".github/vscode:/vscode.git/clone" did not exist on "708bc65f81606ae2625b560a613ee5d2d07f1614"
bench_offline_throughput.py 9.74 KB
Newer Older
1
2
3
"""
Benchmark the throughput of using the offline LLM engine.
This script does not launch a server.
4
It accepts server arguments (the same as launch_server.py) and benchmark arguments (the same as bench_serving.py).
5
6
7

# Usage
## Sharegpt dataset with default args
8
python -m sglang.bench_offline_throughput --model-path meta-llama/Meta-Llama-3.1-8B-Instruct
9
10

## Random dataset with default args
11
python -m sglang.bench_offline_throughput --model-path meta-llama/Meta-Llama-3.1-8B-Instruct --dataset-name random
12
13

## Shared prefix dataset with default args
14
python -m sglang.bench_offline_throughput --model-path meta-llama/Meta-Llama-3.1-8B-Instruct --dataset-name generated-shared-prefix
15
16

## Sharegpt dataset on runtime backend
17
python -m sglang.bench_offline_throughput --model-path meta-llama/Meta-Llama-3.1-8B-Instruct --backend runtime
18
19
20
21
22
23
24
25
"""

import argparse
import dataclasses
import json
import logging
import random
import time
26
from typing import List, Optional, Tuple
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

import numpy as np

from sglang.api import Engine
from sglang.bench_serving import (
    get_dataset,
    get_tokenizer,
    sample_random_requests,
    set_ulimit,
)
from sglang.srt.server import Runtime
from sglang.srt.server_args import ServerArgs


@dataclasses.dataclass
class BenchArgs:
    backend: str = "engine"
    result_filename: str = ""
    dataset_name: str = "sharegpt"
    dataset_path: str = ""
    num_prompts: int = 1000
48
49
50
    sharegpt_output_len: Optional[int] = None
    random_input_len: int = 1024
    random_output_len: int = 1024
51
    random_range_ratio: float = 0.0
52
    gen_num_groups: int = 64
53
    gen_prompts_per_group: int = 16
54
55
56
    gen_system_prompt_len: int = 2048
    gen_question_len: int = 128
    gen_output_len: int = 256
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
    disable_ignore_eos: bool = False
    seed: int = 1

    @staticmethod
    def add_cli_args(parser: argparse.ArgumentParser):
        parser.add_argument("--backend", type=str, default=BenchArgs.backend)
        parser.add_argument(
            "--result-filename", type=str, default=BenchArgs.result_filename
        )
        parser.add_argument(
            "--dataset-name",
            type=str,
            default="sharegpt",
            choices=["sharegpt", "random", "generated-shared-prefix"],
            help="Name of the dataset to benchmark on.",
        )
        parser.add_argument(
            "--dataset-path", type=str, default="", help="Path to the dataset."
        )
        parser.add_argument(
            "--num-prompts",
            type=int,
            default=BenchArgs.num_prompts,
            help="Number of prompts to process. Default is 1000.",
        )
        parser.add_argument(
            "--sharegpt-output-len",
            type=int,
            default=BenchArgs.sharegpt_output_len,
            help="Output length for each request. Overrides the output length from the ShareGPT dataset.",
        )
        parser.add_argument(
            "--random-input-len",
            type=int,
            default=BenchArgs.random_input_len,
            help="Number of input tokens per request, used only for random dataset.",
        )
        parser.add_argument(
            "--random-output-len",
            type=int,
            default=BenchArgs.random_output_len,
            help="Number of output tokens per request, used only for random dataset.",
        )
        parser.add_argument(
            "--random-range-ratio",
            type=float,
            default=BenchArgs.random_range_ratio,
            help="Range of sampled ratio of input/output length, "
            "used only for random dataset.",
        )
        parser.add_argument(
            "--gen-num-groups",
            type=int,
            default=BenchArgs.gen_num_groups,
            help="Number of groups with shared prefix, used"
            "only for generate-shared-prefix",
        )
        parser.add_argument(
            "--gen-prompts-per-group",
            type=int,
            default=BenchArgs.gen_prompts_per_group,
            help="Number of prompts per group of shared prefix, used"
            "only for generate-shared-prefix",
        )
        parser.add_argument(
            "--gen-system-prompt-len",
            type=int,
            default=BenchArgs.gen_system_prompt_len,
            help="System prompt length, used" "only for generate-shared-prefix",
        )
        parser.add_argument(
            "--gen-question-len",
            type=int,
            default=BenchArgs.gen_question_len,
            help="Question length, used" "only for generate-shared-prefix",
        )
133
134
135
136
137
138
        parser.add_argument(
            "--gen-output-len",
            type=int,
            default=BenchArgs.gen_output_len,
            help="Target length in tokens for outputs in generated-shared-prefix dataset",
        )
139
140
141
142
143
144
145
146
147
148
        parser.add_argument(
            "--disable-ignore-eos",
            type=bool,
            default=BenchArgs.disable_ignore_eos,
            help="Disable ignore EOS token",
        )
        parser.add_argument("--seed", type=int, default=1, help="The random seed.")

    @classmethod
    def from_cli_args(cls, args: argparse.Namespace):
149
150
        attrs = [attr.name for attr in dataclasses.fields(cls)]
        return cls(**{attr: getattr(args, attr) for attr in attrs})
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229


def throughput_test_once(
    backend_name: str,
    backend,
    reqs: List[Tuple[str, int, int]],
    ignore_eos: bool,
):
    measurement_results = {
        "backend": backend_name,
        "successful_requests": len(reqs),
        "total_latency": -1,
        "total_input_tokens": sum(r[1] for r in reqs),
        "total_output_tokens": -1,
        "request_throughput": -1,
        "input_throughput": -1,
        "output_throughput": -1,
        "total_throughput": -1,
    }

    prompt = [r[0] for r in reqs]
    sampling_params = [
        {
            "temperature": 0,
            "max_new_tokens": r[2],
            "ignore_eos": ignore_eos,
        }
        for r in reqs
    ]

    st = time.perf_counter()
    gen_out = backend.generate(prompt=prompt, sampling_params=sampling_params)
    latency = time.perf_counter() - st

    if backend_name == "runtime":
        gen_out = json.loads(gen_out)

    measurement_results["total_latency"] = latency
    measurement_results["total_output_tokens"] = sum(
        o["meta_info"]["completion_tokens"] for o in gen_out
    )
    measurement_results["request_throughput"] = (
        measurement_results["successful_requests"] / latency
    )
    measurement_results["input_throughput"] = (
        measurement_results["total_input_tokens"] / latency
    )
    measurement_results["output_throughput"] = (
        measurement_results["total_output_tokens"] / latency
    )
    measurement_results["total_throughput"] = (
        measurement_results["total_input_tokens"]
        + measurement_results["total_output_tokens"]
    ) / latency

    return measurement_results


def throughput_test(
    server_args: ServerArgs,
    bench_args: BenchArgs,
):
    if bench_args.backend == "engine":
        backend = Engine(**dataclasses.asdict(server_args))
        if not backend:
            raise ValueError("Please provide valid engine arguments")
    elif bench_args.backend == "runtime":
        backend = Runtime(**dataclasses.asdict(server_args))
    else:
        raise ValueError('Please set backend to either "engine" or "runtime"')

    tokenizer_id = server_args.model_path
    tokenizer = get_tokenizer(tokenizer_id)

    # Set global environmnets
    set_ulimit()
    random.seed(bench_args.seed)
    np.random.seed(bench_args.seed)

230
    # Read dataset
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
    input_requests = get_dataset(bench_args, tokenizer)

    warmup_requests = sample_random_requests(
        input_len=20,
        output_len=4,
        num_prompts=2,
        range_ratio=0.8,
        tokenizer=tokenizer,
        dataset_path=bench_args.dataset_path,
    )

    # Warm up
    throughput_test_once(
        backend_name=bench_args.backend,
        backend=backend,
        reqs=warmup_requests,
        ignore_eos=not bench_args.disable_ignore_eos,
    )

    result = throughput_test_once(
        backend_name=bench_args.backend,
        backend=backend,
        reqs=input_requests,
        ignore_eos=not bench_args.disable_ignore_eos,
    )

    if bench_args.result_filename:
        with open(bench_args.result_filename, "a") as fout:
            fout.write(json.dumps(result) + "\n")

    print(
        "\n{s:{c}^{n}}".format(s=" Offline Throughput Benchmark Result ", n=50, c="=")
    )
    print("{:<40} {:<10}".format("Backend:", result["backend"]))
    print("{:<40} {:<10}".format("Successful requests:", result["successful_requests"]))
    print("{:<40} {:<10.2f}".format("Benchmark duration (s):", result["total_latency"]))
    print("{:<40} {:<10}".format("Total input tokens:", result["total_input_tokens"]))
    print(
        "{:<40} {:<10}".format("Total generated tokens:", result["total_output_tokens"])
    )
    print(
        "{:<40} {:<10.2f}".format(
            "Request throughput (req/s):", result["request_throughput"]
        )
    )
    print(
        "{:<40} {:<10.2f}".format(
            "Input token throughput (tok/s):", result["input_throughput"]
        )
    )
    print(
        "{:<40} {:<10.2f}".format(
            "Output token throughput (tok/s):", result["output_throughput"]
        )
    )
    print(
        "{:<40} {:<10.2f}".format(
            "Total token throughput (tok/s):", result["total_throughput"]
        )
    )
    print("=" * 50)

    return result


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    ServerArgs.add_cli_args(parser)
    BenchArgs.add_cli_args(parser)
    args = parser.parse_args()
    server_args = ServerArgs.from_cli_args(args)
    bench_args = BenchArgs.from_cli_args(args)

    logging.basicConfig(
        level=getattr(logging, server_args.log_level.upper()),
        format="%(message)s",
    )

    throughput_test(server_args, bench_args)