trtllm_mla_backend.py 22.3 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
from __future__ import annotations

"""
Support attention backend for TRTLLM MLA kernels from flashinfer.
"""

import math
from dataclasses import dataclass
from typing import TYPE_CHECKING, Optional, Union

import torch
import triton

14
15
16
17
from sglang.srt.layers.attention.flashinfer_mla_backend import (
    FlashInferMLAAttnBackend,
    FlashInferMLAMultiStepDraftBackend,
)
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
from sglang.srt.layers.attention.utils import (
    TRITON_PAD_NUM_PAGE_PER_BLOCK,
    create_flashmla_kv_indices_triton,
)
from sglang.srt.layers.dp_attention import get_attention_tp_size
from sglang.srt.model_executor.forward_batch_info import ForwardBatch, ForwardMode
from sglang.srt.utils import is_flashinfer_available

if is_flashinfer_available():
    import flashinfer

if TYPE_CHECKING:
    from sglang.srt.layers.radix_attention import RadixAttention
    from sglang.srt.model_executor.model_runner import ModelRunner
    from sglang.srt.speculative.spec_info import SpecInfo

# Constants
DEFAULT_WORKSPACE_SIZE_MB = 128  # Memory workspace size in MB

# Block constraint from flashinfer requirements
# From flashinfer.decode._check_trtllm_gen_mla_shape:
#   block_num % (128 / block_size) == 0
# This imposes that the total number of blocks must be divisible by
# (128 / block_size). We capture the 128 constant here so we can
# compute the LCM with other padding constraints.
TRTLLM_BLOCK_CONSTRAINT = 128

eigen's avatar
eigen committed
45
46
global_zero_init_workspace_buffer = None

47

48
49
50
51
52
53
54
55
56
@dataclass
class TRTLLMMLAPrefillMetadata:
    """Metadata for TRTLLM MLA prefill operations."""

    max_seq_len: int
    cum_seq_lens: torch.Tensor
    seq_lens: torch.Tensor


57
58
59
60
61
@dataclass
class TRTLLMMLADecodeMetadata:
    """Metadata for TRTLLM MLA decode operations."""

    block_kv_indices: Optional[torch.Tensor] = None
62
    max_seq_len: Optional[int] = None
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99


class TRTLLMMLABackend(FlashInferMLAAttnBackend):
    """TRTLLM MLA attention kernel from flashinfer."""

    def __init__(
        self,
        model_runner: ModelRunner,
        skip_prefill: bool = False,
        kv_indptr_buf: Optional[torch.Tensor] = None,
        q_indptr_decode_buf: Optional[torch.Tensor] = None,
    ):
        super().__init__(model_runner, skip_prefill, kv_indptr_buf, q_indptr_decode_buf)

        config = model_runner.model_config

        # Model parameters
        self.num_q_heads = config.num_attention_heads // get_attention_tp_size()
        self.num_kv_heads = config.get_num_kv_heads(get_attention_tp_size())
        self.num_local_heads = config.num_attention_heads // get_attention_tp_size()

        # MLA-specific dimensions
        self.kv_lora_rank = config.kv_lora_rank
        self.qk_nope_head_dim = config.qk_nope_head_dim
        self.qk_rope_head_dim = config.qk_rope_head_dim
        self.v_head_dim = config.v_head_dim
        self.kv_cache_dim = self.kv_lora_rank + self.qk_rope_head_dim

        # Runtime parameters
        self.scaling = config.scaling
        self.data_type = model_runner.kv_cache_dtype
        self.q_data_type = model_runner.dtype
        self.page_size = model_runner.page_size
        self.req_to_token = model_runner.req_to_token_pool.req_to_token

        # Workspace allocation
        self.workspace_size = DEFAULT_WORKSPACE_SIZE_MB * 1024 * 1024
eigen's avatar
eigen committed
100
101
102
103
104
105
106
107
        global global_zero_init_workspace_buffer
        if global_zero_init_workspace_buffer is None:
            global_zero_init_workspace_buffer = torch.zeros(
                self.workspace_size,
                dtype=torch.uint8,
                device=model_runner.device,
            )
        self.workspace_buffer = global_zero_init_workspace_buffer
108
109
110

        # CUDA graph state
        self.decode_cuda_graph_metadata = {}
111
        self.decode_cuda_graph_kv_indices = None
112
113
        self.forward_prefill_metadata: Optional[TRTLLMMLAPrefillMetadata] = None
        self.forward_decode_metadata: Union[TRTLLMMLADecodeMetadata, None] = None
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169

    def _calc_padded_blocks(self, max_seq_len: int) -> int:
        """
        Calculate padded block count that satisfies both TRT-LLM and Triton constraints.

        Args:
            max_seq_len: Maximum sequence length in tokens

        Returns:
            Number of blocks padded to satisfy all constraints
        """
        blocks = triton.cdiv(max_seq_len, self.page_size)

        # Apply dual constraints (take LCM to satisfy both):
        # 1. TRT-LLM: block_num % (128 / page_size) == 0
        # 2. Triton: page table builder uses 64-index bursts, needs multiple of 64
        trtllm_constraint = TRTLLM_BLOCK_CONSTRAINT // self.page_size
        constraint_lcm = math.lcm(trtllm_constraint, TRITON_PAD_NUM_PAGE_PER_BLOCK)

        if blocks % constraint_lcm != 0:
            blocks = triton.cdiv(blocks, constraint_lcm) * constraint_lcm
        return blocks

    def _create_block_kv_indices(
        self,
        batch_size: int,
        max_blocks: int,
        req_pool_indices: torch.Tensor,
        seq_lens: torch.Tensor,
        device: torch.device,
    ) -> torch.Tensor:
        """
        Create block KV indices tensor using Triton kernel.

        Args:
            batch_size: Batch size
            max_blocks: Maximum number of blocks per sequence
            req_pool_indices: Request pool indices
            seq_lens: Sequence lengths
            device: Target device

        Returns:
            Block KV indices tensor
        """
        block_kv_indices = torch.full(
            (batch_size, max_blocks), -1, dtype=torch.int32, device=device
        )

        create_flashmla_kv_indices_triton[(batch_size,)](
            self.req_to_token,
            req_pool_indices,
            seq_lens,
            None,
            block_kv_indices,
            self.req_to_token.stride(0),
            max_blocks,
170
171
            NUM_PAGE_PER_BLOCK=TRITON_PAD_NUM_PAGE_PER_BLOCK,
            PAGED_SIZE=self.page_size,
172
173
174
175
176
177
178
179
180
181
182
        )

        return block_kv_indices

    def init_cuda_graph_state(
        self,
        max_bs: int,
        max_num_tokens: int,
        kv_indices_buf: Optional[torch.Tensor] = None,
    ):
        """Initialize CUDA graph state for TRTLLM MLA."""
183

184
185
        max_blocks_per_seq = self._calc_padded_blocks(self.max_context_len)

186
        self.decode_cuda_graph_kv_indices = torch.full(
187
188
189
            (max_bs, max_blocks_per_seq), -1, dtype=torch.int32, device=self.device
        )

190
191
        super().init_cuda_graph_state(max_bs, max_num_tokens, kv_indices_buf)

192
193
194
195
196
197
198
199
200
201
202
    def init_forward_metadata_capture_cuda_graph(
        self,
        bs: int,
        num_tokens: int,
        req_pool_indices: torch.Tensor,
        seq_lens: torch.Tensor,
        encoder_lens: Optional[torch.Tensor],
        forward_mode: ForwardMode,
        spec_info: Optional[SpecInfo],
    ):
        """Initialize metadata for CUDA graph capture."""
203
204
205

        # Delegate to parent for non-decode modes.
        if not forward_mode.is_decode_or_idle():
206
207
208
209
210
211
212
213
214
215
            return super().init_forward_metadata_capture_cuda_graph(
                bs,
                num_tokens,
                req_pool_indices,
                seq_lens,
                encoder_lens,
                forward_mode,
                spec_info,
            )

216
        # Custom fast-path for decode/idle.
217
218
219
        # Capture with full width so future longer sequences are safe during replay
        max_blocks_per_seq = self._calc_padded_blocks(self.max_context_len)
        block_kv_indices = self.decode_cuda_graph_kv_indices[:bs, :max_blocks_per_seq]
220
221
222
223
224
225
226
227

        create_flashmla_kv_indices_triton[(bs,)](
            self.req_to_token,
            req_pool_indices,
            seq_lens,
            None,
            block_kv_indices,
            self.req_to_token.stride(0),
228
            max_blocks_per_seq,
229
230
            NUM_PAGE_PER_BLOCK=TRITON_PAD_NUM_PAGE_PER_BLOCK,
            PAGED_SIZE=self.page_size,
231
232
        )

233
234
235
236
237
        # Record the true maximum sequence length for this capture batch so that
        # the kernel launch path (which requires an int not a tensor) can reuse
        # it safely during both capture and replay.
        max_seq_len_val = int(seq_lens.max().item())

238
        metadata = TRTLLMMLADecodeMetadata(
239
240
            block_kv_indices,
            max_seq_len_val,
241
        )
242
        self.decode_cuda_graph_metadata[bs] = metadata
243
        self.forward_decode_metadata = metadata
244
245
246
247
248
249
250
251
252
253
254
255
256

    def init_forward_metadata_replay_cuda_graph(
        self,
        bs: int,
        req_pool_indices: torch.Tensor,
        seq_lens: torch.Tensor,
        seq_lens_sum: int,
        encoder_lens: Optional[torch.Tensor],
        forward_mode: ForwardMode,
        spec_info: Optional[SpecInfo],
        seq_lens_cpu: Optional[torch.Tensor],
    ):
        """Replay CUDA graph with new inputs."""
257
258
        # Delegate to parent for non-decode modes.
        if not forward_mode.is_decode_or_idle():
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
            return super().init_forward_metadata_replay_cuda_graph(
                bs,
                req_pool_indices,
                seq_lens,
                seq_lens_sum,
                encoder_lens,
                forward_mode,
                spec_info,
                seq_lens_cpu,
            )

        metadata = self.decode_cuda_graph_metadata[bs]

        # Update block indices for new sequences.
        create_flashmla_kv_indices_triton[(bs,)](
            self.req_to_token,
            req_pool_indices[:bs],
            seq_lens[:bs],
            None,
            metadata.block_kv_indices,
            self.req_to_token.stride(0),
            metadata.block_kv_indices.shape[1],
281
282
            NUM_PAGE_PER_BLOCK=TRITON_PAD_NUM_PAGE_PER_BLOCK,
            PAGED_SIZE=self.page_size,
283
284
        )

285
286
287
288
289
290
291
        # Update stored max_seq_len so subsequent kernel calls use the correct value
        # Prefer CPU tensor to avoid GPU synchronization when available.
        if seq_lens_cpu is not None:
            metadata.max_seq_len = int(seq_lens_cpu.max().item())
        else:
            metadata.max_seq_len = int(seq_lens.max().item())

292
293
294
295
296
297
    def get_cuda_graph_seq_len_fill_value(self) -> int:
        """Get the fill value for sequence lengths in CUDA graph."""
        return 1

    def init_forward_metadata(self, forward_batch: ForwardBatch):
        """Initialize the metadata for a forward pass."""
298
        # Delegate to parent for non-decode modes.
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
        if (
            forward_batch.forward_mode.is_extend()
            and not forward_batch.forward_mode.is_target_verify()
            and not forward_batch.forward_mode.is_draft_extend()
        ):
            seq_lens = forward_batch.seq_lens - forward_batch.extend_prefix_lens
            cum_seq_lens_q = torch.cat(
                (
                    torch.tensor([0], device=forward_batch.seq_lens.device),
                    torch.cumsum(seq_lens, dim=0),
                )
            ).int()
            max_seq_len = max(forward_batch.extend_seq_lens_cpu)
            self.forward_prefill_metadata = TRTLLMMLAPrefillMetadata(
                max_seq_len,
                cum_seq_lens_q,
                seq_lens,
            )
        elif forward_batch.forward_mode.is_decode_or_idle():
            bs = forward_batch.batch_size
319

320
321
322
323
324
            # Get maximum sequence length.
            if getattr(forward_batch, "seq_lens_cpu", None) is not None:
                max_seq = forward_batch.seq_lens_cpu.max().item()
            else:
                max_seq = forward_batch.seq_lens.max().item()
325

326
327
328
329
330
331
332
333
334
335
336
            max_seqlen_pad = self._calc_padded_blocks(max_seq)
            block_kv_indices = self._create_block_kv_indices(
                bs,
                max_seqlen_pad,
                forward_batch.req_pool_indices,
                forward_batch.seq_lens,
                forward_batch.seq_lens.device,
            )

            max_seq_len_val = int(max_seq)
            self.forward_decode_metadata = TRTLLMMLADecodeMetadata(
337
                block_kv_indices, max_seq_len_val
338
339
            )
            forward_batch.decode_trtllm_mla_metadata = self.forward_decode_metadata
340
        else:
341
            return super().init_forward_metadata(forward_batch)
342

343
344
    def init_mha_chunk_metadata(self, forward_batch: ForwardBatch):
        super().init_mha_chunk_metadata(forward_batch, disable_flashinfer_ragged=True)
345

Faraz's avatar
Faraz committed
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
    def quantize_and_rope_for_fp8(
        self,
        q_nope: torch.Tensor,
        q_rope: torch.Tensor,
        k_nope: torch.Tensor,
        k_rope: torch.Tensor,
        forward_batch: ForwardBatch,
        cos_sin_cache: torch.Tensor,
        is_neox: bool,
    ) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
        """Quantize and apply RoPE for FP8 attention path.

        This function handles the FP8 quantization and RoPE application for MLA attention.
        It takes separate query/key nope and rope components, applies RoPE to the rope parts,
        quantizes all components to FP8, and merges the query components into a single tensor.

        Args:
            q_nope: Query no-position-encoding component [seq_len, num_heads, kv_lora_rank]
                - expected dtype: torch.bfloat16
            q_rope: Query RoPE component [seq_len, num_heads, qk_rope_head_dim]
                - expected dtype: torch.bfloat16
            k_nope: Key no-position-encoding component [seq_len, num_heads, kv_lora_rank]
                - expected dtype: torch.bfloat16
            k_rope: Key RoPE component [seq_len, num_heads, qk_rope_head_dim]
                - expected dtype: torch.bfloat16
            forward_batch: Forward batch containing position information
            cos_sin_cache: Precomputed cosine/sine cache for RoPE
                - expected dtype: matches q_/k_ input dtype (torch.bfloat16)
            is_neox: Whether to use NeoX-style RoPE (interleaved) or GPT-style (half rotation)

        Returns:
            tuple: (merged_q_out, k_nope_out, k_rope_out) quantized to FP8
                - merged_q_out: [seq_len, num_heads, kv_lora_rank + qk_rope_head_dim], dtype=torch.float8_e4m3fn
                - k_nope_out:   [seq_len, num_heads, kv_lora_rank], dtype=torch.float8_e4m3fn
                - k_rope_out:   [seq_len, num_heads, qk_rope_head_dim], dtype=torch.float8_e4m3fn
        """
        attn_dtype = torch.float8_e4m3fn
        q_len, num_heads = q_rope.shape[0], q_rope.shape[1]

        # Allocate output tensors with FP8 dtype
        # Query output will contain merged nope + rope components
        q_out = q_rope.new_empty(
            q_len,
            num_heads,
            self.kv_lora_rank + self.qk_rope_head_dim,
            dtype=attn_dtype,
        )

        # Key outputs maintain original shapes but with FP8 dtype
        k_rope_out = k_rope.new_empty(k_rope.shape, dtype=attn_dtype)
        k_nope_out = k_nope.new_empty(k_nope.shape, dtype=attn_dtype)

        # Apply RoPE and quantize all components in a single fused kernel call
        # This kernel handles:
        # 1. RoPE application to q_rope and k_rope using cos_sin_cache and positions
        # 2. Quantization of all components to FP8 format
        # 3. Output placement into pre-allocated tensors
        flashinfer.rope.mla_rope_quantize_fp8(
            q_rope=q_rope,
            k_rope=k_rope,
            q_nope=q_nope,
            k_nope=k_nope,
            cos_sin_cache=cos_sin_cache,
            pos_ids=forward_batch.positions,
            is_neox=is_neox,
            quantize_dtype=attn_dtype,
            # Output tensor slicing: q_out contains [nope_part, rope_part]
            q_rope_out=q_out[..., self.kv_lora_rank :],  # RoPE part goes to end
            k_rope_out=k_rope_out,
            q_nope_out=q_out[..., : self.kv_lora_rank],  # Nope part goes to beginning
            k_nope_out=k_nope_out,
            # Quantization scales (set to 1.0 for no additional scaling)
            quant_scale_q=1.0,
            quant_scale_kv=1.0,
        )

        return q_out, k_nope_out, k_rope_out

424
425
    def forward_decode(
        self,
Faraz's avatar
Faraz committed
426
427
428
        q: torch.Tensor,  # q_nope
        k: torch.Tensor,  # k_nope
        v: torch.Tensor,  # not used in this backend
429
430
431
432
433
        layer: RadixAttention,
        forward_batch: ForwardBatch,
        save_kv_cache: bool = True,
        q_rope: Optional[torch.Tensor] = None,
        k_rope: Optional[torch.Tensor] = None,
Faraz's avatar
Faraz committed
434
435
        cos_sin_cache: Optional[torch.Tensor] = None,
        is_neox: Optional[bool] = False,
436
437
    ) -> torch.Tensor:
        """Run forward for decode using TRTLLM MLA kernel."""
Faraz's avatar
Faraz committed
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
        merge_query = q_rope is not None
        if self.data_type == torch.float8_e4m3fn:
            # For FP8 path, we quantize the query and rope parts and merge them into a single tensor
            # Note: rope application in deepseek_v2.py:forward_absorb_prepare is skipped for FP8 decode path of this trtllm_mla backend
            assert all(
                x is not None for x in [q_rope, k_rope, cos_sin_cache]
            ), "For FP8 path and using flashinfer.rope.mla_rope_quantize we need all of q_rope, k_rope and cos_sin_cache to be not None."
            q, k, k_rope = self.quantize_and_rope_for_fp8(
                q,
                q_rope,
                k.squeeze(1),
                k_rope.squeeze(1),
                forward_batch,
                cos_sin_cache,
                is_neox,
            )
            merge_query = False

456
        # Save KV cache if requested
Faraz's avatar
Faraz committed
457
458
459
460
461
462
463
        if save_kv_cache:
            assert (
                k is not None and k_rope is not None
            ), "For populating trtllm_mla kv cache, both k_nope and k_rope should be not None."
            forward_batch.token_to_kv_pool.set_mla_kv_buffer(
                layer, forward_batch.out_cache_loc, k, k_rope
            )
464
465

        # Prepare query tensor inline
Faraz's avatar
Faraz committed
466
467
        if merge_query:
            # For FP16 path, we merge the query and rope parts into a single tensor
468
469
470
471
472
473
            q_nope = q.view(-1, layer.tp_q_head_num, layer.v_head_dim)
            q_rope_reshaped = q_rope.view(
                -1, layer.tp_q_head_num, layer.head_dim - layer.v_head_dim
            )
            query = torch.cat([q_nope, q_rope_reshaped], dim=-1)
        else:
Faraz's avatar
Faraz committed
474
            # For FP8 path, we already have the query and rope parts merged because of the quantize_and_rope_for_fp8 function
475
476
477
478
479
480
481
482
            query = q.view(-1, layer.tp_q_head_num, layer.head_dim)

        # Ensure query has shape [bs, acc_q_len, num_q_heads, head_dim] when seq_len 1
        if query.dim() == 3:
            query = query.unsqueeze(1)

        # Prepare KV cache inline
        k_cache = forward_batch.token_to_kv_pool.get_key_buffer(layer.layer_id)
Faraz's avatar
Faraz committed
483
        kv_cache = k_cache.view(-1, self.page_size, self.kv_cache_dim).unsqueeze(1)
484
485
486
487

        # Get metadata
        metadata = (
            getattr(forward_batch, "decode_trtllm_mla_metadata", None)
488
            or self.forward_decode_metadata
489
490
        )

Faraz's avatar
Faraz committed
491
492
493
494
495
496
497
        # Scale computation for TRTLLM MLA kernel BMM1 operation:
        # The final BMM1 scale is computed as: q_scale * k_scale * softmax_scale
        # Scale components:
        # - q_scale: Query scaling factor (set to 1.0 for both FP16/FP8 paths)
        # - k_scale: Key scaling factor from model checkpoint (defaults to 1.0 if not available)
        # - softmax_scale: Attention softmax scaling = 1/sqrt(head_dim), pre-computed as layer.scaling
        # This unified approach works for both FP16 and FP8 quantized attention paths.
498
499
500
501
502
503
504
505
506
507
508
509
510
        q_scale = 1.0
        k_scale = (
            layer.k_scale_float
            if getattr(layer, "k_scale_float", None) is not None
            else 1.0
        )

        bmm1_scale = q_scale * k_scale * layer.scaling

        # Call TRT-LLM kernel
        raw_out = flashinfer.decode.trtllm_batch_decode_with_kv_cache_mla(
            query=query,
            kv_cache=kv_cache,
511
            workspace_buffer=self.workspace_buffer,
512
513
514
515
516
            qk_nope_head_dim=self.qk_nope_head_dim,
            kv_lora_rank=self.kv_lora_rank,
            qk_rope_head_dim=self.qk_rope_head_dim,
            block_tables=metadata.block_kv_indices,
            seq_lens=forward_batch.seq_lens.to(torch.int32),
517
            max_seq_len=metadata.max_seq_len,
518
519
520
            bmm1_scale=bmm1_scale,
        )

521
522
        # Reshape output directly without slicing
        output = raw_out.view(-1, layer.tp_q_head_num * layer.v_head_dim)
523
        return output
524

525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
    def forward_extend(
        self,
        q: torch.Tensor,
        k: torch.Tensor,
        v: torch.Tensor,
        layer: RadixAttention,
        forward_batch: ForwardBatch,
        save_kv_cache: bool = True,
        q_rope: Optional[torch.Tensor] = None,
        k_rope: Optional[torch.Tensor] = None,
    ) -> torch.Tensor:
        if (
            forward_batch.forward_mode.is_target_verify()
            or forward_batch.forward_mode.is_draft_extend()
        ):
            return super().forward_extend(
                q, k, v, layer, forward_batch, save_kv_cache, q_rope, k_rope
            )

        if not forward_batch.attn_attend_prefix_cache:
            q = q.view(-1, layer.tp_q_head_num, layer.head_dim)
            k = k.view(-1, layer.tp_k_head_num, layer.head_dim)
            v = v.view(-1, layer.tp_k_head_num, layer.v_head_dim)
            output = flashinfer.prefill.trtllm_ragged_attention_deepseek(
                query=q,
                key=k,
                value=v,
                workspace_buffer=self.workspace_buffer,
                seq_lens=self.forward_prefill_metadata.seq_lens,
                max_q_len=self.forward_prefill_metadata.max_seq_len,
                max_kv_len=self.forward_prefill_metadata.max_seq_len,
                bmm1_scale=layer.scaling,
                bmm2_scale=1.0,
                o_sf_scale=1.0,
                batch_size=forward_batch.batch_size,
                window_left=-1,
                cum_seq_lens_q=self.forward_prefill_metadata.cum_seq_lens,
                cum_seq_lens_kv=self.forward_prefill_metadata.cum_seq_lens,
                enable_pdl=False,
                is_causal=True,
                return_lse=forward_batch.mha_return_lse,
            )
        else:
            # replace with trtllm ragged attention once accuracy is resolved.
            output = super().forward_extend(
                q, k, v, layer, forward_batch, save_kv_cache, q_rope, k_rope
            )
        return output

574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589

class TRTLLMMLAMultiStepDraftBackend(FlashInferMLAMultiStepDraftBackend):
    """Multi-step draft backend for TRT-LLM MLA used by EAGLE."""

    def __init__(
        self, model_runner: "ModelRunner", topk: int, speculative_num_steps: int
    ):
        super().__init__(model_runner, topk, speculative_num_steps)

        for i in range(self.speculative_num_steps):
            self.attn_backends[i] = TRTLLMMLABackend(
                model_runner,
                skip_prefill=True,
                kv_indptr_buf=self.kv_indptr[i],
                q_indptr_decode_buf=self.q_indptr_decode,
            )