test_utils.py 29 KB
Newer Older
Lianmin Zheng's avatar
Lianmin Zheng committed
1
"""Common utilities for testing and benchmarking"""
2

3
import argparse
Liangsheng Yin's avatar
Liangsheng Yin committed
4
import asyncio
5
import copy
6
import os
7
import random
8
import subprocess
9
import threading
10
import time
11
import unittest
12
from concurrent.futures import ThreadPoolExecutor
Byron Hsu's avatar
Byron Hsu committed
13
from dataclasses import dataclass
Liangsheng Yin's avatar
Liangsheng Yin committed
14
from functools import partial
15
from types import SimpleNamespace
16
from typing import Callable, List, Optional, Tuple
Liangsheng Yin's avatar
Liangsheng Yin committed
17

Lianmin Zheng's avatar
Lianmin Zheng committed
18
19
import numpy as np
import requests
20
21
import torch
import torch.nn.functional as F
Liangsheng Yin's avatar
Liangsheng Yin committed
22

23
from sglang.bench_serving import run_benchmark
Lianmin Zheng's avatar
Lianmin Zheng committed
24
from sglang.global_config import global_config
Ying Sheng's avatar
Ying Sheng committed
25
26
from sglang.lang.backend.openai import OpenAI
from sglang.lang.backend.runtime_endpoint import RuntimeEndpoint
27
from sglang.srt.utils import get_bool_env_var, kill_process_tree
28
from sglang.test.run_eval import run_eval
29
from sglang.utils import get_exception_traceback
Liangsheng Yin's avatar
Liangsheng Yin committed
30

31
DEFAULT_FP8_MODEL_NAME_FOR_TEST = "neuralmagic/Meta-Llama-3.1-8B-FP8"
HandH1998's avatar
HandH1998 committed
32
33
34
35
DEFAULT_FP8_MODEL_NAME_FOR_ACCURACY_TEST = "neuralmagic/Meta-Llama-3-8B-Instruct-FP8"
DEFAULT_FP8_MODEL_NAME_FOR_DYNAMIC_QUANT_ACCURACY_TEST = (
    "neuralmagic/Meta-Llama-3.1-8B-Instruct-FP8-dynamic"
)
36
37
38
39
40
41
42
43
44
DEFAULT_FP8_MODEL_NAME_FOR_MODELOPT_QUANT_ACCURACY_TEST = (
    "nvidia/Llama-3.1-8B-Instruct-FP8"
)
# TODO(yundai424): right now specifying to an older revision since the latest one
#  carries kv cache quantization which doesn't work yet
DEFAULT_FP8_MODEL_NAME_FOR_MODELOPT_QUANT_ACCURACY_TEST_REVISION = (
    "13858565416dbdc0b4e7a4a677fadfbd5b9e5bb9"
)

45
DEFAULT_MODEL_NAME_FOR_TEST = "meta-llama/Llama-3.1-8B-Instruct"
Lianmin Zheng's avatar
Lianmin Zheng committed
46
DEFAULT_SMALL_MODEL_NAME_FOR_TEST = "meta-llama/Llama-3.2-1B-Instruct"
Yineng Zhang's avatar
Yineng Zhang committed
47
DEFAULT_MOE_MODEL_NAME_FOR_TEST = "mistralai/Mixtral-8x7B-Instruct-v0.1"
48
49
DEFAULT_SMALL_MOE_MODEL_NAME_FOR_TEST = "Qwen/Qwen1.5-MoE-A2.7B"
DEFAULT_SMALL_EMBEDDING_MODEL_NAME_FOR_TEST = "Alibaba-NLP/gte-Qwen2-1.5B-instruct"
Ke Bao's avatar
Ke Bao committed
50
DEFAULT_MLA_MODEL_NAME_FOR_TEST = "deepseek-ai/DeepSeek-Coder-V2-Lite-Instruct"
Yineng Zhang's avatar
Yineng Zhang committed
51
DEFAULT_MLA_FP8_MODEL_NAME_FOR_TEST = "neuralmagic/DeepSeek-Coder-V2-Lite-Instruct-FP8"
Xihuai Wang's avatar
Xihuai Wang committed
52
DEFAULT_REASONING_MODEL_NAME_FOR_TEST = "deepseek-ai/DeepSeek-R1-Distill-Qwen-7B"
53
54
55
DEFAULT_AWQ_MOE_MODEL_NAME_FOR_TEST = (
    "hugging-quants/Mixtral-8x7B-Instruct-v0.1-AWQ-INT4"
)
56
DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH = 1000
57
DEFAULT_MODEL_NAME_FOR_NIGHTLY_EVAL_TP1 = "meta-llama/Llama-3.1-8B-Instruct,mistralai/Mistral-7B-Instruct-v0.3,deepseek-ai/DeepSeek-Coder-V2-Lite-Instruct,google/gemma-2-27b-it"
58
DEFAULT_MODEL_NAME_FOR_NIGHTLY_EVAL_TP2 = "meta-llama/Llama-3.1-70B-Instruct,mistralai/Mixtral-8x7B-Instruct-v0.1,Qwen/Qwen2-57B-A14B-Instruct"
59
DEFAULT_MODEL_NAME_FOR_NIGHTLY_EVAL_FP8_TP1 = "neuralmagic/Meta-Llama-3.1-8B-Instruct-FP8,neuralmagic/Mistral-7B-Instruct-v0.3-FP8,neuralmagic/DeepSeek-Coder-V2-Lite-Instruct-FP8,neuralmagic/gemma-2-2b-it-FP8"
Ke Bao's avatar
Ke Bao committed
60
DEFAULT_MODEL_NAME_FOR_NIGHTLY_EVAL_FP8_TP2 = "neuralmagic/Meta-Llama-3.1-70B-Instruct-FP8,neuralmagic/Mixtral-8x7B-Instruct-v0.1-FP8,neuralmagic/Qwen2-72B-Instruct-FP8,neuralmagic/Qwen2-57B-A14B-Instruct-FP8,neuralmagic/DeepSeek-Coder-V2-Lite-Instruct-FP8"
61
DEFAULT_MODEL_NAME_FOR_NIGHTLY_EVAL_QUANT_TP1 = "hugging-quants/Meta-Llama-3.1-8B-Instruct-AWQ-INT4,hugging-quants/Meta-Llama-3.1-8B-Instruct-GPTQ-INT4,hugging-quants/Mixtral-8x7B-Instruct-v0.1-AWQ-INT4"
62
DEFAULT_SMALL_MODEL_NAME_FOR_TEST_QWEN = "Qwen/Qwen2.5-1.5B-Instruct"
63
64
DEFAULT_SMALL_VLM_MODEL_NAME = "Qwen/Qwen2-VL-2B"

65

66
DEFAULT_EAGLE_TARGET_MODEL_FOR_TEST = "meta-llama/Llama-2-7b-chat-hf"
67
DEFAULT_EAGLE_DRAFT_MODEL_FOR_TEST = "lmsys/sglang-EAGLE-llama2-chat-7B"
68

69
70
71
DEFAULT_IMAGE_URL = "https://github.com/sgl-project/sglang/blob/main/test/lang/example_image.png?raw=true"
DEFAULT_VIDEO_URL = "https://raw.githubusercontent.com/EvolvingLMMs-Lab/sglang/dev/onevision_local/assets/jobs.mp4"

72
73
74

def is_in_ci():
    """Return whether it is in CI runner."""
75
    return get_bool_env_var("SGLANG_IS_IN_CI")
76
77
78


if is_in_ci():
Lianmin Zheng's avatar
Lianmin Zheng committed
79
    DEFAULT_PORT_FOR_SRT_TEST_RUNNER = 5157
80
    DEFAULT_URL_FOR_TEST = "http://127.0.0.1:6157"
81
else:
82
83
    DEFAULT_PORT_FOR_SRT_TEST_RUNNER = 1157
    DEFAULT_URL_FOR_TEST = "http://127.0.0.1:2157"
84

Lianmin Zheng's avatar
Lianmin Zheng committed
85

Liangsheng Yin's avatar
Liangsheng Yin committed
86
87
def call_generate_lightllm(prompt, temperature, max_tokens, stop=None, url=None):
    assert url is not None
Lianmin Zheng's avatar
Lianmin Zheng committed
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102

    data = {
        "inputs": prompt,
        "parameters": {
            "temperature": temperature,
            "max_new_tokens": max_tokens,
            "stop_sequences": stop,
        },
    }
    res = requests.post(url, json=data)
    assert res.status_code == 200
    pred = res.json()["generated_text"][0]
    return pred


Liangsheng Yin's avatar
Liangsheng Yin committed
103
104
105
def call_generate_vllm(prompt, temperature, max_tokens, stop=None, n=1, url=None):
    assert url is not None

Lianmin Zheng's avatar
Lianmin Zheng committed
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
    data = {
        "prompt": prompt,
        "temperature": temperature,
        "max_tokens": max_tokens,
        "stop": stop,
        "n": n,
    }
    res = requests.post(url, json=data)
    assert res.status_code == 200
    if n == 1:
        pred = res.json()["text"][0][len(prompt) :]
    else:
        pred = [x[len(prompt) :] for x in res.json()["text"]]
    return pred


122
def call_generate_outlines(
123
    prompt, temperature, max_tokens, stop=None, regex=None, n=1, url=None
124
):
Liangsheng Yin's avatar
Liangsheng Yin committed
125
126
    assert url is not None

127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
    data = {
        "prompt": prompt,
        "temperature": temperature,
        "max_tokens": max_tokens,
        "stop": stop,
        "regex": regex,
        "n": n,
    }
    res = requests.post(url, json=data)
    assert res.status_code == 200
    if n == 1:
        pred = res.json()["text"][0][len(prompt) :]
    else:
        pred = [x[len(prompt) :] for x in res.json()["text"]]
    return pred


Liangsheng Yin's avatar
Liangsheng Yin committed
144
145
146
def call_generate_srt_raw(prompt, temperature, max_tokens, stop=None, url=None):
    assert url is not None

Lianmin Zheng's avatar
Lianmin Zheng committed
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
    data = {
        "text": prompt,
        "sampling_params": {
            "temperature": temperature,
            "max_new_tokens": max_tokens,
            "stop": stop,
        },
    }
    res = requests.post(url, json=data)
    assert res.status_code == 200
    obj = res.json()
    pred = obj["text"]
    return pred


Liangsheng Yin's avatar
Liangsheng Yin committed
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
def call_generate_guidance(
    prompt, temperature, max_tokens, stop=None, n=1, regex=None, model=None
):
    assert model is not None
    from guidance import gen

    rets = []
    for _ in range(n):
        out = (
            model
            + prompt
            + gen(
                name="answer",
                max_tokens=max_tokens,
                temperature=temperature,
                stop=stop,
                regex=regex,
            )
        )
        rets.append(out["answer"])
    return rets if n > 1 else rets[0]


def call_select_lightllm(context, choices, url=None):
    assert url is not None

Lianmin Zheng's avatar
Lianmin Zheng committed
188
189
190
191
192
193
194
195
196
197
198
199
200
201
    scores = []
    for i in range(len(choices)):
        data = {
            "inputs": context + choices[i],
            "parameters": {
                "max_new_tokens": 1,
            },
        }
        res = requests.post(url, json=data)
        assert res.status_code == 200
        scores.append(0)
    return np.argmax(scores)


Liangsheng Yin's avatar
Liangsheng Yin committed
202
203
204
def call_select_vllm(context, choices, url=None):
    assert url is not None

Lianmin Zheng's avatar
Lianmin Zheng committed
205
206
207
208
209
210
211
212
213
    scores = []
    for i in range(len(choices)):
        data = {
            "prompt": context + choices[i],
            "max_tokens": 1,
            "prompt_logprobs": 1,
        }
        res = requests.post(url, json=data)
        assert res.status_code == 200
Lianmin Zheng's avatar
Lianmin Zheng committed
214
        scores.append(res.json().get("prompt_score", 0))
Lianmin Zheng's avatar
Lianmin Zheng committed
215
216
217
218
219
220
221
222
223
224
225
    return np.argmax(scores)

    """
    Modify vllm/entrypoints/api_server.py

    if final_output.prompt_logprobs is not None:
        score = np.mean([prob[t_id] for t_id, prob in zip(final_output.prompt_token_ids[1:], final_output.prompt_logprobs[1:])])
        ret["prompt_score"] = score
    """


Liangsheng Yin's avatar
Liangsheng Yin committed
226
227
228
229
230
231
232
233
def call_select_guidance(context, choices, model=None):
    assert model is not None
    from guidance import select

    out = model + context + select(choices, name="answer")
    return choices.index(out["answer"])


234
def add_common_other_args_and_parse(parser: argparse.ArgumentParser):
Lianmin Zheng's avatar
Lianmin Zheng committed
235
    parser.add_argument("--parallel", type=int, default=64)
Lianmin Zheng's avatar
Lianmin Zheng committed
236
237
238
239
240
241
    parser.add_argument("--host", type=str, default="http://127.0.0.1")
    parser.add_argument("--port", type=int, default=None)
    parser.add_argument(
        "--backend",
        type=str,
        required=True,
Liangsheng Yin's avatar
Liangsheng Yin committed
242
243
244
245
        choices=[
            "vllm",
            "outlines",
            "lightllm",
246
            "gserver",
Liangsheng Yin's avatar
Liangsheng Yin committed
247
248
249
250
            "guidance",
            "srt-raw",
            "llama.cpp",
        ],
Lianmin Zheng's avatar
Lianmin Zheng committed
251
    )
Liangsheng Yin's avatar
Liangsheng Yin committed
252
    parser.add_argument("--n-ctx", type=int, default=4096)
Lianmin Zheng's avatar
Lianmin Zheng committed
253
254
255
256
257
258
259
260
261
    parser.add_argument(
        "--model-path", type=str, default="meta-llama/Llama-2-7b-chat-hf"
    )
    parser.add_argument("--result-file", type=str, default="result.jsonl")
    args = parser.parse_args()

    if args.port is None:
        default_port = {
            "vllm": 21000,
Liangsheng Yin's avatar
Liangsheng Yin committed
262
            "outlines": 21000,
Lianmin Zheng's avatar
Lianmin Zheng committed
263
264
            "lightllm": 22000,
            "srt-raw": 30000,
265
            "gserver": 9988,
Lianmin Zheng's avatar
Lianmin Zheng committed
266
267
268
269
270
        }
        args.port = default_port.get(args.backend, None)
    return args


271
def add_common_sglang_args_and_parse(parser: argparse.ArgumentParser):
Lianmin Zheng's avatar
Lianmin Zheng committed
272
273
274
275
276
277
278
279
280
    parser.add_argument("--parallel", type=int, default=64)
    parser.add_argument("--host", type=str, default="http://127.0.0.1")
    parser.add_argument("--port", type=int, default=30000)
    parser.add_argument("--backend", type=str, default="srt")
    parser.add_argument("--result-file", type=str, default="result.jsonl")
    args = parser.parse_args()
    return args


281
def select_sglang_backend(args: argparse.Namespace):
Lianmin Zheng's avatar
Lianmin Zheng committed
282
283
284
285
    if args.backend.startswith("srt"):
        if args.backend == "srt-no-parallel":
            global_config.enable_parallel_encoding = False
        backend = RuntimeEndpoint(f"{args.host}:{args.port}")
286
    elif args.backend.startswith("gpt-"):
Lianmin Zheng's avatar
Lianmin Zheng committed
287
288
289
290
        backend = OpenAI(args.backend)
    else:
        raise ValueError(f"Invalid backend: {args.backend}")
    return backend
Liangsheng Yin's avatar
Liangsheng Yin committed
291
292


293
def _get_call_generate(args: argparse.Namespace):
Liangsheng Yin's avatar
Liangsheng Yin committed
294
295
296
297
298
299
    if args.backend == "lightllm":
        return partial(call_generate_lightllm, url=f"{args.host}:{args.port}/generate")
    elif args.backend == "vllm":
        return partial(call_generate_vllm, url=f"{args.host}:{args.port}/generate")
    elif args.backend == "srt-raw":
        return partial(call_generate_srt_raw, url=f"{args.host}:{args.port}/generate")
300
301
    elif args.backend == "gserver":
        return partial(call_generate_gserver, url=f"{args.host}:{args.port}")
Liangsheng Yin's avatar
Liangsheng Yin committed
302
303
304
305
306
307
308
309
310
311
312
313
314
    elif args.backend == "outlines":
        return partial(call_generate_outlines, url=f"{args.host}:{args.port}/generate")
    elif args.backend == "guidance":
        from guidance import models

        model = models.LlamaCpp(args.model_path, n_gpu_layers=-1, n_ctx=args.n_ctx)
        call_generate = partial(call_generate_guidance, model=model)
        call_generate("Hello,", 1.0, 8, ".")
        return call_generate
    else:
        raise ValueError(f"Invalid backend: {args.backend}")


315
def _get_call_select(args: argparse.Namespace):
Liangsheng Yin's avatar
Liangsheng Yin committed
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
    if args.backend == "lightllm":
        return partial(call_select_lightllm, url=f"{args.host}:{args.port}/generate")
    elif args.backend == "vllm":
        return partial(call_select_vllm, url=f"{args.host}:{args.port}/generate")
    elif args.backend == "guidance":
        from guidance import models

        model = models.LlamaCpp(args.model_path, n_gpu_layers=-1, n_ctx=args.n_ctx)
        call_select = partial(call_select_guidance, model=model)

        call_select("Hello,", ["world", "earth"])
        return call_select
    else:
        raise ValueError(f"Invalid backend: {args.backend}")


332
def get_call_generate(args: argparse.Namespace):
Liangsheng Yin's avatar
Liangsheng Yin committed
333
334
335
336
337
338
339
340
341
342
343
344
    call_generate = _get_call_generate(args)

    def func(*args, **kwargs):
        try:
            return call_generate(*args, **kwargs)
        except Exception:
            print("Exception in call_generate:\n" + get_exception_traceback())
            raise

    return func


345
def get_call_select(args: argparse.Namespace):
Liangsheng Yin's avatar
Liangsheng Yin committed
346
347
348
349
350
351
352
353
354
355
    call_select = _get_call_select(args)

    def func(*args, **kwargs):
        try:
            return call_select(*args, **kwargs)
        except Exception:
            print("Exception in call_select:\n" + get_exception_traceback())
            raise

    return func
356
357


358
def popen_launch_server(
359
360
361
362
    model: str,
    base_url: str,
    timeout: float,
    api_key: Optional[str] = None,
Mick's avatar
Mick committed
363
    other_args: list[str] = (),
364
    env: Optional[dict] = None,
365
    return_stdout_stderr: Optional[tuple] = None,
366
    pd_seperated: bool = False,
367
368
369
370
):
    _, host, port = base_url.split(":")
    host = host[2:]

371
372
373
374
375
    if pd_seperated:
        command = "sglang.launch_pd_server"
    else:
        command = "sglang.launch_server"

376
377
378
    command = [
        "python3",
        "-m",
379
        command,
380
381
        "--model-path",
        model,
382
        *[str(x) for x in other_args],
383
    ]
Chayenne's avatar
Chayenne committed
384

385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
    if pd_seperated:
        command.extend(
            [
                "--lb-host",
                host,
                "--lb-port",
                port,
            ]
        )
    else:
        command.extend(
            [
                "--host",
                host,
                "--port",
                port,
            ]
        )

404
405
406
    if api_key:
        command += ["--api-key", api_key]

407
408
    print(f"command={' '.join(command)}")

409
410
411
    if return_stdout_stderr:
        process = subprocess.Popen(
            command,
412
413
            stdout=return_stdout_stderr[0],
            stderr=return_stdout_stderr[1],
414
415
416
417
418
            env=env,
            text=True,
        )
    else:
        process = subprocess.Popen(command, stdout=None, stderr=None, env=env)
419
420

    start_time = time.time()
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
    with requests.Session() as session:
        while time.time() - start_time < timeout:
            try:
                headers = {
                    "Content-Type": "application/json; charset=utf-8",
                    "Authorization": f"Bearer {api_key}",
                }
                response = session.get(
                    f"{base_url}/health_generate",
                    headers=headers,
                )
                if response.status_code == 200:
                    return process
            except requests.RequestException:
                pass
            time.sleep(10)
437
438

    kill_process_tree(process.pid)
439
    raise TimeoutError("Server failed to start within the timeout period.")
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465


def run_with_timeout(
    func: Callable,
    args: tuple = (),
    kwargs: Optional[dict] = None,
    timeout: float = None,
):
    """Run a function with timeout."""
    ret_value = []

    def _target_func():
        ret_value.append(func(*args, **(kwargs or {})))

    t = threading.Thread(target=_target_func)
    t.start()
    t.join(timeout=timeout)
    if t.is_alive():
        raise TimeoutError()

    if not ret_value:
        raise RuntimeError()

    return ret_value[0]


Byron Hsu's avatar
Byron Hsu committed
466
467
468
469
470
471
472
@dataclass
class TestFile:
    name: str
    estimated_time: float = 60


def run_unittest_files(files: List[TestFile], timeout_per_file: float):
473
474
475
    tic = time.time()
    success = True

Lianmin Zheng's avatar
Lianmin Zheng committed
476
477
    for file in files:
        filename, estimated_time = file.name, file.estimated_time
478
        process = None
479

Mingyi's avatar
Mingyi committed
480
        def run_one_file(filename):
481
482
            nonlocal process

Mingyi's avatar
Mingyi committed
483
            filename = os.path.join(os.getcwd(), filename)
Lianmin Zheng's avatar
Lianmin Zheng committed
484
485
486
            print(f".\n.\nBegin:\npython3 {filename}\n.\n.\n", flush=True)
            tic = time.time()

Mingyi's avatar
Mingyi committed
487
488
489
490
            process = subprocess.Popen(
                ["python3", filename], stdout=None, stderr=None, env=os.environ
            )
            process.wait()
Lianmin Zheng's avatar
Lianmin Zheng committed
491
492
493
494
495
496
            elapsed = time.time() - tic

            print(
                f".\n.\nEnd:\n{filename=}, {elapsed=:.0f}, {estimated_time=}\n.\n.\n",
                flush=True,
            )
Mingyi's avatar
Mingyi committed
497
            return process.returncode
498
499

        try:
Mingyi's avatar
Mingyi committed
500
501
502
            ret_code = run_with_timeout(
                run_one_file, args=(filename,), timeout=timeout_per_file
            )
503
504
505
            assert (
                ret_code == 0
            ), f"expected return code 0, but {filename} returned {ret_code}"
506
        except TimeoutError:
507
            kill_process_tree(process.pid)
508
509
            time.sleep(5)
            print(
510
511
                f"\nTimeout after {timeout_per_file} seconds when running {filename}\n",
                flush=True,
512
            )
Mingyi's avatar
Mingyi committed
513
514
            success = False
            break
515
516

    if success:
517
        print(f"Success. Time elapsed: {time.time() - tic:.2f}s", flush=True)
518
    else:
519
        print(f"Fail. Time elapsed: {time.time() - tic:.2f}s", flush=True)
520
521

    return 0 if success else -1
522
523
524
525


def get_similarities(vec1, vec2):
    return F.cosine_similarity(torch.tensor(vec1), torch.tensor(vec2), dim=0)
526
527


528
529
530
531
532
533
def get_benchmark_args(
    base_url="",
    dataset_name="",
    dataset_path="",
    tokenizer="",
    num_prompts=500,
534
    sharegpt_output_len=None,
535
536
    random_input_len=4096,
    random_output_len=2048,
537
    sharegpt_context_len=None,
538
539
540
    request_rate=float("inf"),
    disable_stream=False,
    disable_ignore_eos=False,
541
    seed: int = 0,
542
    pd_seperated: bool = False,
543
544
545
546
547
548
549
550
551
552
553
):
    return SimpleNamespace(
        backend="sglang",
        base_url=base_url,
        host=None,
        port=None,
        dataset_name=dataset_name,
        dataset_path=dataset_path,
        model=None,
        tokenizer=tokenizer,
        num_prompts=num_prompts,
554
555
        sharegpt_output_len=sharegpt_output_len,
        sharegpt_context_len=sharegpt_context_len,
556
557
558
559
560
561
562
563
564
        random_input_len=random_input_len,
        random_output_len=random_output_len,
        random_range_ratio=0.0,
        request_rate=request_rate,
        multi=None,
        output_file=None,
        disable_tqdm=False,
        disable_stream=disable_stream,
        return_logprob=False,
565
        seed=seed,
566
567
568
569
570
        disable_ignore_eos=disable_ignore_eos,
        extra_request_body=None,
        apply_chat_template=False,
        profile=None,
        lora_name=None,
571
572
        prompt_suffix="",
        pd_seperated=pd_seperated,
573
574
575
    )


576
577
578
579
580
581
def run_bench_serving(
    model,
    num_prompts,
    request_rate,
    other_server_args,
    dataset_name="random",
582
583
    dataset_path="",
    tokenizer=None,
584
585
    random_input_len=4096,
    random_output_len=2048,
586
    sharegpt_context_len=None,
587
    disable_stream=False,
588
    disable_ignore_eos=False,
589
    need_warmup=False,
590
    seed: int = 0,
591
):
592
593
594
595
596
597
598
599
600
601
    # Launch the server
    base_url = DEFAULT_URL_FOR_TEST
    process = popen_launch_server(
        model,
        base_url,
        timeout=DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
        other_args=other_server_args,
    )

    # Run benchmark
602
    args = get_benchmark_args(
603
        base_url=base_url,
604
        dataset_name=dataset_name,
605
606
        dataset_path=dataset_path,
        tokenizer=tokenizer,
607
        num_prompts=num_prompts,
608
609
        random_input_len=random_input_len,
        random_output_len=random_output_len,
610
        sharegpt_context_len=sharegpt_context_len,
611
        request_rate=request_rate,
612
        disable_stream=disable_stream,
613
        disable_ignore_eos=disable_ignore_eos,
614
        seed=seed,
615
616
617
    )

    try:
618
619
620
621
        if need_warmup:
            warmup_args = copy.deepcopy(args)
            warmup_args.num_prompts = 16
            run_benchmark(warmup_args)
622
623
        res = run_benchmark(args)
    finally:
624
        kill_process_tree(process.pid)
625
626
627

    assert res["completed"] == num_prompts
    return res
628
629


630
631
632
633
634
635
def run_bench_serving_multi(
    model,
    base_url,
    other_server_args,
    benchmark_args,
    need_warmup=False,
636
    pd_seperated=False,
637
638
639
640
641
642
643
):
    # Launch the server
    process = popen_launch_server(
        model,
        base_url,
        timeout=DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
        other_args=other_server_args,
644
        pd_seperated=pd_seperated,
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
    )

    # run benchmark for all
    res_l = []
    try:
        for args in benchmark_args:
            if need_warmup:
                warmup_args = copy.deepcopy(args)
                warmup_args.num_prompts = 16
                run_benchmark(warmup_args)

            res = run_benchmark(args)
            res_l.append((args, res))
    finally:
        kill_process_tree(process.pid)

    return res_l


664
def run_bench_one_batch(model, other_args):
665
666
667
    command = [
        "python3",
        "-m",
668
        "sglang.bench_one_batch",
669
670
671
672
673
674
675
676
        "--model-path",
        model,
        "--batch-size",
        "1",
        "--input",
        "128",
        "--output",
        "8",
677
        *[str(x) for x in other_args],
678
679
680
681
682
683
684
685
686
687
688
689
690
    ]
    process = subprocess.Popen(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE)

    try:
        stdout, stderr = process.communicate()
        output = stdout.decode()
        error = stderr.decode()
        print(f"Output: {output}", flush=True)
        print(f"Error: {error}", flush=True)

        lastline = output.split("\n")[-3]
        output_throughput = float(lastline.split(" ")[-2])
    finally:
691
        kill_process_tree(process.pid)
692
693

    return output_throughput
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727


def lcs(X, Y):
    m = len(X)
    n = len(Y)
    L = [[0] * (n + 1) for _ in range(m + 1)]

    for i in range(m + 1):
        for j in range(n + 1):
            if i == 0 or j == 0:
                L[i][j] = 0
            elif X[i - 1] == Y[j - 1]:
                L[i][j] = L[i - 1][j - 1] + 1
            else:
                L[i][j] = max(L[i - 1][j], L[i][j - 1])

    return L[m][n]


def calculate_rouge_l(output_strs_list1, output_strs_list2):
    """calculate the ROUGE-L score"""
    rouge_l_scores = []

    for s1, s2 in zip(output_strs_list1, output_strs_list2):
        lcs_len = lcs(s1, s2)
        precision = lcs_len / len(s1) if len(s1) > 0 else 0
        recall = lcs_len / len(s2) if len(s2) > 0 else 0
        if precision + recall > 0:
            fmeasure = (2 * precision * recall) / (precision + recall)
        else:
            fmeasure = 0.0
        rouge_l_scores.append(fmeasure)

    return rouge_l_scores
728
729
730


STDERR_FILENAME = "stderr.txt"
731
STDOUT_FILENAME = "stdout.txt"
732
733


734
def read_output(output_lines: List[str], filename: str = STDERR_FILENAME):
735
    """Print the output in real time with another thread."""
736
    while not os.path.exists(filename):
737
738
        time.sleep(1)

739
740
    pt = 0
    while pt >= 0:
741
        if pt > 0 and not os.path.exists(filename):
742
            break
743
        lines = open(filename).readlines()
744
745
        for line in lines[pt:]:
            print(line, end="", flush=True)
746
            output_lines.append(line)
747
            pt += 1
748
        time.sleep(0.1)
749
750


751
752
def run_and_check_memory_leak(
    workload_func,
753
    disable_radix_cache,
754
    enable_mixed_chunk,
755
    disable_overlap,
756
    chunked_prefill_size,
757
    assert_has_abort,
758
):
759
760
761
762
763
764
    other_args = [
        "--chunked-prefill-size",
        str(chunked_prefill_size),
        "--log-level",
        "debug",
    ]
765
766
767
768
    if disable_radix_cache:
        other_args += ["--disable-radix-cache"]
    if enable_mixed_chunk:
        other_args += ["--enable-mixed-chunk"]
769
770
    if disable_overlap:
        other_args += ["--disable-overlap-schedule"]
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791

    model = DEFAULT_MODEL_NAME_FOR_TEST
    port = random.randint(4000, 5000)
    base_url = f"http://127.0.0.1:{port}"

    # Create files and launch the server
    stdout = open(STDOUT_FILENAME, "w")
    stderr = open(STDERR_FILENAME, "w")
    process = popen_launch_server(
        model,
        base_url,
        timeout=DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
        other_args=other_args,
        return_stdout_stderr=(stdout, stderr),
    )

    # Launch a thread to stream the output
    output_lines = []
    t = threading.Thread(target=read_output, args=(output_lines,))
    t.start()

792
793
    # Run the workload
    workload_func(base_url, model)
794
795

    # Clean up everything
796
    kill_process_tree(process.pid)
797
798
    stdout.close()
    stderr.close()
799
800
801
802
    if os.path.exists(STDOUT_FILENAME):
        os.remove(STDOUT_FILENAME)
    if os.path.exists(STDERR_FILENAME):
        os.remove(STDERR_FILENAME)
Lianmin Zheng's avatar
Lianmin Zheng committed
803
    kill_process_tree(process.pid)
804
805
806
807
808
    t.join()

    # Assert success
    has_new_server = False
    has_leak = False
809
    has_abort = False
810
    for line in output_lines:
Lianmin Zheng's avatar
Lianmin Zheng committed
811
        if "Uvicorn running" in line:
812
813
814
            has_new_server = True
        if "leak" in line:
            has_leak = True
815
816
        if "Abort" in line:
            has_abort = True
817
818

    assert has_new_server
819
    assert not has_leak
820
821
    if assert_has_abort:
        assert has_abort
822
823


824
825
826
827
def run_command_and_capture_output(command, env: Optional[dict] = None):
    stdout = open(STDOUT_FILENAME, "w")
    stderr = open(STDERR_FILENAME, "w")
    process = subprocess.Popen(
828
        command, stdout=stdout, stderr=stdout, env=env, text=True
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
    )

    # Launch a thread to stream the output
    output_lines = []
    t = threading.Thread(target=read_output, args=(output_lines, STDOUT_FILENAME))
    t.start()

    # Join the process
    process.wait()

    stdout.close()
    stderr.close()
    if os.path.exists(STDOUT_FILENAME):
        os.remove(STDOUT_FILENAME)
    if os.path.exists(STDERR_FILENAME):
        os.remove(STDERR_FILENAME)
    kill_process_tree(process.pid)
    t.join()

    return output_lines


851
852
853
def run_mmlu_test(
    disable_radix_cache=False,
    enable_mixed_chunk=False,
854
    disable_overlap=False,
855
856
857
858
859
860
861
862
863
864
865
866
867
868
    chunked_prefill_size=32,
):
    def workload_func(base_url, model):
        # Run the eval
        args = SimpleNamespace(
            base_url=base_url,
            model=model,
            eval_name="mmlu",
            num_examples=128,
            num_threads=128,
        )

        try:
            metrics = run_eval(args)
Lianmin Zheng's avatar
Lianmin Zheng committed
869
            assert metrics["score"] >= 0.65, f"{metrics=}"
870
871
872
        finally:
            pass

Chayenne's avatar
Chayenne committed
873
874
875
876
    run_and_check_memory_leak(
        workload_func,
        disable_radix_cache,
        enable_mixed_chunk,
877
        disable_overlap,
Chayenne's avatar
Chayenne committed
878
        chunked_prefill_size,
879
        assert_has_abort=False,
Chayenne's avatar
Chayenne committed
880
    )
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912


def run_mulit_request_test(
    disable_radix_cache=False,
    enable_mixed_chunk=False,
    enable_overlap=False,
    chunked_prefill_size=32,
):

    def workload_func(base_url, model):
        def run_one(_):
            prompt = """
            System: You are a helpful assistant.
            User: What is the capital of France?
            Assistant: The capital of France is
            """

            response = requests.post(
                f"{base_url}/generate",
                json={
                    "text": prompt,
                    "sampling_params": {
                        "temperature": 0,
                        "max_new_tokens": 8,
                    },
                },
            )
            ret = response.json()

        with ThreadPoolExecutor(2) as executor:
            list(executor.map(run_one, list(range(4))))

Chayenne's avatar
Chayenne committed
913
914
915
916
917
918
    run_and_check_memory_leak(
        workload_func,
        disable_radix_cache,
        enable_mixed_chunk,
        enable_overlap,
        chunked_prefill_size,
919
        assert_has_abort=False,
Chayenne's avatar
Chayenne committed
920
    )
921
922
923
924
925


def write_github_step_summary(content):
    with open(os.environ["GITHUB_STEP_SUMMARY"], "a") as f:
        f.write(content)
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000


def run_logprob_check(self: unittest.TestCase, arg: Tuple):
    (
        input_len,
        output_len,
        temperature,
        logprob_start_len,
        return_logprob,
        top_logprobs_num,
    ) = arg
    input_ids = list(range(input_len))

    response = requests.post(
        self.base_url + "/generate",
        json={
            "input_ids": input_ids,
            "sampling_params": {
                "temperature": temperature,
                "max_new_tokens": output_len,
                "ignore_eos": True,
            },
            "return_logprob": return_logprob,
            "logprob_start_len": logprob_start_len,
            "top_logprobs_num": top_logprobs_num,
        },
    )
    response_json = response.json()

    res = response_json
    self.assertEqual(res["meta_info"]["prompt_tokens"], input_len)
    self.assertEqual(res["meta_info"]["completion_tokens"], output_len)

    # Test the number of tokens are correct
    if return_logprob:
        self.assertEqual(
            len(res["meta_info"]["input_token_logprobs"]) + logprob_start_len,
            res["meta_info"]["prompt_tokens"],
        )
        self.assertEqual(len(res["meta_info"]["output_token_logprobs"]), output_len)

        if top_logprobs_num:
            self.assertEqual(
                len(res["meta_info"]["input_top_logprobs"]) + logprob_start_len,
                res["meta_info"]["prompt_tokens"],
            )
            self.assertEqual(len(res["meta_info"]["output_top_logprobs"]), output_len)

            for i in range(output_len):
                self.assertEqual(
                    len(res["meta_info"]["output_top_logprobs"][i]),
                    top_logprobs_num,
                )

                # Test the top-1 tokens are the same as output tokens if temperature == 0
                if temperature == 0:
                    rank = 0
                    while rank < len(res["meta_info"]["output_top_logprobs"][i]):
                        try:
                            self.assertListEqual(
                                res["meta_info"]["output_token_logprobs"][i],
                                res["meta_info"]["output_top_logprobs"][i][rank],
                            )
                            break
                        except AssertionError:
                            # There's a tie. Allow the second item in this case.
                            if (
                                res["meta_info"]["output_top_logprobs"][i][rank][0]
                                == res["meta_info"]["output_top_logprobs"][i][rank + 1][
                                    0
                                ]
                            ):
                                rank += 1
                            else:
                                raise