linear.py 55.9 KB
Newer Older
1
"""Adapted from https://github.com/vllm-project/vllm/blob/v0.6.4.post1/vllm/model_executor/layers/linear.py"""
2

3
4
from __future__ import annotations

5
import itertools
6
import logging
7
from typing import TYPE_CHECKING, Dict, List, Optional, Tuple
8
9
10

import torch
from torch.nn.parameter import Parameter, UninitializedParameter
11
12

from sglang.srt.distributed import (
13
14
15
    divide,
    get_tensor_model_parallel_rank,
    get_tensor_model_parallel_world_size,
16
    get_tp_group,
17
18
19
20
    split_tensor_along_last_dim,
    tensor_model_parallel_all_gather,
    tensor_model_parallel_all_reduce,
)
21
22
23
from sglang.srt.distributed.device_communicators.pynccl_allocator import (
    use_symmetric_memory,
)
24
from sglang.srt.layers.dp_attention import is_allocation_symmetric
25
from sglang.srt.layers.parameter import (
26
    BasevLLMParameter,
HandH1998's avatar
HandH1998 committed
27
    BlockQuantScaleParameter,
28
    PackedColumnParameter,
29
30
    PackedvLLMParameter,
    PerTensorScaleParameter,
31
    RowvLLMParameter,
32
    _ColumnvLLMParameter,
33
)
34
from sglang.srt.layers.quantization.unquant import UnquantizedLinearMethod
35
from sglang.srt.layers.utils import pad_or_narrow_weight
36
from sglang.srt.utils import get_bool_env_var, is_cpu, is_hip, is_npu, set_weight_attrs
37
38
39
40
41
42

if TYPE_CHECKING:
    from sglang.srt.layers.quantization.base_config import (
        QuantizationConfig,
        QuantizeMethodBase,
    )
43

44
45
46
47
_is_hip = is_hip()
_disable_hip_linear_quant = _is_hip and get_bool_env_var(
    "SGLANG_ROCM_DISABLE_LINEARQUANT"
)
maxiao1's avatar
maxiao1 committed
48
49
50
51
52
53
54
55
56
57
58
59
_use_fused_rms_quant = get_bool_env_var("SGLANG_USE_FUSED_RMS_QUANT")
_use_fused_silu_mul_quant = get_bool_env_var("SGLANG_USE_FUSED_SILU_MUL_QUANT")
if _use_fused_rms_quant:
    try:
        from lmslim.quantize.quant_ops import lm_faster_rmsquant
    except Exception as e:
        print(f"Error: Import fused rmsquant error: {e}")
if _use_fused_silu_mul_quant:
    try:
        from lmslim.quantize.quant_ops import lm_fuse_silu_mul_quant
    except Exception as e:
        print(f"Error: Import fused silu_mul_quant error: {e}")
60

61
62
63
64
65
66
logger = logging.getLogger(__name__)

WEIGHT_LOADER_V2_SUPPORTED = [
    "CompressedTensorsLinearMethod",
    "AWQMarlinLinearMethod",
    "AWQLinearMethod",
67
    "AWQLinearAscendMethod",
68
69
    "GPTQMarlinLinearMethod",
    "Fp8LinearMethod",
70
    "BlockInt8LinearMethod",
71
    "MarlinLinearMethod",
72
    "QQQLinearMethod",
73
74
75
76
    "GPTQMarlin24LinearMethod",
    "TPUInt8LinearMethod",
    "GPTQLinearMethod",
    "FBGEMMFp8LinearMethod",
77
    "ModelOptFp8LinearMethod",
78
    "ModelOptFp4LinearMethod",
79
    "IPEXAWQLinearMethod",
80
    "PetitNvFp4LinearMethod",
81
82
]

83
_is_cpu = is_cpu()
84
_is_npu = is_npu()
85

86
87
88
89
90
91
92
93
94

def adjust_marlin_shard(param, shard_size, shard_offset):
    marlin_tile_size = getattr(param, "marlin_tile_size", None)
    if marlin_tile_size is None:
        return shard_size, shard_offset

    return shard_size * marlin_tile_size, shard_offset * marlin_tile_size


95
def adjust_bitsandbytes_4bit_shard(
96
    param: Parameter, shard_offsets: Dict[str, Tuple[int, int]], loaded_shard_id: str
97
98
99
) -> Tuple[int, int]:
    """Adjust the quantization offsets and sizes for BitsAndBytes sharding."""

100
101
    total, _ = shard_offsets["total"]
    orig_offset, orig_size = shard_offsets[loaded_shard_id]
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132

    quantized_total = param.data.shape[0]
    quantized_offset = orig_offset * quantized_total // total
    quantized_size = orig_size * quantized_total // total

    return quantized_size, quantized_offset


def adjust_scalar_to_fused_array(param, loaded_weight, shard_id):
    """For fused modules (QKV and MLP) we have an array of length
    N that holds 1 scale for each "logical" matrix. So the param
    is an array of length N. The loaded_weight corresponds to
    one of the shards on disk. Here, we slice the param based on
    the shard_id for loading.
    """
    qkv_idxs = {"q": 0, "k": 1, "v": 2}

    if isinstance(shard_id, str):
        shard_id = qkv_idxs[shard_id]
    elif not isinstance(shard_id, int):
        raise ValueError(f"Unknown Shard Id {shard_id}")

    # AutoFP8 scales do not have a shape
    # compressed-tensors scales do have a shape
    if len(loaded_weight.shape) != 0:
        assert loaded_weight.shape[0] == 1
        loaded_weight = loaded_weight[0]

    return param[shard_id], loaded_weight


133
134
135
136
137
138
139
140
141
142
143
144
145
146
def adjust_shard_offsets(shard_offsets, loaded_weight, dim):
    actual_weight_size = loaded_weight.size(dim)
    target_weight_size = shard_offsets[-1][-1] + shard_offsets[-1][-2]
    if actual_weight_size != target_weight_size:
        new_shard_offsets = []
        new_offset = 0
        for shard_id, shard_offset, shard_size in shard_offsets:
            actual_shard_size = actual_weight_size * shard_size // target_weight_size
            new_shard_offsets.append((shard_id, new_offset, actual_shard_size))
            new_offset += actual_shard_size
        return new_shard_offsets
    return shard_offsets


Yineng Zhang's avatar
Yineng Zhang committed
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
class LinearBase(torch.nn.Module):
    """Base linear layer.

    Args:
        input_size: input dimension of the linear layer.
        output_size: output dimension of the linear layer.
        bias: If true, add bias.
        skip_bias_add: If true, skip adding bias but instead return it.
        params_dtype: Data type for the parameters.
        quant_config: Quantization configure.
    """

    def __init__(
        self,
        input_size: int,
        output_size: int,
        skip_bias_add: bool = False,
        params_dtype: Optional[torch.dtype] = None,
        quant_config: Optional[QuantizationConfig] = None,
        prefix: str = "",
    ):
        super().__init__()

        # Keep input parameters
        self.input_size = input_size
        self.output_size = output_size
        self.skip_bias_add = skip_bias_add
        if params_dtype is None:
            params_dtype = torch.get_default_dtype()
        self.params_dtype = params_dtype
Lianmin Zheng's avatar
Lianmin Zheng committed
177
        self.quant_config = quant_config
Yineng Zhang's avatar
Yineng Zhang committed
178
179
180
181
182
183
184
185
186
        if quant_config is None:
            self.quant_method: Optional[QuantizeMethodBase] = UnquantizedLinearMethod()
        else:
            self.quant_method = quant_config.get_quant_method(self, prefix=prefix)

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        raise NotImplementedError


187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
class ReplicatedLinear(LinearBase):
    """Replicated linear layer.

    Args:
        input_size: input dimension of the linear layer.
        output_size: output dimension of the linear layer.
        bias: If true, add bias.
        skip_bias_add: If true, skip adding bias but instead return it.
        params_dtype: Data type for the parameters.
        quant_config: Quantization configure.
        prefix: The name of the layer in the state dict, including all parents
                        (e.g. model.layers.0.qkv_proj)
    """

    def __init__(
        self,
        input_size: int,
        output_size: int,
        bias: bool = True,
        skip_bias_add: bool = False,
        params_dtype: Optional[torch.dtype] = None,
        quant_config: Optional[QuantizationConfig] = None,
        prefix: str = "",
    ):
        super().__init__(
            input_size,
            output_size,
            skip_bias_add,
            params_dtype,
            quant_config,
            prefix=prefix,
        )

        # All the linear layer supports quant method.
        assert self.quant_method is not None
        self.quant_method.create_weights(
            self,
            self.input_size,
            [self.output_size],
            self.input_size,
            self.output_size,
            self.params_dtype,
            weight_loader=self.weight_loader,
        )

        if bias:
            self.bias = Parameter(
                torch.empty(self.output_size, dtype=self.params_dtype)
            )
            set_weight_attrs(
                self.bias,
                {
                    "output_dim": 0,
                    "weight_loader": self.weight_loader,
                },
            )
        else:
            self.register_parameter("bias", None)

    def weight_loader(self, param: Parameter, loaded_weight: torch.Tensor):
        # If the weight on disk does not have a shape, give it one
        # (such scales for AutoFp8).
        if len(loaded_weight.shape) == 0:
            loaded_weight = loaded_weight.reshape(1)

252
253
254
255
256
257
258
        # The per-tensor quant-scale must be 1 dimension
        if _is_npu:
            if param.size() != loaded_weight.size() and param.size(0) == 1:
                if torch.allclose(loaded_weight, loaded_weight[0]):
                    loaded_weight = loaded_weight[:1]
                else:
                    raise ValueError(f"{loaded_weight} are not all equal")
259
260

        assert param.size() == loaded_weight.size()
261
262
        param.data.copy_(loaded_weight)

263
    def forward(self, x: torch.Tensor) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
        bias = self.bias if not self.skip_bias_add else None
        assert self.quant_method is not None
        output = self.quant_method.apply(self, x, bias)
        output_bias = self.bias if self.skip_bias_add else None
        return output, output_bias

    def extra_repr(self) -> str:
        s = f"in_features={self.input_size}"
        s += f", output_features={self.output_size}"
        s += f", bias={self.bias is not None}"
        return s


class ColumnParallelLinear(LinearBase):
    """Linear layer with column parallelism.

    The linear layer is defined as Y = XA + b. A is parallelized along
    its second dimension as A = [A_1, ..., A_p].

    Args:
        input_size: first dimension of matrix A.
        output_size: second dimension of matrix A.
        bias: If true, add bias.
        gather_output: If true, call all-gather on output and make Y available
                       to all GPUs, otherwise, every GPU will have its output
                       which is Y_i = XA_i
        skip_bias_add: This was added to enable performance optimizations where
                       bias can be fused with other element-wise operations. we
                       skip adding bias but instead return it.
        params_dtype: Data type for the parameters.
        quant_config: Quantization configure.
        output_sizes: list of output sizes packed into one output, like for QKV
                       the list would be size 3.
        prefix: The name of the layer in the state dict, including all parents
                        (e.g. model.layers.0.qkv_proj)
    """

    def __init__(
        self,
        input_size: int,
        output_size: int,
        bias: bool = True,
        gather_output: bool = False,
        skip_bias_add: bool = False,
        params_dtype: Optional[torch.dtype] = None,
        quant_config: Optional[QuantizationConfig] = None,
        output_sizes: Optional[List[int]] = None,
        prefix: str = "",
312
313
        tp_rank: Optional[int] = None,
        tp_size: Optional[int] = None,
314
        use_presharded_weights: bool = False,
315
316
317
318
319
320
    ):
        super().__init__(
            input_size, output_size, skip_bias_add, params_dtype, quant_config, prefix
        )

        self.gather_output = gather_output
321
        self.use_presharded_weights = use_presharded_weights
322
323

        # Divide the weight matrix along the last dimension.
324
325
326
327
328
        if tp_rank is None:
            tp_rank = get_tensor_model_parallel_rank()
        if tp_size is None:
            tp_size = get_tensor_model_parallel_world_size()
        self.tp_rank, self.tp_size = tp_rank, tp_size
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
        assert self.quant_method is not None
        self.output_size_per_partition = divide(self.output_size, tp_size)
        self.output_partition_sizes = [self.output_size_per_partition]
        # If QKV or MergedColumn, use output size of each partition.
        if hasattr(self, "output_sizes"):
            self.output_partition_sizes = [
                divide(output_size, tp_size) for output_size in self.output_sizes
            ]

        if output_sizes is None:
            output_sizes = [output_size]

        self.quant_method.create_weights(
            layer=self,
            input_size_per_partition=self.input_size,
            output_partition_sizes=self.output_partition_sizes,
            input_size=self.input_size,
            output_size=self.output_size,
            params_dtype=self.params_dtype,
            weight_loader=(
                self.weight_loader_v2
                if self.quant_method.__class__.__name__ in WEIGHT_LOADER_V2_SUPPORTED
                else self.weight_loader
            ),
        )
        if bias:
            self.bias = Parameter(
                torch.empty(self.output_size_per_partition, dtype=params_dtype)
            )
            set_weight_attrs(
                self.bias,
                {
                    "output_dim": 0,
                    "weight_loader": self.weight_loader,
                },
            )
        else:
            self.register_parameter("bias", None)

    def weight_loader(self, param: Parameter, loaded_weight: torch.Tensor):
        output_dim = getattr(param, "output_dim", None)

        # Special case for GGUF
        is_gguf_weight = getattr(param, "is_gguf_weight", False)
        is_gguf_weight_type = getattr(param, "is_gguf_weight_type", False)
        if is_gguf_weight_type:
            param.weight_type = loaded_weight.item()

        # Materialize GGUF UninitializedParameter
        if is_gguf_weight and isinstance(param, UninitializedParameter):
            param.materialize(loaded_weight.shape, dtype=loaded_weight.dtype)

381
382
        use_bitsandbytes_4bit = getattr(param, "use_bitsandbytes_4bit", False)

383
        param_data = param.data
384
385
386
        # bitsandbytes loads the weights of the specific portion
        # no need to narrow here
        if output_dim is not None and not use_bitsandbytes_4bit:
387
            shard_size = param_data.shape[output_dim]
388
            start_idx = self.tp_rank * shard_size
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408

            if _is_cpu:
                from sglang.srt.model_loader.weight_utils import (
                    narrow_padded_param_and_loaded_weight,
                )

                param_data, loaded_weight = narrow_padded_param_and_loaded_weight(
                    param_data,
                    loaded_weight,
                    0,  # param_data_start
                    start_idx,
                    output_dim,
                    shard_size,
                    not self.use_presharded_weights,
                )
            else:
                if not self.use_presharded_weights:
                    loaded_weight = loaded_weight.narrow(
                        output_dim, start_idx, shard_size
                    )
409
410
411
412
413
414

        # Special case for loading scales off disk, which often do not
        # have a shape (such as in the case of AutoFP8).
        if len(loaded_weight.shape) == 0:
            loaded_weight = loaded_weight.reshape(1)

415
        assert param_data.shape == loaded_weight.shape
416
417
418
419
420
421
422
423
        param_data.copy_(loaded_weight)

    def weight_loader_v2(self, param: Parameter, loaded_weight: torch.Tensor):
        # Special case for loading scales off disk, which often do not
        # have a shape (such as in the case of AutoFP8).
        if len(loaded_weight.shape) == 0:
            assert loaded_weight.numel() == 1
            loaded_weight = loaded_weight.reshape(1)
Liangsheng Yin's avatar
Liangsheng Yin committed
424
425
426
427
428
429
430
431

        if isinstance(param, _ColumnvLLMParameter):
            param.load_column_parallel_weight(
                loaded_weight,
                tp_rank=self.tp_rank,
                use_presharded_weights=self.use_presharded_weights,
            )
        else:
432
433
            # FIXME: This branch is needed to load deepseek v3 awq.
            # However, we should fix this and avoid the branching here.
Liangsheng Yin's avatar
Liangsheng Yin committed
434
            param.load_column_parallel_weight(loaded_weight)
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453

    def forward(self, input_):
        bias = self.bias if not self.skip_bias_add else None

        # Matrix multiply.
        assert self.quant_method is not None
        output_parallel = self.quant_method.apply(self, input_, bias)
        if self.gather_output:
            # All-gather across the partitions.
            output = tensor_model_parallel_all_gather(output_parallel)
        else:
            output = output_parallel
        output_bias = self.bias if self.skip_bias_add else None
        return output, output_bias

    def extra_repr(self) -> str:
        s = f"in_features={self.input_size}"
        s += f", output_features={self.output_size_per_partition}"
        s += f", bias={self.bias is not None}"
454
        s += f", tp_size={self.tp_size}"
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
        s += f", gather_output={self.gather_output}"
        return s


class MergedColumnParallelLinear(ColumnParallelLinear):
    """Packed linear layers with column parallelism.

    Similar to ColumnParallelLinear, but the weight matrix is concatenated
    along the output dimension. When the weight matrix is loaded, the
    different partitions are sharded separately.

    Args:
        input_size: input dimension of the linear layer.
        output_sizes: list of output dimensions of the linear layer.
        bias: If true, add bias.
        gather_output: If true, call all-gather on output and make the output
                       available to all GPUs, otherwise, every GPU will have
                       its own output.
        skip_bias_add: This was added to enable performance optimizations where
                       bias can be fused with other element-wise operations. we
                       skip adding bias but instead return it.
        params_dtype: Data type for the parameters.
        quant_config: Quantization configure.
        prefix: The name of the layer in the state dict, including all parents
                        (e.g. model.layers.0.qkv_proj)
    """

    def __init__(
        self,
        input_size: int,
        output_sizes: List[int],
        bias: bool = True,
        gather_output: bool = False,
        skip_bias_add: bool = False,
        params_dtype: Optional[torch.dtype] = None,
        quant_config: Optional[QuantizationConfig] = None,
        prefix: str = "",
492
493
494
        tp_rank: Optional[int] = None,
        tp_size: Optional[int] = None,
        use_presharded_weights: bool = False,
495
496
    ):
        self.output_sizes = output_sizes
497
498
499
500
501
        if tp_rank is None:
            tp_rank = get_tensor_model_parallel_rank()
        if tp_size is None:
            tp_size = get_tensor_model_parallel_world_size()
        self.tp_rank, self.tp_size = tp_rank, tp_size
502
        assert all(output_size % tp_size == 0 for output_size in output_sizes)
503
        self.use_presharded_weights = use_presharded_weights
504
505
506
507
508
509
510
511
512
        super().__init__(
            input_size=input_size,
            output_size=sum(output_sizes),
            bias=bias,
            gather_output=gather_output,
            skip_bias_add=skip_bias_add,
            params_dtype=params_dtype,
            quant_config=quant_config,
            prefix=prefix,
513
514
            tp_rank=tp_rank,
            tp_size=tp_size,
515
            use_presharded_weights=use_presharded_weights,
516
        )
517
        self.prefix = prefix
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534

    def weight_loader(
        self,
        param: Parameter,
        loaded_weight: torch.Tensor,
        loaded_shard_id: Optional[int] = None,
    ):

        # Special case for GGUF
        # initialize GGUF param after we know the quantize type
        is_gguf_weight = getattr(param, "is_gguf_weight", False)
        is_gguf_weight_type = getattr(param, "is_gguf_weight_type", False)
        if is_gguf_weight_type:
            param.data[loaded_shard_id].copy_(loaded_weight)
            param.shard_weight_type[loaded_shard_id] = loaded_weight.item()
            return

535
536
        if is_gguf_weight:
            output_dim = getattr(param, "output_dim", None)
537
538
            shard_size = loaded_weight.size(output_dim) // self.tp_size
            start_idx = self.tp_rank * shard_size
539

540
541
542
543
544
545
            loaded_weight = loaded_weight.narrow(output_dim, start_idx, shard_size)

            param.shard_id.append(loaded_shard_id)
            param.shard_id_map[loaded_shard_id] = len(param.data_container)
            param.data_container.append(loaded_weight)
            return
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561

        param_data = param.data
        output_dim = getattr(param, "output_dim", None)
        # Special case for AQLM codebooks.
        is_metadata = getattr(param, "is_metadata", False)
        # Special case for per-tensor scale to load scalar into fused array.
        needs_scalar_to_array = getattr(param, "needs_scalar_to_array", False)

        if loaded_shard_id is None:
            # Loaded weight is already fused on disk (qkv/mlp).
            if output_dim is None:
                if needs_scalar_to_array:
                    param_data, loaded_weight = adjust_scalar_to_fused_array(
                        param_data, loaded_weight, 0
                    )

562
                assert param_data.shape == loaded_weight.shape
563
564
565
566
567
568
569
570
                param_data.copy_(loaded_weight)
                return
            current_shard_offset = 0
            shard_offsets: List[Tuple[int, int, int]] = []
            for i, output_size in enumerate(self.output_sizes):
                shard_offsets.append((i, current_shard_offset, output_size))
                current_shard_offset += output_size
            packed_dim = getattr(param, "packed_dim", None)
571
572

            use_bitsandbytes_4bit = getattr(param, "use_bitsandbytes_4bit", False)
573
574
575
576
577
            if _is_cpu:
                shard_offsets = adjust_shard_offsets(
                    shard_offsets, loaded_weight, output_dim
                )

578
579
580
581
582
583
584
585
586
587
588
589
            for shard_id, shard_offset, shard_size in shard_offsets:
                # Special case for Quantization.
                # If quantized, we need to adjust the offset and size to account
                # for the packing.
                if packed_dim == output_dim:
                    shard_size = shard_size // param.pack_factor
                    shard_offset = shard_offset // param.pack_factor
                    # Special case for Marlin.
                    shard_size, shard_offset = adjust_marlin_shard(
                        param, shard_size, shard_offset
                    )

590
591
592
593
594
595
596
597
598
599
600
                if use_bitsandbytes_4bit:
                    index = list(itertools.accumulate([0] + self.output_sizes))
                    orig_offsets = {
                        str(i): (index[i], size)
                        for i, size in enumerate(self.output_sizes)
                    }
                    orig_offsets["total"] = (self.output_size, 0)
                    shard_size, shard_offset = adjust_bitsandbytes_4bit_shard(
                        param, orig_offsets, str(shard_id)
                    )

601
602
603
604
605
606
607
608
                loaded_weight_shard = loaded_weight.narrow(
                    output_dim, shard_offset, shard_size
                )
                self.weight_loader(param, loaded_weight_shard, shard_id)
            return

        assert loaded_shard_id < len(self.output_sizes)
        if output_dim is not None:
609
610
            shard_offset = sum(self.output_sizes[:loaded_shard_id]) // self.tp_size
            shard_size = self.output_sizes[loaded_shard_id] // self.tp_size
611
612
613
614
615
616
617
618
619
620
621
622
            # Special case for quantization.
            # If quantized, we need to adjust the offset and size to account
            # for the packing.
            packed_dim = getattr(param, "packed_dim", None)
            if packed_dim == output_dim:
                shard_size = shard_size // param.pack_factor
                shard_offset = shard_offset // param.pack_factor
                # Special case for Marlin.
                shard_size, shard_offset = adjust_marlin_shard(
                    param, shard_size, shard_offset
                )

623
624
            use_bitsandbytes_4bit = getattr(param, "use_bitsandbytes_4bit", False)
            if use_bitsandbytes_4bit:
625
626
627
628
                shard_size = loaded_weight.shape[output_dim]
                shard_offset = loaded_weight.shape[output_dim] * loaded_shard_id

            param_data = param_data.narrow(output_dim, shard_offset, shard_size)
629
            start_idx = self.tp_rank * shard_size
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648

            if _is_cpu:
                from sglang.srt.model_loader.weight_utils import (
                    narrow_padded_param_and_loaded_weight,
                )

                param_data, loaded_weight = narrow_padded_param_and_loaded_weight(
                    param_data,
                    loaded_weight,
                    0,  # param_data_start
                    start_idx,
                    output_dim,
                    shard_size,
                    not use_bitsandbytes_4bit and not self.use_presharded_weights,
                )
            else:
                # bitsandbytes loads the weights of the specific portion
                # no need to narrow here
                if not use_bitsandbytes_4bit and not self.use_presharded_weights:
649
650
651
652
653
654
655
656
657
658
                    # Padding for special case like qwen2_5_VL's mlp which is not 8-aligned
                    end_idx = start_idx + shard_size
                    if end_idx > loaded_weight.shape[output_dim]:
                        loaded_weight = pad_or_narrow_weight(
                            loaded_weight, output_dim, start_idx, shard_size
                        )
                    else:
                        loaded_weight = loaded_weight.narrow(
                            output_dim, start_idx, shard_size
                        )
659

660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
        # Special case for AQLM codebooks.
        elif is_metadata:
            # metadata indicates fixed size concatenated along dim 0
            shard_size = loaded_weight.shape[0]
            shard_offset = loaded_shard_id * shard_size
            param_data = param_data.narrow(0, shard_offset, shard_size)

        # Special case for per-tensor scales in fused case.
        elif needs_scalar_to_array:
            param_data, loaded_weight = adjust_scalar_to_fused_array(
                param_data, loaded_weight, loaded_shard_id
            )

        else:
            ignore_warning = getattr(param, "ignore_warning", False)
            if not ignore_warning:
                logger.warning(
                    "Loading a weight without `output_dim` attribute in "
                    "MergedColumnParallelLinear, assume the weight is "
                    "the same for all partitions."
                )

682
        assert param_data.shape == loaded_weight.shape
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
        param_data.copy_(loaded_weight)

    def _load_fused_module_from_checkpoint(
        self, param: BasevLLMParameter, loaded_weight: torch.Tensor
    ):
        """
        Handle special case for models where MLP layers are already
        fused on disk. In this case, we have no shard id. This function
        determmines the shard id by splitting these layers and then calls
        the weight loader using the shard id.

        An example of a model with these fused layers:
        https://huggingface.co/microsoft/Phi-3-mini-4k-instruct
        """

        current_shard_offset = 0
        shard_offsets: List[Tuple[int, int, int]] = []
        for i, output_size in enumerate(self.output_sizes):
            shard_offsets.append((i, current_shard_offset, output_size))
            current_shard_offset += output_size

        for shard_id, shard_offset, shard_size in shard_offsets:
            # Special case for Quantization.
            # If quantized, we need to adjust the offset and size to account
            # for the packing.
            if (
709
                isinstance(param, (PackedColumnParameter, PackedvLLMParameter))
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
                and param.packed_dim == param.output_dim
            ):
                shard_size, shard_offset = param.adjust_shard_indexes_for_packing(
                    shard_size=shard_size, shard_offset=shard_offset
                )

            loaded_weight_shard = loaded_weight.narrow(
                param.output_dim, shard_offset, shard_size
            )
            self.weight_loader_v2(param, loaded_weight_shard, shard_id)

    def weight_loader_v2(
        self,
        param: BasevLLMParameter,
        loaded_weight: torch.Tensor,
        loaded_shard_id: Optional[int] = None,
    ):
        if loaded_shard_id is None:
            if isinstance(param, PerTensorScaleParameter):
729
730
731
732
733
734
                param.load_merged_column_weight(
                    loaded_weight=loaded_weight,
                    shard_id=0,
                    tp_rank=self.tp_rank,
                    tp_size=self.tp_size,
                )
735
                return
736
            elif type(param) in (RowvLLMParameter, BasevLLMParameter):
737
738
739
740
741
                param.load_merged_column_weight(
                    loaded_weight=loaded_weight,
                    tp_rank=self.tp_rank,
                    tp_size=self.tp_size,
                )
742
                return
743
            # TODO: @dsikka - move to parameter.py
744
745
746
747
748
            self._load_fused_module_from_checkpoint(param, loaded_weight)
            return

        assert loaded_shard_id < len(self.output_sizes)

HandH1998's avatar
HandH1998 committed
749
750
751
752
753
        if isinstance(param, BlockQuantScaleParameter):
            weight_block_size = self.quant_method.quant_config.weight_block_size
            block_n, _ = weight_block_size[0], weight_block_size[1]
            shard_offset = (
                (sum(self.output_sizes[:loaded_shard_id]) + block_n - 1) // block_n
754
            ) // self.tp_size
HandH1998's avatar
HandH1998 committed
755
            shard_size = (
756
757
758
                (self.output_sizes[loaded_shard_id] + block_n - 1)
                // block_n
                // self.tp_size
HandH1998's avatar
HandH1998 committed
759
760
            )
        else:
761
762
            shard_offset = sum(self.output_sizes[:loaded_shard_id]) // self.tp_size
            shard_size = self.output_sizes[loaded_shard_id] // self.tp_size
763
764
765
766
767
768

        param.load_merged_column_weight(
            loaded_weight=loaded_weight,
            shard_id=loaded_shard_id,
            shard_offset=shard_offset,
            shard_size=shard_size,
769
            use_presharded_weights=self.use_presharded_weights,
770
771
            tp_rank=self.tp_rank,
            tp_size=self.tp_size,
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
        )


class QKVParallelLinear(ColumnParallelLinear):
    """Linear layers for the attention's QKV transformation.

    Linear layers for the linear transformation of the query, key, and value
    vectors in the attention layer. The weight matrix is concatenated along
    the output dimension. The layer is parallelized along the head dimension.
    When the number of key/value heads is smaller than the number of query
    heads (e.g., multi-query/grouped-query attention), the key/value head may
    be replicated while the query heads are partitioned.

    Args:
        hidden_size: input hidden state size of the transformer.
        head_size: size of each attention head.
        total_num_heads: total number of attention query heads.
        total_num_kv_heads: total number of attention key/value heads. If
                            None, assume total_num_kv_heads = total_num_heads.
        bias: If true, add bias.
        skip_bias_add: This was added to enable performance optimizations where
                       bias can be fused with other element-wise operations. we
                       skip adding bias but instead return it.
        params_dtype: Data type for the parameters.
        quant_config: Quantization configure.
        prefix: The name of the layer in the state dict, including all parents
                        (e.g. model.layers.0.qkv_proj)
    """

    def __init__(
        self,
        hidden_size: int,
        head_size: int,
        total_num_heads: int,
        total_num_kv_heads: Optional[int] = None,
        bias: bool = True,
        skip_bias_add: bool = False,
        params_dtype: Optional[torch.dtype] = None,
810
        quant_config: Optional[QuantizationConfig] = None,
811
        prefix: str = "",
812
813
        tp_rank: Optional[int] = None,
        tp_size: Optional[int] = None,
814
        load_presharded_attn: bool = False,
815
816
817
818
819
820
821
822
    ):
        self.hidden_size = hidden_size
        self.head_size = head_size
        self.total_num_heads = total_num_heads
        if total_num_kv_heads is None:
            total_num_kv_heads = total_num_heads
        self.total_num_kv_heads = total_num_kv_heads
        # Divide the weight matrix along the last dimension.
823
824
825
826
827
        if tp_rank is None:
            tp_rank = get_tensor_model_parallel_rank()
        if tp_size is None:
            tp_size = get_tensor_model_parallel_world_size()
        self.tp_rank, self.tp_size = tp_rank, tp_size
828
829
830
831
832
833
834
        self.num_heads = divide(self.total_num_heads, tp_size)
        if tp_size >= self.total_num_kv_heads:
            self.num_kv_heads = 1
            self.num_kv_head_replicas = divide(tp_size, self.total_num_kv_heads)
        else:
            self.num_kv_heads = divide(self.total_num_kv_heads, tp_size)
            self.num_kv_head_replicas = 1
835
836
        self.q_proj_shard_size = self.num_heads * self.head_size
        self.kv_proj_shard_size = self.num_kv_heads * self.head_size
837
838
839
840
841
842
843
844
845
        input_size = self.hidden_size
        output_size = (
            (self.num_heads + 2 * self.num_kv_heads) * tp_size * self.head_size
        )
        self.output_sizes = [
            self.num_heads * self.head_size * tp_size,  # q_proj
            self.num_kv_heads * self.head_size * tp_size,  # k_proj
            self.num_kv_heads * self.head_size * tp_size,  # v_proj
        ]
846
        self.use_presharded_weights = load_presharded_attn
847
        quant_config = None if _disable_hip_linear_quant else quant_config
848
849
850
851
852
853
854
855
856
857

        super().__init__(
            input_size=input_size,
            output_size=output_size,
            bias=bias,
            gather_output=False,
            skip_bias_add=skip_bias_add,
            params_dtype=params_dtype,
            quant_config=quant_config,
            prefix=prefix,
858
859
            tp_rank=tp_rank,
            tp_size=tp_size,
860
            use_presharded_weights=self.use_presharded_weights,
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
        )

    def _get_shard_offset_mapping(self, loaded_shard_id: str):
        shard_offset_mapping = {
            "q": 0,
            "k": self.num_heads * self.head_size,
            "v": (self.num_heads + self.num_kv_heads) * self.head_size,
            "total": (self.num_heads + 2 * self.num_kv_heads) * self.head_size,
        }
        return shard_offset_mapping.get(loaded_shard_id)

    def _get_shard_size_mapping(self, loaded_shard_id: str):
        shard_size_mapping = {
            "q": self.num_heads * self.head_size,
            "k": self.num_kv_heads * self.head_size,
            "v": self.num_kv_heads * self.head_size,
        }
        return shard_size_mapping.get(loaded_shard_id)

    def _load_fused_module_from_checkpoint(
        self, param: BasevLLMParameter, loaded_weight: torch.Tensor
    ):
        """
        Handle special case for models where QKV layers are already
        fused on disk. In this case, we have no shard id. This function
        determmines the shard id by splitting these layers and then calls
        the weight loader using the shard id.

        An example of a model with these fused layers:
        https://huggingface.co/microsoft/Phi-3-mini-4k-instruct
        """
        shard_offsets = [
            # (shard_id, shard_offset, shard_size)
            ("q", 0, self.total_num_heads * self.head_size),
            (
                "k",
                self.total_num_heads * self.head_size,
                self.total_num_kv_heads * self.head_size,
            ),
            (
                "v",
                (self.total_num_heads + self.total_num_kv_heads) * self.head_size,
                self.total_num_kv_heads * self.head_size,
            ),
        ]

        for shard_id, shard_offset, shard_size in shard_offsets:
            # Special case for Quantization.
            # If quantized, we need to adjust the offset and size to account
            # for the packing.
            if (
912
                isinstance(param, (PackedColumnParameter, PackedvLLMParameter))
913
914
915
916
917
918
                and param.packed_dim == param.output_dim
            ):
                shard_size, shard_offset = param.adjust_shard_indexes_for_packing(
                    shard_size=shard_size, shard_offset=shard_offset
                )

919
920
921
922
            if not self.use_presharded_weights:
                loaded_weight_shard = loaded_weight.narrow(
                    param.output_dim, shard_offset, shard_size
                )
923
924
            self.weight_loader_v2(param, loaded_weight_shard, shard_id)

strgrb's avatar
strgrb committed
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
    def _load_qkv_block_scale(
        self, param: BasevLLMParameter, loaded_weight: torch.Tensor
    ):
        block_n, _ = self.quant_method.quant_config.weight_block_size
        q_size = self.total_num_heads * self.head_size // block_n
        k_size = self.total_num_kv_heads * self.head_size // block_n
        v_size = self.total_num_kv_heads * self.head_size // block_n
        shard_offsets = [
            # (shard_id, shard_offset, shard_size)
            ("q", 0, q_size),
            ("k", q_size, k_size),
            ("v", q_size + k_size, v_size),
        ]
        for shard_id, shard_offset, shard_size in shard_offsets:
            loaded_weight_shard = loaded_weight.narrow(
                param.output_dim, shard_offset, shard_size
            )
            rank_shard_offset = self._get_shard_offset_mapping(shard_id) // block_n
            rank_shard_size = self._get_shard_size_mapping(shard_id) // block_n
            param.load_qkv_weight(
                loaded_weight=loaded_weight_shard,
                num_heads=self.num_kv_head_replicas,
                shard_id=shard_id,
                shard_offset=rank_shard_offset,
                shard_size=rank_shard_size,
                tp_rank=self.tp_rank,
                use_presharded_weights=self.use_presharded_weights,
            )

954
955
956
957
958
959
960
961
    def weight_loader_v2(
        self,
        param: BasevLLMParameter,
        loaded_weight: torch.Tensor,
        loaded_shard_id: Optional[str] = None,
    ):
        if loaded_shard_id is None:  # special case for certain models
            if isinstance(param, PerTensorScaleParameter):
962
                param.load_qkv_weight(loaded_weight=loaded_weight, shard_id=0)
963
                return
964
965
            elif type(param) in (RowvLLMParameter, BasevLLMParameter):
                param.load_qkv_weight(loaded_weight=loaded_weight)
966
                return
strgrb's avatar
strgrb committed
967
968
969
            elif isinstance(param, BlockQuantScaleParameter):
                self._load_qkv_block_scale(param, loaded_weight)
                return
970
            # TODO: @dsikka - move to parameter.py
971
972
973
974
975
976
977
978
            self._load_fused_module_from_checkpoint(param, loaded_weight)
            return

        assert loaded_shard_id in ["q", "k", "v"]

        shard_offset = self._get_shard_offset_mapping(loaded_shard_id)
        shard_size = self._get_shard_size_mapping(loaded_shard_id)

HandH1998's avatar
HandH1998 committed
979
980
981
982
983
984
        if isinstance(param, BlockQuantScaleParameter):
            weight_block_size = self.quant_method.quant_config.weight_block_size
            block_n, _ = weight_block_size[0], weight_block_size[1]
            shard_offset = (shard_offset + block_n - 1) // block_n
            shard_size = (shard_size + block_n - 1) // block_n

985
986
987
988
989
990
991
        param.load_qkv_weight(
            loaded_weight=loaded_weight,
            num_heads=self.num_kv_head_replicas,
            shard_id=loaded_shard_id,
            shard_offset=shard_offset,
            shard_size=shard_size,
            tp_rank=self.tp_rank,
992
            use_presharded_weights=self.use_presharded_weights,
993
        )
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011

    def weight_loader(
        self,
        param: Parameter,
        loaded_weight: torch.Tensor,
        loaded_shard_id: Optional[str] = None,
    ):

        # Special case for GGUF
        # initialize GGUF param after we know the quantize type
        is_gguf_weight = getattr(param, "is_gguf_weight", False)
        is_gguf_weight_type = getattr(param, "is_gguf_weight_type", False)
        if is_gguf_weight_type and loaded_shard_id is not None:
            idx_map = {"q": 0, "k": 1, "v": 2}
            param.data[idx_map[loaded_shard_id]].copy_(loaded_weight)
            param.shard_weight_type[loaded_shard_id] = loaded_weight.item()
            return

1012
1013
        if is_gguf_weight:
            output_dim = getattr(param, "output_dim", None)
1014
1015
            shard_size = loaded_weight.size(output_dim) // self.tp_size
            start_idx = self.tp_rank * shard_size
1016
1017

            loaded_weight = loaded_weight.narrow(output_dim, start_idx, shard_size)
1018

1019
1020
1021
1022
            param.shard_id.append(loaded_shard_id)
            param.shard_id_map[loaded_shard_id] = len(param.data_container)
            param.data_container.append(loaded_weight)
            return
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039

        param_data = param.data
        output_dim = getattr(param, "output_dim", None)
        # Special case for AQLM codebooks.
        is_metadata = getattr(param, "is_metadata", False)

        # Special case for per-tensor scales in fused case.
        needs_scalar_to_array = getattr(param, "needs_scalar_to_array", False)

        if loaded_shard_id is None:
            # Loaded weight is already fused on disk (qkv/mlp).
            if output_dim is None:
                if needs_scalar_to_array:
                    param_data, loaded_weight = adjust_scalar_to_fused_array(
                        param_data, loaded_weight, 0
                    )

1040
                assert param_data.shape == loaded_weight.shape
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
                param_data.copy_(loaded_weight)
                return
            shard_offsets = [
                # (shard_id, shard_offset, shard_size)
                ("q", 0, self.total_num_heads * self.head_size),
                (
                    "k",
                    self.total_num_heads * self.head_size,
                    self.total_num_kv_heads * self.head_size,
                ),
                (
                    "v",
                    (self.total_num_heads + self.total_num_kv_heads) * self.head_size,
                    self.total_num_kv_heads * self.head_size,
                ),
            ]
1057
1058
            use_bitsandbytes_4bit = getattr(param, "use_bitsandbytes_4bit", False)

1059
            packed_dim = getattr(param, "packed_dim", None)
1060
1061
1062
1063
1064
            if _is_cpu:
                shard_offsets = adjust_shard_offsets(
                    shard_offsets, loaded_weight, output_dim
                )

1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
            for shard_id, shard_offset, shard_size in shard_offsets:
                # Special case for Quantized Weights.
                # If quantized, we need to adjust the offset and size to account
                # for the packing.
                if packed_dim == output_dim:
                    shard_size = shard_size // param.pack_factor
                    shard_offset = shard_offset // param.pack_factor

                    # Special case for Marlin.
                    shard_size, shard_offset = adjust_marlin_shard(
                        param, shard_size, shard_offset
                    )

1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
                if use_bitsandbytes_4bit:
                    orig_qkv_offsets = {
                        "q": (0, self.total_num_heads * self.head_size),
                        "k": (
                            self.total_num_heads * self.head_size,
                            self.total_num_kv_heads * self.head_size,
                        ),
                        "v": (
                            (self.total_num_heads + self.total_num_kv_heads)
                            * self.head_size,
                            self.total_num_kv_heads * self.head_size,
                        ),
                        "total": (
                            (self.total_num_heads + 2 * self.total_num_kv_heads)
                            * self.head_size,
                            0,
                        ),
                    }

                    shard_size, shard_offset = adjust_bitsandbytes_4bit_shard(
                        param, orig_qkv_offsets, shard_id
                    )

1101
1102
1103
1104
                if not self.use_presharded_weights:
                    loaded_weight_shard = loaded_weight.narrow(
                        output_dim, shard_offset, shard_size
                    )
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
                self.weight_loader(param, loaded_weight_shard, shard_id)
            return

        assert loaded_shard_id in ["q", "k", "v"]

        # If output dim is defined, use the default loading process.
        if output_dim is not None:
            if loaded_shard_id == "q":
                shard_offset = 0
                shard_size = self.num_heads * self.head_size
            elif loaded_shard_id == "k":
                shard_offset = self.num_heads * self.head_size
                shard_size = self.num_kv_heads * self.head_size
            elif loaded_shard_id == "v":
                shard_offset = (self.num_heads + self.num_kv_heads) * self.head_size
                shard_size = self.num_kv_heads * self.head_size
            # Special case for Quantized Weights.
            # If quantized, we need to adjust the offset and size to account
            # for the packing.
            packed_dim = getattr(param, "packed_dim", None)
            if packed_dim == output_dim:
                shard_size = shard_size // param.pack_factor
                shard_offset = shard_offset // param.pack_factor

                # Special case for Marlin.
                shard_size, shard_offset = adjust_marlin_shard(
                    param, shard_size, shard_offset
                )

1134
1135
            use_bitsandbytes_4bit = getattr(param, "use_bitsandbytes_4bit", False)
            if use_bitsandbytes_4bit:
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
                orig_qkv_offsets = {
                    "q": (0, self.num_heads * self.head_size),
                    "k": (
                        self.num_heads * self.head_size,
                        self.num_kv_heads * self.head_size,
                    ),
                    "v": (
                        (self.num_heads + self.num_kv_heads) * self.head_size,
                        self.num_kv_heads * self.head_size,
                    ),
                    "total": (
                        (self.num_heads + 2 * self.num_kv_heads) * self.head_size,
                        0,
                    ),
                }
1151
                shard_size, shard_offset = adjust_bitsandbytes_4bit_shard(
1152
1153
1154
1155
1156
                    param, orig_qkv_offsets, loaded_shard_id
                )

            param_data = param_data.narrow(output_dim, shard_offset, shard_size)
            if loaded_shard_id == "q":
1157
                shard_id = self.tp_rank
1158
            else:
1159
                shard_id = self.tp_rank // self.num_kv_head_replicas
1160
            start_idx = shard_id * shard_size
1161

1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
            if _is_cpu:
                from sglang.srt.model_loader.weight_utils import (
                    narrow_padded_param_and_loaded_weight,
                )

                param_data, loaded_weight = narrow_padded_param_and_loaded_weight(
                    param_data,
                    loaded_weight,
                    0,  # param_data_start
                    start_idx,
                    output_dim,
                    shard_size,
                    not use_bitsandbytes_4bit and not self.use_presharded_weights,
                )
            else:
                # bitsandbytes loads the weights of the specific portion
                # no need to narrow here
                if not use_bitsandbytes_4bit and not self.use_presharded_weights:
                    loaded_weight = loaded_weight.narrow(
                        output_dim, start_idx, shard_size
                    )
1183

1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
        # Special case for for AQLM codebooks.
        elif is_metadata:
            # metadata indicates fixed size concatenated along dim 0
            shard_size = loaded_weight.shape[0]
            shard_index = ["q", "k", "v"].index(loaded_shard_id)
            param_data = param_data.narrow(0, shard_index * shard_size, shard_size)
        # Special case for per-tensor scales in fused case.
        elif needs_scalar_to_array:
            param_data, loaded_weight = adjust_scalar_to_fused_array(
                param_data, loaded_weight, loaded_shard_id
            )
        else:
            ignore_warning = getattr(param, "ignore_warning", False)
            if not ignore_warning:
                logger.warning(
                    "Loading a weight without `output_dim` attribute in "
                    "QKVParallelLinear, assume the weight is the same "
                    "for all partitions."
                )

1204
        assert param_data.shape == loaded_weight.shape
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
        param_data.copy_(loaded_weight)


class RowParallelLinear(LinearBase):
    """Linear layer with row parallelism.

    The linear layer is defined as Y = XA + b. A is parallelized along
    its first dimension and X along its second dimension as:
               -   -
              | A_1 |
              | .   |
          A = | .   |        X = [X_1, ..., X_p]
              | .   |
              | A_p |
               -   -
    Arguments:
        input_size: first dimension of matrix A.
        output_size: second dimension of matrix A.
        bias: If true, add bias. Note that bias is not parallelized.
        input_is_parallel: If true, we assume that the input is already
                           split across the GPUs and we do not split
                           again.
        skip_bias_add: This was added to enable performance optimization where
                       bias can be fused with other element-wise operations.
                       We skip adding bias but instead return it.
        params_dtype: Data type for the parameters.
        quant_config: Quantization configure.
    """

    def __init__(
        self,
        input_size: int,
        output_size: int,
        bias: bool = True,
        input_is_parallel: bool = True,
        skip_bias_add: bool = False,
        params_dtype: Optional[torch.dtype] = None,
        reduce_results: bool = True,
        quant_config: Optional[QuantizationConfig] = None,
        prefix: str = "",
1245
1246
1247
        tp_rank: Optional[int] = None,
        tp_size: Optional[int] = None,
        use_presharded_weights: bool = False,
1248
    ):
1249
        quant_config = None if _disable_hip_linear_quant else quant_config
1250
1251
1252
1253
1254
1255
1256
1257
        super().__init__(
            input_size, output_size, skip_bias_add, params_dtype, quant_config, prefix
        )

        self.input_is_parallel = input_is_parallel
        self.reduce_results = reduce_results

        # Divide the weight matrix along the last dimension.
1258
1259
1260
1261
1262
        if tp_rank is None:
            tp_rank = get_tensor_model_parallel_rank()
        if tp_size is None:
            tp_size = get_tensor_model_parallel_world_size()
        self.tp_rank, self.tp_size = tp_rank, tp_size
1263
1264
        self.input_size_per_partition = divide(input_size, self.tp_size)
        assert self.quant_method is not None
1265
        self.use_presharded_weights = use_presharded_weights
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294

        self.quant_method.create_weights(
            layer=self,
            input_size_per_partition=self.input_size_per_partition,
            output_partition_sizes=[self.output_size],
            input_size=self.input_size,
            output_size=self.output_size,
            params_dtype=self.params_dtype,
            weight_loader=(
                self.weight_loader_v2
                if self.quant_method.__class__.__name__ in WEIGHT_LOADER_V2_SUPPORTED
                else self.weight_loader
            ),
        )

        if bias:
            self.bias = Parameter(torch.empty(self.output_size, dtype=params_dtype))
            set_weight_attrs(
                self.bias,
                {
                    "output_dim": 0,
                    "weight_loader": self.weight_loader,
                },
            )
        else:
            self.register_parameter("bias", None)

    def weight_loader(self, param: Parameter, loaded_weight: torch.Tensor):
        input_dim = getattr(param, "input_dim", None)
1295
        use_bitsandbytes_4bit = getattr(param, "use_bitsandbytes_4bit", False)
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306

        # Special case for GGUF
        is_gguf_weight = getattr(param, "is_gguf_weight", False)
        is_gguf_weight_type = getattr(param, "is_gguf_weight_type", False)
        if is_gguf_weight_type:
            param.weight_type = loaded_weight.item()

        # Materialize GGUF UninitializedParameter
        if is_gguf_weight and isinstance(param, UninitializedParameter):
            weight_shape = list(loaded_weight.shape)
            if input_dim:
1307
                weight_shape[input_dim] = weight_shape[input_dim] // self.tp_size
1308
1309
1310
            param.materialize(tuple(weight_shape), dtype=loaded_weight.dtype)

        param_data = param.data
1311
1312
        # bitsandbytes loads the weights of the specific portion
        # no need to narrow here
1313
1314
1315
1316
1317
        if (
            input_dim is not None
            and not use_bitsandbytes_4bit
            and not self.use_presharded_weights
        ):
1318
            shard_size = param_data.shape[input_dim]
1319
            start_idx = self.tp_rank * shard_size
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334

            if _is_cpu:
                from sglang.srt.model_loader.weight_utils import (
                    narrow_padded_param_and_loaded_weight,
                )

                param_data, loaded_weight = narrow_padded_param_and_loaded_weight(
                    param_data,
                    loaded_weight,
                    0,  # param_data_start
                    start_idx,
                    input_dim,
                    shard_size,
                )
            else:
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
                # Padding for special case like qwen2_5_VL's mlp which is not 8-aligned
                end_idx = start_idx + shard_size
                if end_idx > loaded_weight.shape[input_dim]:
                    loaded_weight = pad_or_narrow_weight(
                        loaded_weight, input_dim, start_idx, shard_size
                    )
                else:
                    loaded_weight = loaded_weight.narrow(
                        input_dim, start_idx, shard_size
                    )
1345
1346
1347
1348
1349
1350

        # Special case for loading scales off disk, which often do not
        # have a shape (such as in the case of AutoFP8).
        if len(loaded_weight.shape) == 0:
            loaded_weight = loaded_weight.reshape(1)

1351
        assert param_data.shape == loaded_weight.shape
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
        param_data.copy_(loaded_weight)

    def weight_loader_v2(self, param: BasevLLMParameter, loaded_weight: torch.Tensor):

        # Special case for loading scales off disk, which often do not
        # have a shape (such as in the case of AutoFP8).
        if len(loaded_weight.shape) == 0:
            assert loaded_weight.numel() == 1
            loaded_weight = loaded_weight.reshape(1)

1362
        if isinstance(param, RowvLLMParameter):
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
            # This `BasevLLMParameter` is defined in sglang/srt/layers/parameter.py,
            # It supports additional parameters like tp_rank and use_presharded_weights.
            param.load_row_parallel_weight(
                loaded_weight,
                tp_rank=self.tp_rank,
                use_presharded_weights=self.use_presharded_weights,
            )
        else:
            # `params` is defined in `vllm/model_executor/parameter.py`,
            # It does not support additional parameters.
            param.load_row_parallel_weight(loaded_weight)
1374

maxiao1's avatar
maxiao1 committed
1375
    def forward(self, input_, skip_all_reduce=False, use_fused_silu_mul_quant=False):
1376
1377
1378
1379
1380
1381
        if self.input_is_parallel:
            input_parallel = input_
        else:
            splitted_input = split_tensor_along_last_dim(
                input_, num_partitions=self.tp_size
            )
1382
            input_parallel = splitted_input[self.tp_rank].contiguous()
1383
1384
1385
1386
1387
1388

        # Matrix multiply.
        assert self.quant_method is not None
        # Only fuse bias add into GEMM for rank 0 (this ensures that
        # bias will not get added more than once in TP>1 case)
        bias_ = None if (self.tp_rank > 0 or self.skip_bias_add) else self.bias
maxiao1's avatar
maxiao1 committed
1389
1390
1391
        if use_fused_silu_mul_quant:
            xq, xs = lm_fuse_silu_mul_quant(input_parallel)
            silu_quant_args = [xq, xs]
maxiao1's avatar
fix bug  
maxiao1 committed
1392
            with use_symmetric_memory(get_tp_group()) as sm:
maxiao1's avatar
maxiao1 committed
1393
1394
1395
1396
                output_parallel = self.quant_method.apply(self, input_parallel,
                                                          bias=bias_,
                                                          silu_quant_args=silu_quant_args
                )
maxiao1's avatar
fix bug  
maxiao1 committed
1397
                # sm.tag(output_parallel)
maxiao1's avatar
maxiao1 committed
1398
        else:
maxiao1's avatar
fix bug  
maxiao1 committed
1399
            with use_symmetric_memory(get_tp_group()) as sm:
maxiao1's avatar
maxiao1 committed
1400
                output_parallel = self.quant_method.apply(self, input_parallel, bias=bias_)
maxiao1's avatar
fix bug  
maxiao1 committed
1401
                # sm.tag(output_parallel)
1402

1403
        if self.reduce_results and self.tp_size > 1 and not skip_all_reduce:
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
            output = tensor_model_parallel_all_reduce(output_parallel)
        else:
            output = output_parallel

        output_bias = self.bias if self.skip_bias_add else None

        return output, output_bias

    def extra_repr(self) -> str:
        s = f"input_features={self.input_size_per_partition}"
        s += f", output_features={self.output_size}"
        s += f", bias={self.bias is not None}"
        s += f", tp_size={self.tp_size}"
        s += f", reduce_results={self.reduce_results}"
        return s