infer_batch.py 17.6 KB
Newer Older
1
from dataclasses import dataclass
Lianmin Zheng's avatar
Lianmin Zheng committed
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
from enum import Enum, auto
from typing import List

import numpy as np
import torch
from sglang.srt.managers.router.radix_cache import RadixCache
from sglang.srt.memory_pool import ReqToTokenPool, TokenToKVPool


class ForwardMode(Enum):
    PREFILL = auto()
    EXTEND = auto()
    DECODE = auto()


class FinishReason(Enum):
    LENGTH = auto()
    EOS_TOKEN = auto()
    STOP_STR = auto()


class Req:
24
    def __init__(self, rid, input_text, input_ids):
Lianmin Zheng's avatar
Lianmin Zheng committed
25
        self.rid = rid
26
27
        self.input_text = input_text
        self.input_ids = input_ids
Lianmin Zheng's avatar
Lianmin Zheng committed
28
        self.output_ids = []
29
30

        # For vision input
Lianmin Zheng's avatar
Lianmin Zheng committed
31
        self.pixel_values = None
shiyi.c_98's avatar
shiyi.c_98 committed
32
        self.image_size = None
Lianmin Zheng's avatar
Lianmin Zheng committed
33
        self.image_offset = 0
34
        self.pad_value = None
35

Lianmin Zheng's avatar
Lianmin Zheng committed
36
        self.sampling_params = None
37
38
        self.return_logprob = False
        self.logprob_start_len = 0
Lianmin Zheng's avatar
Lianmin Zheng committed
39
40
41
42
43
44
45
        self.stream = False

        self.tokenizer = None
        self.finished = False
        self.finish_reason = None
        self.hit_stop_str = None

46
        self.extend_input_len = 0
Lianmin Zheng's avatar
Lianmin Zheng committed
47
        self.prefix_indices = []
48
        self.last_node = None
Lianmin Zheng's avatar
Lianmin Zheng committed
49

50
        self.logprob = None
Lianmin Zheng's avatar
Lianmin Zheng committed
51
52
        self.normalized_logprob = None

53
        # For constrained decoding
Lianmin Zheng's avatar
Lianmin Zheng committed
54
        self.regex_fsm = None
55
        self.regex_fsm_state = 0
Liangsheng Yin's avatar
Liangsheng Yin committed
56
57
        self.jump_forward_map = None
        self.output_and_jump_forward_str = ""
Lianmin Zheng's avatar
Lianmin Zheng committed
58
59
60
61

    def max_new_tokens(self):
        return self.sampling_params.max_new_tokens

Liangsheng Yin's avatar
Liangsheng Yin committed
62
    def jump_forward_and_retokenize(self, jump_forward_str, next_state):
Liangsheng Yin's avatar
Liangsheng Yin committed
63
        old_output_str = self.tokenizer.decode(self.output_ids)
Cody Yu's avatar
Cody Yu committed
64
65
66
        # FIXME: This logic does not really solve the problem of determining whether
        # there should be a leading space.
        first_token = self.tokenizer.convert_ids_to_tokens(self.output_ids[0])
67
68
69
        first_token = (
            first_token.decode() if isinstance(first_token, bytes) else first_token
        )
Cody Yu's avatar
Cody Yu committed
70
        if first_token.startswith("▁"):
Liangsheng Yin's avatar
Liangsheng Yin committed
71
72
73
            old_output_str = " " + old_output_str
        new_input_string = (
            self.input_text
Liangsheng Yin's avatar
Liangsheng Yin committed
74
            + self.output_and_jump_forward_str
Liangsheng Yin's avatar
Liangsheng Yin committed
75
            + old_output_str
Liangsheng Yin's avatar
Liangsheng Yin committed
76
            + jump_forward_str
Liangsheng Yin's avatar
Liangsheng Yin committed
77
78
        )
        new_input_ids = self.tokenizer.encode(new_input_string)
79
80
        if self.pixel_values is not None:
            # NOTE: This is a hack because the old input_ids contains the image padding
Liangsheng Yin's avatar
Liangsheng Yin committed
81
            jump_forward_tokens_len = len(self.tokenizer.encode(jump_forward_str))
82
        else:
Liangsheng Yin's avatar
Liangsheng Yin committed
83
            jump_forward_tokens_len = (
84
85
86
                len(new_input_ids) - len(self.input_ids) - len(self.output_ids)
            )

Liangsheng Yin's avatar
Liangsheng Yin committed
87
        # print("=" * 100)
Liangsheng Yin's avatar
Liangsheng Yin committed
88
        # print(f"Catch jump forward:\n{jump_forward_str}")
Liangsheng Yin's avatar
Liangsheng Yin committed
89
90
91
92
93
94
        # print(self.tokenizer.convert_ids_to_tokens(self.input_ids))
        # print(self.tokenizer.convert_ids_to_tokens(new_input_ids))

        self.input_ids = new_input_ids
        self.output_ids = []
        self.sampling_params.max_new_tokens = max(
Liangsheng Yin's avatar
Liangsheng Yin committed
95
            self.sampling_params.max_new_tokens - jump_forward_tokens_len, 0
Liangsheng Yin's avatar
Liangsheng Yin committed
96
97
        )
        self.regex_fsm_state = next_state
Liangsheng Yin's avatar
Liangsheng Yin committed
98
99
        self.output_and_jump_forward_str = (
            self.output_and_jump_forward_str + old_output_str + jump_forward_str
Liangsheng Yin's avatar
Liangsheng Yin committed
100
101
        )

Liangsheng Yin's avatar
Liangsheng Yin committed
102
        # print(f"Output and jump forward str:\n{self.output_and_jump_forward_str}")
Liangsheng Yin's avatar
Liangsheng Yin committed
103
104
        # print("*" * 100)

Lianmin Zheng's avatar
Lianmin Zheng committed
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
    def check_finished(self):
        if self.finished:
            return

        if len(self.output_ids) >= self.sampling_params.max_new_tokens:
            self.finished = True
            self.finish_reason = FinishReason.LENGTH
            return

        if (
            self.output_ids[-1] == self.tokenizer.eos_token_id
            and self.sampling_params.ignore_eos == False
        ):
            self.finished = True
            self.finish_reason = FinishReason.EOS_TOKEN
            return

        if len(self.sampling_params.stop_strs) > 0:
            tail_str = self.tokenizer.decode(
                self.output_ids[-(self.sampling_params.stop_str_max_len + 1) :]
            )

            for stop_str in self.sampling_params.stop_strs:
                if stop_str in tail_str:
                    self.finished = True
                    self.finish_reason = FinishReason.STOP_STR
                    self.hit_stop_str = stop_str
                    return

    def __repr__(self):
        return f"rid(n={self.rid}, " f"input_ids={self.input_ids}, "


138
@dataclass
Lianmin Zheng's avatar
Lianmin Zheng committed
139
class Batch:
140
141
142
143
144
145
146
147
148
149
150
151
152
153
    reqs: List[Req]
    req_to_token_pool: ReqToTokenPool
    token_to_kv_pool: TokenToKVPool
    tree_cache: RadixCache

    # batched arguments to model runner
    input_ids: torch.Tensor = None
    req_pool_indices: torch.Tensor = None
    seq_lens: torch.Tensor = None
    prefix_lens: torch.Tensor = None
    position_ids_offsets: torch.Tensor = None
    out_cache_loc: torch.Tensor = None
    out_cache_cont_start: torch.Tensor = None
    out_cache_cont_end: torch.Tensor = None
154
    return_logprob: bool = False
155
156
157

    # for multimodal
    pixel_values: List[torch.Tensor] = None
shiyi.c_98's avatar
shiyi.c_98 committed
158
    image_sizes: List[List[int]] = None
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
    image_offsets: List[int] = None

    # other arguments for control
    output_ids: torch.Tensor = None
    extend_num_tokens: int = None

    # batched sampling params
    temperatures: torch.Tensor = None
    top_ps: torch.Tensor = None
    top_ks: torch.Tensor = None
    frequency_penalties: torch.Tensor = None
    presence_penalties: torch.Tensor = None
    logit_bias: torch.Tensor = None

    @classmethod
    def init_new(cls, reqs, req_to_token_pool, token_to_kv_pool, tree_cache):
175
        return_logprob = any(req.return_logprob for req in reqs)
176
177
178
179
180
181

        return cls(
            reqs=reqs,
            req_to_token_pool=req_to_token_pool,
            token_to_kv_pool=token_to_kv_pool,
            tree_cache=tree_cache,
182
            return_logprob=return_logprob,
Lianmin Zheng's avatar
Lianmin Zheng committed
183
184
185
186
187
        )

    def is_empty(self):
        return len(self.reqs) == 0

188
    def prepare_for_extend(self, vocab_size: int, int_token_logit_bias: torch.Tensor):
Lianmin Zheng's avatar
Lianmin Zheng committed
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
        device = "cuda"
        bs = len(self.reqs)
        reqs = self.reqs
        input_ids = [r.input_ids[len(r.prefix_indices) :] for r in reqs]
        prefix_indices = [r.prefix_indices for r in reqs]

        # Handle prefix
        flatten_input_ids = []
        extend_lens = []
        prefix_lens = []
        seq_lens = []

        req_pool_indices = self.req_to_token_pool.alloc(bs)
        req_pool_indices_cpu = req_pool_indices.cpu().numpy()
        for i in range(bs):
            flatten_input_ids.extend(input_ids[i])
            extend_lens.append(len(input_ids[i]))

            if len(prefix_indices[i]) == 0:
                prefix_lens.append(0)
            else:
                prefix_lens.append(len(prefix_indices[i]))
                self.req_to_token_pool.req_to_token[req_pool_indices_cpu[i]][
                    : len(prefix_indices[i])
                ] = prefix_indices[i]

            seq_lens.append(prefix_lens[-1] + extend_lens[-1])

        position_ids_offsets = torch.zeros((bs,), dtype=torch.int32, device=device)

        # Alloc mem
        seq_lens, prefix_lens = np.array(seq_lens), np.array(prefix_lens)
        extend_num_tokens = seq_lens.sum() - prefix_lens.sum()
        out_cache_loc = self.token_to_kv_pool.alloc(extend_num_tokens)
        if out_cache_loc is None:
Ying Sheng's avatar
Ying Sheng committed
224
225
226
            if not self.tree_cache.disable:
                self.tree_cache.evict(extend_num_tokens, self.token_to_kv_pool.free)
                out_cache_loc = self.token_to_kv_pool.alloc(extend_num_tokens)
Lianmin Zheng's avatar
Lianmin Zheng committed
227
228

            if out_cache_loc is None:
229
                print("Prefill out of memory. This should nerver happen.")
Lianmin Zheng's avatar
Lianmin Zheng committed
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
                self.tree_cache.pretty_print()
                exit()

        pt = 0
        for i in range(bs):
            self.req_to_token_pool.req_to_token[req_pool_indices_cpu[i]][
                prefix_lens[i] : prefix_lens[i] + extend_lens[i]
            ] = out_cache_loc[pt : pt + extend_lens[i]]
            pt += extend_lens[i]

        # Handle logit bias
        logit_bias = torch.zeros((bs, vocab_size), dtype=torch.float32, device=device)
        for i in range(bs):
            if reqs[i].sampling_params.dtype == "int":
                logit_bias[i] = int_token_logit_bias

        # Set fields
        self.input_ids = torch.tensor(
            flatten_input_ids, dtype=torch.int32, device=device
        )
        self.pixel_values = [r.pixel_values for r in reqs]
shiyi.c_98's avatar
shiyi.c_98 committed
251
        self.image_sizes = [r.image_size for r in reqs]
Lianmin Zheng's avatar
Lianmin Zheng committed
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
        self.image_offsets = [
            r.image_offset - p_len for r, p_len in zip(reqs, prefix_lens)
        ]
        self.req_pool_indices = req_pool_indices
        self.seq_lens = torch.tensor(seq_lens, dtype=torch.int32, device=device)
        self.prefix_lens = torch.tensor(prefix_lens, dtype=torch.int32, device=device)
        self.position_ids_offsets = position_ids_offsets
        self.extend_num_tokens = extend_num_tokens
        self.out_cache_loc = out_cache_loc

        self.temperatures = torch.tensor(
            [r.sampling_params.temperature for r in reqs],
            dtype=torch.float,
            device=device,
        ).view(-1, 1)
        self.top_ps = torch.tensor(
            [r.sampling_params.top_p for r in reqs], dtype=torch.float, device=device
        ).view(-1, 1)
        self.top_ks = torch.tensor(
            [r.sampling_params.top_k for r in reqs], dtype=torch.int, device=device
        ).view(-1, 1)
        self.frequency_penalties = torch.tensor(
            [r.sampling_params.frequency_penalty for r in reqs],
            dtype=torch.float,
            device=device,
        )
        self.presence_penalties = torch.tensor(
            [r.sampling_params.presence_penalty for r in reqs],
            dtype=torch.float,
            device=device,
        )
        self.logit_bias = logit_bias

285
286
    def check_decode_mem(self):
        bs = len(self.reqs)
Ying Sheng's avatar
Ying Sheng committed
287
        if self.token_to_kv_pool.available_size() >= bs:
288
289
            return True

Ying Sheng's avatar
Ying Sheng committed
290
291
        if not self.tree_cache.disable:
            self.tree_cache.evict(bs, self.token_to_kv_pool.free)
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
        if self.token_to_kv_pool.available_size() >= bs:
            return True

        return False

    def retract_decode(self):
        sorted_indices = [i for i in range(len(self.reqs))]
        sorted_indices.sort(
            key=lambda i: (len(self.reqs[i].output_ids), -len(self.reqs[i].input_ids)),
            reverse=True,
        )

        retracted_reqs = []
        seq_lens_np = self.seq_lens.cpu().numpy()
        req_pool_indices_np = self.req_pool_indices.cpu().numpy()
        while self.token_to_kv_pool.available_size() < len(self.reqs):
            idx = sorted_indices.pop()
            req = self.reqs[idx]
            retracted_reqs.append(req)

            self.tree_cache.dec_ref_counter(req.last_node)
            req.prefix_indices = None
            req.last_node = None
315
            req.extend_input_len = 0
316
            req.output_ids = []
Liangsheng Yin's avatar
Liangsheng Yin committed
317
318
            req.regex_fsm_state = 0

319
320
321
322
323
324
325
326
327
328
329
            # TODO: apply more fine-grained retraction

            token_indices = self.req_to_token_pool.req_to_token[
                req_pool_indices_np[idx]
            ][: seq_lens_np[idx]]
            self.token_to_kv_pool.free(token_indices)

        self.filter_batch(sorted_indices)

        return retracted_reqs

Liangsheng Yin's avatar
Liangsheng Yin committed
330
331
    def check_for_jump_forward(self):
        jump_forward_reqs = []
Liangsheng Yin's avatar
Liangsheng Yin committed
332
333
334
335
336
        filter_indices = [i for i in range(len(self.reqs))]

        req_pool_indices_cpu = None

        for i, req in enumerate(self.reqs):
Liangsheng Yin's avatar
Liangsheng Yin committed
337
338
            if req.jump_forward_map is not None:
                res = req.jump_forward_map.jump_forward(req.regex_fsm_state)
Liangsheng Yin's avatar
Liangsheng Yin committed
339
                if res is not None:
Liangsheng Yin's avatar
Liangsheng Yin committed
340
341
                    jump_forward_str, next_state = res
                    if len(jump_forward_str) <= 1:
Liangsheng Yin's avatar
Liangsheng Yin committed
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
                        continue

                    # insert the old request into tree_cache
                    token_ids_in_memory = tuple(req.input_ids + req.output_ids)[:-1]
                    if req_pool_indices_cpu is None:
                        req_pool_indices_cpu = self.req_pool_indices.cpu().tolist()
                    req_pool_idx = req_pool_indices_cpu[i]
                    indices = self.req_to_token_pool.req_to_token[
                        req_pool_idx, : len(token_ids_in_memory)
                    ]
                    prefix_len = self.tree_cache.insert(
                        token_ids_in_memory, indices.clone()
                    )
                    self.token_to_kv_pool.free(indices[:prefix_len])
                    self.req_to_token_pool.free(req_pool_idx)
                    self.tree_cache.dec_ref_counter(req.last_node)

Liangsheng Yin's avatar
Liangsheng Yin committed
359
360
                    # jump-forward
                    req.jump_forward_and_retokenize(jump_forward_str, next_state)
Liangsheng Yin's avatar
Liangsheng Yin committed
361

Liangsheng Yin's avatar
Liangsheng Yin committed
362
                    jump_forward_reqs.append(req)
Liangsheng Yin's avatar
Liangsheng Yin committed
363
364
365
366
367
                    filter_indices.remove(i)

        if len(filter_indices) < len(self.reqs):
            self.filter_batch(filter_indices)

Liangsheng Yin's avatar
Liangsheng Yin committed
368
        return jump_forward_reqs
Liangsheng Yin's avatar
Liangsheng Yin committed
369

370
    def prepare_for_decode(self, input_ids=None):
Lianmin Zheng's avatar
Lianmin Zheng committed
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
        if input_ids is None:
            input_ids = [
                r.output_ids[-1] if r.output_ids else r.input_ids[-1] for r in self.reqs
            ]
        self.input_ids = torch.tensor(input_ids, dtype=torch.int32, device="cuda")
        self.seq_lens.add_(1)
        self.prefix_lens = None

        # Alloc mem
        bs = len(self.reqs)
        alloc_res = self.token_to_kv_pool.alloc_contiguous(bs)
        if alloc_res is None:
            self.out_cache_loc = self.token_to_kv_pool.alloc(bs)

            if self.out_cache_loc is None:
386
387
388
                print("Decode out of memory. This should nerver happen.")
                self.tree_cache.pretty_print()
                exit()
Lianmin Zheng's avatar
Lianmin Zheng committed
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409

            self.out_cache_cont_start = None
            self.out_cache_cont_end = None
        else:
            self.out_cache_loc = alloc_res[0]
            self.out_cache_cont_start = alloc_res[1]
            self.out_cache_cont_end = alloc_res[2]

        self.req_to_token_pool.req_to_token[
            self.req_pool_indices, self.seq_lens - 1
        ] = self.out_cache_loc

    def filter_batch(self, unfinished_indices: List[int]):
        self.reqs = [self.reqs[i] for i in unfinished_indices]
        new_indices = torch.tensor(unfinished_indices, dtype=torch.int32, device="cuda")
        self.seq_lens = self.seq_lens[new_indices]
        self.input_ids = None
        self.req_pool_indices = self.req_pool_indices[new_indices]
        self.prefix_lens = None
        self.position_ids_offsets = self.position_ids_offsets[new_indices]
        self.out_cache_loc = self.out_cache_cont_start = self.out_cache_cont_end = None
410
        self.return_logprob = any(req.return_logprob for req in self.reqs)
Lianmin Zheng's avatar
Lianmin Zheng committed
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433

        for item in [
            "temperatures",
            "top_ps",
            "top_ks",
            "frequency_penalties",
            "presence_penalties",
            "logit_bias",
        ]:
            setattr(self, item, getattr(self, item)[new_indices])

    def merge(self, other):
        self.reqs.extend(other.reqs)

        self.req_pool_indices = torch.concat(
            [self.req_pool_indices, other.req_pool_indices]
        )
        self.seq_lens = torch.concat([self.seq_lens, other.seq_lens])
        self.prefix_lens = None
        self.position_ids_offsets = torch.concat(
            [self.position_ids_offsets, other.position_ids_offsets]
        )
        self.out_cache_loc = self.out_cache_cont_start = self.out_cache_cont_end = None
434
        self.return_logprob = any(req.return_logprob for req in self.reqs)
Lianmin Zheng's avatar
Lianmin Zheng committed
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495

        for item in [
            "temperatures",
            "top_ps",
            "top_ks",
            "frequency_penalties",
            "presence_penalties",
            "logit_bias",
        ]:
            setattr(
                self, item, torch.concat([getattr(self, item), getattr(other, item)])
            )

    def sample(self, logits: torch.Tensor):
        # Post process logits
        logits = logits.contiguous()
        logits.div_(self.temperatures)
        logits.add_(self.logit_bias)

        has_regex = any(req.regex_fsm is not None for req in self.reqs)
        if has_regex:
            allowed_mask = torch.empty_like(logits[0], dtype=torch.bool)
            for i, req in enumerate(self.reqs):
                if req.regex_fsm is not None:
                    allowed_mask.zero_()
                    allowed_mask[
                        req.regex_fsm.allowed_token_ids(req.regex_fsm_state)
                    ] = 1
                    logits[i].masked_fill_(~allowed_mask, float("-inf"))

        # TODO(lmzheng): apply penalty
        probs = torch.softmax(logits, dim=-1)
        probs_sort, probs_idx = _top_p_top_k(probs, self.top_ps, self.top_ks)
        sampled_index = torch.multinomial(probs_sort, num_samples=1)
        batch_next_token_ids = torch.gather(probs_idx, dim=1, index=sampled_index).view(
            -1
        )
        batch_next_token_probs = torch.gather(
            probs_sort, dim=1, index=sampled_index
        ).view(-1)

        if has_regex:
            batch_next_token_ids_cpu = batch_next_token_ids.cpu().numpy()
            for i, req in enumerate(self.reqs):
                if req.regex_fsm is not None:
                    req.regex_fsm_state = req.regex_fsm.next_state(
                        req.regex_fsm_state, batch_next_token_ids_cpu[i]
                    )

        return batch_next_token_ids, batch_next_token_probs


def _top_p_top_k(probs: torch.Tensor, top_ps: torch.Tensor, top_ks: torch.Tensor):
    probs_sort, probs_idx = probs.sort(dim=-1, descending=True)
    probs_sum = torch.cumsum(probs_sort, dim=-1)
    probs_sort[(probs_sum - probs_sort) > top_ps] = 0.0
    probs_sort[
        torch.arange(0, probs.shape[-1], device=probs.device).view(1, -1) >= top_ks
    ] = 0.0
    probs_sort.div_(probs_sort.max(dim=-1, keepdim=True)[0])
    return probs_sort, probs_idx