fp8.py 21.5 KB
Newer Older
Yineng Zhang's avatar
Yineng Zhang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
# Adapted from https://github.com/vllm-project/vllm/blob/v0.6.4.post1/vllm/model_executor/layers/quantization/fp8.py

import logging
from typing import Any, Callable, Dict, List, Optional

import torch
from torch.nn import Module
from torch.nn.parameter import Parameter
from vllm import _custom_ops as ops
from vllm.model_executor.layers.linear import LinearBase
from vllm.model_executor.layers.quantization.kv_cache import BaseKVCacheMethod
from vllm.model_executor.layers.quantization.utils.marlin_utils_fp8 import (
    apply_fp8_marlin_linear,
    prepare_fp8_layer_for_marlin,
)
from vllm.model_executor.layers.quantization.utils.quant_utils import is_layer_skipped
from vllm.model_executor.layers.quantization.utils.w8a8_utils import (
    all_close_1d,
    apply_fp8_linear,
    convert_to_channelwise,
    cutlass_fp8_supported,
    per_tensor_dequantize,
    requantize_with_max_scale,
)
from vllm.model_executor.parameter import ModelWeightParameter, PerTensorScaleParameter

from sglang.srt.layers.fused_moe_triton import (
    FusedMoE,
    FusedMoEMethodBase,
    FusedMoeWeightScaleSupported,
)
from sglang.srt.layers.linear import LinearMethodBase, UnquantizedLinearMethod
from sglang.srt.layers.quantization.base_config import (
    QuantizationConfig,
    QuantizeMethodBase,
)
from sglang.srt.layers.quantization.fp8_utils import normalize_e4m3fn_to_e4m3fnuz
from sglang.srt.utils import (
    get_bool_env_var,
    is_hip,
    print_warning_once,
    set_weight_attrs,
)

ACTIVATION_SCHEMES = ["static", "dynamic"]

logger = logging.getLogger(__name__)


class Fp8Config(QuantizationConfig):
    """Config class for FP8."""

    def __init__(
        self,
        is_checkpoint_fp8_serialized: bool = False,
        activation_scheme: str = "dynamic",
        ignored_layers: Optional[List[str]] = None,
    ) -> None:
        self.is_checkpoint_fp8_serialized = is_checkpoint_fp8_serialized
        if is_checkpoint_fp8_serialized:
            logger.warning(
                "Detected fp8 checkpoint. Please note that the "
                "format is experimental and subject to change."
            )
        if activation_scheme not in ACTIVATION_SCHEMES:
            raise ValueError(f"Unsupported activation scheme {activation_scheme}")
        self.activation_scheme = activation_scheme
        self.ignored_layers = ignored_layers or []

    @classmethod
    def get_name(cls) -> str:
        return "fp8"

    @classmethod
    def get_supported_act_dtypes(cls) -> List[torch.dtype]:
        return [torch.bfloat16, torch.half]

    @classmethod
    def get_min_capability(cls) -> int:
        return 80

    @classmethod
    def get_config_filenames(cls) -> List[str]:
        return []

    @classmethod
    def from_config(cls, config: Dict[str, Any]) -> "Fp8Config":
        quant_method = cls.get_from_keys(config, ["quant_method"])
        is_checkpoint_fp8_serialized = "fp8" in quant_method
        activation_scheme = cls.get_from_keys(config, ["activation_scheme"])
        ignored_layers = cls.get_from_keys_or(config, ["ignored_layers"], None)
        return cls(
            is_checkpoint_fp8_serialized=is_checkpoint_fp8_serialized,
            activation_scheme=activation_scheme,
            ignored_layers=ignored_layers,
        )

    def get_quant_method(
        self, layer: torch.nn.Module, prefix: str
    ) -> Optional["QuantizeMethodBase"]:
        from vllm.attention.layer import Attention  # Avoid circular import

        if isinstance(layer, LinearBase):
            if is_layer_skipped(prefix, self.ignored_layers):
                return UnquantizedLinearMethod()
            return Fp8LinearMethod(self)
        elif isinstance(layer, FusedMoE):
            return Fp8MoEMethod(self)
        elif isinstance(layer, Attention):
            return Fp8KVCacheMethod(self)
        return None

    def get_scaled_act_names(self) -> List[str]:
        return []


class Fp8LinearMethod(LinearMethodBase):
    """Linear method for FP8.
    Supports loading FP8 checkpoints with static weight scale and
    dynamic/static activation scale.

    Also supports loading quantized FP16/BF16 model checkpoints with dynamic
    activation scaling. The weight scaling factor will be initialized after
    the model weights are loaded.

    Limitations:
    1. Only support per-tensor quantization due to torch._scaled_mm support.
    2. Only support float8_e4m3fn data type due to the limitation of
       torch._scaled_mm (https://github.com/pytorch/pytorch/blob/2e48b39603411a41c5025efbe52f89560b827825/aten/src/ATen/native/cuda/Blas.cpp#L854-L856)

    Args:
        quant_config: The quantization config.
    """

    def __init__(self, quant_config: Fp8Config):
        self.quant_config = quant_config
        self.cutlass_fp8_supported = cutlass_fp8_supported()

        # For GPUs that lack FP8 hardware support, we can leverage the Marlin
        # kernel for fast weight-only FP8 quantization
        self.use_marlin = get_bool_env_var("SGLANG_FORCE_FP8_MARLIN")
        # Disable marlin for ROCm
        if is_hip():
            self.use_marlin = False

    def create_weights(
        self,
        layer: torch.nn.Module,
        input_size_per_partition: int,
        output_partition_sizes: List[int],
        input_size: int,
        output_size: int,
        params_dtype: torch.dtype,
        **extra_weight_attrs,
    ):
        del input_size, output_size
        output_size_per_partition = sum(output_partition_sizes)
        weight_loader = extra_weight_attrs.get("weight_loader")

        layer.logical_widths = output_partition_sizes

        layer.input_size_per_partition = input_size_per_partition
        layer.output_size_per_partition = output_size_per_partition
        layer.orig_dtype = params_dtype

        # WEIGHT
        weight_dtype = (
            torch.float8_e4m3fn
            if self.quant_config.is_checkpoint_fp8_serialized
            else params_dtype
        )

        weight = ModelWeightParameter(
            data=torch.empty(
                output_size_per_partition, input_size_per_partition, dtype=weight_dtype
            ),
            input_dim=1,
            output_dim=0,
            weight_loader=weight_loader,
        )
        layer.register_parameter("weight", weight)

        # If checkpoint is serialized fp8, load them.
        # Otherwise, wait until process_weights_after_loading.
        if self.quant_config.is_checkpoint_fp8_serialized:
            # WEIGHT SCALE
            scale = PerTensorScaleParameter(
                data=torch.empty(len(output_partition_sizes), dtype=torch.float32),
                weight_loader=weight_loader,
            )

            scale[:] = torch.finfo(torch.float32).min
            layer.register_parameter("weight_scale", scale)

            # INPUT ACTIVATION SCALE
            if self.quant_config.activation_scheme == "static":
                scale = PerTensorScaleParameter(
                    data=torch.empty(len(output_partition_sizes), dtype=torch.float32),
                    weight_loader=weight_loader,
                )

                scale[:] = torch.finfo(torch.float32).min
                layer.register_parameter("input_scale", scale)
            else:
                layer.register_parameter("input_scale", None)

    def process_weights_after_loading(self, layer: Module) -> None:
        layer.weight = torch.nn.Parameter(layer.weight.data, requires_grad=False)
        # If checkpoint not serialized fp8, quantize the weights.
        if not self.quant_config.is_checkpoint_fp8_serialized:
            qweight, weight_scale = ops.scaled_fp8_quant(layer.weight, scale=None)

            # If using marlin (w8a16), kernel uses channelwise weights,
            # so extend the weight scales to be channelwise.
            if self.use_marlin:
                assert weight_scale.numel() == 1
                weight_scale = convert_to_channelwise(
                    weight_scale.expand(len(layer.logical_widths)), layer.logical_widths
                )

            # Update the layer with the new values.
            layer.weight = Parameter(qweight.t(), requires_grad=False)
            layer.weight_scale = Parameter(weight_scale, requires_grad=False)
            layer.input_scale = None

        # If checkpoint is fp8, handle that there are N scales for N
        # shards in a fused module
        else:
            layer.weight_scale = torch.nn.Parameter(
                layer.weight_scale.data, requires_grad=False
            )
            if self.quant_config.activation_scheme == "static":
                layer.input_scale = torch.nn.Parameter(
                    layer.input_scale.data, requires_grad=False
                )
            # If using marlin (w8a16), kernel uses channelwise weights,
            # so extend the weight scales to be channelwise.
            if self.use_marlin:
                weight = layer.weight
                weight_scale = convert_to_channelwise(
                    layer.weight_scale, layer.logical_widths
                )

            # If using w8a8, torch._scaled_mm needs per tensor, so
            # requantize the logical shards as a single weight.
            else:
                # Dequant -> Quant with max scale so we can run per tensor.
                weight = layer.weight
                weight_scale = layer.weight_scale

                # If ROCm, normalize the weights and scales to e4m3fnuz
                if is_hip():
                    weight, weight_scale, input_scale = normalize_e4m3fn_to_e4m3fnuz(
                        weight=weight,
                        weight_scale=weight_scale,
                        input_scale=layer.input_scale,
                    )
                    if input_scale is not None:
                        layer.input_scale = Parameter(input_scale, requires_grad=False)

                weight_scale, weight = requantize_with_max_scale(
                    weight=weight,
                    weight_scale=weight_scale,
                    logical_widths=layer.logical_widths,
                )

            # Update layer with new values.
            layer.weight = Parameter(weight.t(), requires_grad=False)
            layer.weight_scale = Parameter(weight_scale, requires_grad=False)
            if self.quant_config.activation_scheme == "static":
                layer.input_scale = Parameter(
                    layer.input_scale.max(), requires_grad=False
                )

        if self.use_marlin:
            prepare_fp8_layer_for_marlin(layer)
            # Activations not quantized for marlin.
            del layer.input_scale

    def apply(
        self,
        layer: torch.nn.Module,
        x: torch.Tensor,
        bias: Optional[torch.Tensor] = None,
    ) -> torch.Tensor:

        if self.use_marlin:
            return apply_fp8_marlin_linear(
                input=x,
                weight=layer.weight,
                weight_scale=layer.weight_scale,
                workspace=layer.workspace,
                size_n=layer.output_size_per_partition,
                size_k=layer.input_size_per_partition,
                bias=bias,
            )

        return apply_fp8_linear(
            input=x,
            weight=layer.weight,
            weight_scale=layer.weight_scale,
            input_scale=layer.input_scale,
            bias=bias,
            cutlass_fp8_supported=self.cutlass_fp8_supported,
            use_per_token_if_dynamic=False,
        )


class Fp8MoEMethod(FusedMoEMethodBase):
    """MoE method for FP8.
    Supports loading FP8 checkpoints with static weight scale and
    dynamic/static activation scale.

    Also supports loading quantized FP16/BF16 model checkpoints with dynamic
    activation scaling. The weight scaling factor will be initialized after
    the model weights are loaded.

    Args:
        quant_config: The quantization config.
    """

    def __init__(self, quant_config: Fp8Config):
        self.quant_config = quant_config

    def create_weights(
        self,
        layer: Module,
        num_experts: int,
        hidden_size: int,
        intermediate_size: int,
        params_dtype: torch.dtype,
        **extra_weight_attrs,
    ):

        if self.quant_config.is_checkpoint_fp8_serialized:
            params_dtype = torch.float8_e4m3fn

        # WEIGHTS
        w13_weight = torch.nn.Parameter(
            torch.empty(
                num_experts, 2 * intermediate_size, hidden_size, dtype=params_dtype
            ),
            requires_grad=False,
        )
        layer.register_parameter("w13_weight", w13_weight)
        set_weight_attrs(w13_weight, extra_weight_attrs)

        w2_weight = torch.nn.Parameter(
            torch.empty(
                num_experts, hidden_size, intermediate_size, dtype=params_dtype
            ),
            requires_grad=False,
        )
        layer.register_parameter("w2_weight", w2_weight)
        set_weight_attrs(w2_weight, extra_weight_attrs)

        # WEIGHT_SCALES
        # Allocate 2 scales for w1 and w3 respectively.
        # They will be combined to a single scale after weight loading.
        w13_weight_scale = torch.nn.Parameter(
            torch.ones(num_experts, 2, dtype=torch.float32), requires_grad=False
        )
        layer.register_parameter("w13_weight_scale", w13_weight_scale)

        w2_weight_scale = torch.nn.Parameter(
            torch.ones(num_experts, dtype=torch.float32), requires_grad=False
        )
        layer.register_parameter("w2_weight_scale", w2_weight_scale)
        # Add the quantization method used (per tensor/grouped/channel)
        # to ensure the weight scales are loaded in properly
        extra_weight_attrs.update(
            {"quant_method": FusedMoeWeightScaleSupported.TENSOR.value}
        )
        # If loading fp8 checkpoint, pass the weight loaders.
        # If loading an fp16 checkpoint, do not (we will quantize in
        #   process_weights_after_loading()
        if self.quant_config.is_checkpoint_fp8_serialized:
            set_weight_attrs(w13_weight_scale, extra_weight_attrs)
            set_weight_attrs(w2_weight_scale, extra_weight_attrs)

        # INPUT_SCALES
        if self.quant_config.activation_scheme == "static":
            if not self.quant_config.is_checkpoint_fp8_serialized:
                raise ValueError(
                    "Found static activation scheme for checkpoint that "
                    "was not serialized fp8."
                )

            w13_input_scale = torch.nn.Parameter(
                torch.ones(num_experts, dtype=torch.float32), requires_grad=False
            )
            layer.register_parameter("w13_input_scale", w13_input_scale)
            set_weight_attrs(w13_input_scale, extra_weight_attrs)

            w2_input_scale = torch.nn.Parameter(
                torch.ones(num_experts, dtype=torch.float32), requires_grad=False
            )
            layer.register_parameter("w2_input_scale", w2_input_scale)
            set_weight_attrs(w2_input_scale, extra_weight_attrs)

        else:
            layer.w13_input_scale = None
            layer.w2_input_scale = None

    def process_weights_after_loading(self, layer: Module) -> None:

        # If checkpoint is fp16, quantize in place.
        if not self.quant_config.is_checkpoint_fp8_serialized:
            # If ROCm, use float8_e4m3fnuz instead (MI300x HW)
            fp8_dtype = torch.float8_e4m3fnuz if is_hip() else torch.float8_e4m3fn
            w13_weight = torch.empty_like(layer.w13_weight.data, dtype=fp8_dtype)
            w2_weight = torch.empty_like(layer.w2_weight.data, dtype=fp8_dtype)

            # Re-initialize w13_scale because we directly quantize
            # merged w13 weights and generate a single scaling factor.
            layer.w13_weight_scale = torch.nn.Parameter(
                torch.ones(
                    layer.num_experts, dtype=torch.float32, device=w13_weight.device
                ),
                requires_grad=False,
            )
            for expert in range(layer.num_experts):
                w13_weight[expert, :, :], layer.w13_weight_scale[expert] = (
                    ops.scaled_fp8_quant(layer.w13_weight.data[expert, :, :])
                )
                w2_weight[expert, :, :], layer.w2_weight_scale[expert] = (
                    ops.scaled_fp8_quant(layer.w2_weight.data[expert, :, :])
                )
            layer.w13_weight = torch.nn.Parameter(w13_weight, requires_grad=False)
            layer.w2_weight = torch.nn.Parameter(w2_weight, requires_grad=False)
            return

        # If checkpoint is fp8, we need to handle that the
        # MoE kernels require single activation scale and single weight
        # scale for w13 per expert.
        else:
            # Fp8 moe kernels require a single activation scale.
            # We take the max of all the scales in case they differ.
            if self.quant_config.activation_scheme == "static":
                if layer.w13_input_scale is None or layer.w2_input_scale is None:
                    raise ValueError(
                        "QuantConfig has static quantization, but found "
                        "activation scales are None."
                    )
                if not all_close_1d(layer.w13_input_scale) or not all_close_1d(
                    layer.w2_input_scale
                ):
                    print_warning_once(
                        "Found input_scales that are not equal for "
                        "fp8 MoE layer. Using the maximum across experts "
                        "for each layer. "
                    )
                layer.w13_input_scale = torch.nn.Parameter(
                    layer.w13_input_scale.max(), requires_grad=False
                )
                layer.w2_input_scale = torch.nn.Parameter(
                    layer.w2_input_scale.max(), requires_grad=False
                )
            # If ROCm, normalize the weights and scales to e4m3fnuz
            if is_hip():
                # Normalize the weights and scales
                w13_weight, w13_weight_scale, w13_input_scale = (
                    normalize_e4m3fn_to_e4m3fnuz(
                        layer.w13_weight, layer.w13_weight_scale, layer.w13_input_scale
                    )
                )
                w2_weight, w2_weight_scale, w2_input_scale = (
                    normalize_e4m3fn_to_e4m3fnuz(
                        layer.w2_weight, layer.w2_weight_scale, layer.w2_input_scale
                    )
                )
                # Reset the parameter
                layer.w13_weight = torch.nn.Parameter(w13_weight, requires_grad=False)
                layer.w13_weight_scale = torch.nn.Parameter(
                    w13_weight_scale, requires_grad=False
                )
                if w13_input_scale is not None:
                    layer.w13_input_scale = torch.nn.Parameter(
                        w13_input_scale, requires_grad=False
                    )
                layer.w2_weight = torch.nn.Parameter(w2_weight, requires_grad=False)
                layer.w2_weight_scale = torch.nn.Parameter(
                    w2_weight_scale, requires_grad=False
                )
                if w2_input_scale is not None:
                    layer.w2_input_scale = torch.nn.Parameter(
                        w2_input_scale, requires_grad=False
                    )

            # Fp8 moe kernel needs single weight scale for w13 per expert.
            # We take the max then dequant and requant each expert.
            assert layer.w13_weight_scale is not None
            shard_size = layer.intermediate_size_per_partition
            max_w13_scales = layer.w13_weight_scale.max(dim=1).values
            for expert_id in range(layer.num_experts):
                start = 0
                for shard_id in range(2):
                    dq_weight = per_tensor_dequantize(
                        layer.w13_weight[expert_id][start : start + shard_size, :],
                        layer.w13_weight_scale[expert_id][shard_id],
                    )
                    layer.w13_weight[expert_id][start : start + shard_size, :], _ = (
                        ops.scaled_fp8_quant(dq_weight, max_w13_scales[expert_id])
                    )
                    start += shard_size

            layer.w13_weight_scale = torch.nn.Parameter(
                max_w13_scales, requires_grad=False
            )
            return

    def apply(
        self,
        layer: torch.nn.Module,
        x: torch.Tensor,
        router_logits: torch.Tensor,
        top_k: int,
        renormalize: bool,
        use_grouped_topk: bool,
        topk_group: Optional[int] = None,
        num_expert_group: Optional[int] = None,
        custom_routing_function: Optional[Callable] = None,
    ) -> torch.Tensor:

        from vllm.model_executor.layers.fused_moe import fused_experts

        topk_weights, topk_ids = FusedMoE.select_experts(
            hidden_states=x,
            router_logits=router_logits,
            use_grouped_topk=use_grouped_topk,
            top_k=top_k,
            renormalize=renormalize,
            topk_group=topk_group,
            num_expert_group=num_expert_group,
            custom_routing_function=custom_routing_function,
        )

        return fused_experts(
            x,
            layer.w13_weight,
            layer.w2_weight,
            topk_weights=topk_weights,
            topk_ids=topk_ids,
            inplace=True,
            use_fp8_w8a8=True,
            w1_scale=layer.w13_weight_scale,
            w2_scale=layer.w2_weight_scale,
            a1_scale=layer.w13_input_scale,
            a2_scale=layer.w2_input_scale,
        )


class Fp8KVCacheMethod(BaseKVCacheMethod):
    """
    Supports loading kv-cache scaling factors from FP8 checkpoints.
    """

    def __init__(self, quant_config: Fp8Config):
        super().__init__(quant_config)