            self.parallel_sample_num = parallel_sample_num
104
105
106
107

            if parallel_sample_num != 1:
                # parallel sampling +1 represents the original prefill stage
                num = parallel_sample_num + 1
yichuan~'s avatar
yichuan~ committed
108
109
                if isinstance(self.text, list):
                    # suppot batch operation
110
111
                    self.batch_size = len(self.text)
                    num = num * len(self.text)
yichuan~'s avatar
yichuan~ committed
112
113
114
115
116
                elif isinstance(self.input_ids, list) and isinstance(
                    self.input_ids[0], list
                ):
                    self.batch_size = len(self.input_ids)
                    num = num * len(self.input_ids)
117
118
119
                else:
                    self.batch_size = 1
            else:
yichuan~'s avatar
yichuan~ committed
120
                # support select operation
121
122
                num = len(self.text) if self.text is not None else len(self.input_ids)
                self.batch_size = num
Lianmin Zheng's avatar
Lianmin Zheng committed
123
124
125
126
127
128
129
130
131
132
133
134
135
136

            if self.image_data is None:
                self.image_data = [None] * num
            elif not isinstance(self.image_data, list):
                self.image_data = [self.image_data] * num

            if self.sampling_params is None:
                self.sampling_params = [{}] * num
            elif not isinstance(self.sampling_params, list):
                self.sampling_params = [self.sampling_params] * num

            if self.rid is None:
                self.rid = [uuid.uuid4().hex for _ in range(num)]
            else:
137
138
                if not isinstance(self.rid, list):
                    raise ValueError("The rid should be a list.")
Lianmin Zheng's avatar
Lianmin Zheng committed
139

140
141
142
143
            if self.return_logprob is None:
                self.return_logprob = [False] * num
            elif not isinstance(self.return_logprob, list):
                self.return_logprob = [self.return_logprob] * num
Lianmin Zheng's avatar
Lianmin Zheng committed
144

145
146
147
148
            if self.logprob_start_len is None:
                self.logprob_start_len = [0] * num
            elif not isinstance(self.logprob_start_len, list):
                self.logprob_start_len = [self.logprob_start_len] * num
Lianmin Zheng's avatar
Lianmin Zheng committed
149

Liangsheng Yin's avatar
Liangsheng Yin committed
150
151
152
153
154
            if self.top_logprobs_num is None:
                self.top_logprobs_num = [0] * num
            elif not isinstance(self.top_logprobs_num, list):
                self.top_logprobs_num = [self.top_logprobs_num] * num

Lianmin Zheng's avatar
Lianmin Zheng committed
155
156
157
158

@dataclass
class TokenizedGenerateReqInput:
    rid: str
Liangsheng Yin's avatar
Liangsheng Yin committed
159
    input_text: str
Lianmin Zheng's avatar
Lianmin Zheng committed
160
161
162
    input_ids: List[int]
    pixel_values: List[float]
    image_hash: int
shiyi.c_98's avatar
shiyi.c_98 committed
163
    image_size: List[int]
Lianmin Zheng's avatar
Lianmin Zheng committed
164
    sampling_params: SamplingParams
165
166
    return_logprob: bool
    logprob_start_len: int
Liangsheng Yin's avatar
Liangsheng Yin committed
167
    top_logprobs_num: int
Lianmin Zheng's avatar
Lianmin Zheng committed
168
169
170
    stream: bool


171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
@dataclass
class EmbeddingReqInput:
    # The input prompt. It can be a single prompt or a batch of prompts.
    text: Optional[Union[List[str], str]] = None
    # The token ids for text; one can either specify text or input_ids.
    input_ids: Optional[Union[List[List[int]], List[int]]] = None
    # The request id.
    rid: Optional[Union[List[str], str]] = None
    # Dummy sampling params for compatibility
    sampling_params: Union[List[Dict], Dict] = None

    def post_init(self):
        if (self.text is None and self.input_ids is None) or (
            self.text is not None and self.input_ids is not None
        ):
            raise ValueError("Either text or input_ids should be provided.")

        if self.text is not None:
            is_single = isinstance(self.text, str)
        else:
            is_single = isinstance(self.input_ids[0], int)
        self.is_single = is_single

        if is_single:
            if self.rid is None:
                self.rid = uuid.uuid4().hex
Ying Sheng's avatar
Ying Sheng committed
197
            if self.sampling_params is None:
198
199
                self.sampling_params = {}
            self.sampling_params["max_new_tokens"] = 1
200
201
202
203
204
205
206
207
208
209
        else:
            # support select operation
            self.batch_size = (
                len(self.text) if self.text is not None else len(self.input_ids)
            )
            if self.rid is None:
                self.rid = [uuid.uuid4().hex for _ in range(self.batch_size)]
            else:
                if not isinstance(self.rid, list):
                    raise ValueError("The rid should be a list.")
Ying Sheng's avatar
Ying Sheng committed
210
            if self.sampling_params is None:
211
212
213
                self.sampling_params = [{}] * self.batch_size
            for i in range(self.batch_size):
                self.sampling_params[i]["max_new_tokens"] = 1
214
215
216
217
218
219
220
221
222
223


@dataclass
class TokenizedEmbeddingReqInput:
    rid: str
    input_text: str
    input_ids: List[int]
    sampling_params: SamplingParams


Lianmin Zheng's avatar
Lianmin Zheng committed
224
225
226
@dataclass
class BatchTokenIDOut:
    rids: List[str]
227
    vids: List[int]
Liangsheng Yin's avatar
Liangsheng Yin committed
228
    decoded_texts: List[str]
229
230
    decode_ids: List[int]
    read_offsets: List[int]
Lianmin Zheng's avatar
Lianmin Zheng committed
231
    skip_special_tokens: List[bool]
232
    spaces_between_special_tokens: List[bool]
Lianmin Zheng's avatar
Lianmin Zheng committed
233
    meta_info: List[Dict]
234
    finished_reason: List[BaseFinishReason]
Lianmin Zheng's avatar
Lianmin Zheng committed
235

Liangsheng Yin's avatar
Liangsheng Yin committed
236

Lianmin Zheng's avatar
Lianmin Zheng committed
237
238
239
@dataclass
class BatchStrOut:
    rids: List[str]
240
    output_strs: List[str]
Lianmin Zheng's avatar
Lianmin Zheng committed
241
    meta_info: List[Dict]
242
    finished_reason: List[BaseFinishReason]
Liangsheng Yin's avatar
Liangsheng Yin committed
243
244


245
246
247
248
249
250
251
252
@dataclass
class BatchEmbeddingOut:
    rids: List[str]
    embeddings: List[List[float]]
    meta_info: List[Dict]
    finished_reason: List[BaseFinishReason]


Liangsheng Yin's avatar
Liangsheng Yin committed
253
254
255
@dataclass
class FlushCacheReq:
    pass
Cody Yu's avatar
Cody Yu committed
256

257

258
259
260
261
262
@dataclass
class AbortReq:
    rid: str


Cody Yu's avatar
Cody Yu committed
263
264
@dataclass
class DetokenizeReqInput:
265
    input_ids: List[int]