fp8_utils.py 28.5 KB
Newer Older
1
from typing import Callable, List, Optional, Tuple
HAI's avatar
HAI committed
2
3

import torch
HandH1998's avatar
HandH1998 committed
4

5
from sglang.srt.layers.quantization import deep_gemm_wrapper
Yineng Zhang's avatar
Yineng Zhang committed
6
from sglang.srt.layers.quantization.fp8_kernel import sglang_per_token_group_quant_fp8
7
from sglang.srt.layers.quantization.mxfp4_tensor import MXFP4QuantizeUtil
8
from sglang.srt.utils import is_sm100_supported, offloader
Yineng Zhang's avatar
Yineng Zhang committed
9

Lianmin Zheng's avatar
Lianmin Zheng committed
10
try:
11
    from vllm import _custom_ops as ops
Lianmin Zheng's avatar
Lianmin Zheng committed
12
13
14
15
16

    VLLM_AVAILABLE = True
except ImportError:
    VLLM_AVAILABLE = False

HandH1998's avatar
HandH1998 committed
17
from sglang.srt.layers.quantization.fp8_kernel import (
18
19
20
    fp8_dtype,
    fp8_max,
    is_fp8_fnuz,
HandH1998's avatar
HandH1998 committed
21
    per_token_group_quant_fp8,
Lianmin Zheng's avatar
Lianmin Zheng committed
22
23
    scaled_fp8_quant,
    sglang_per_token_quant_fp8,
HandH1998's avatar
HandH1998 committed
24
    static_quant_fp8,
25
    triton_scaled_mm,
26
27
    w8a8_block_fp8_matmul_deepgemm,
    w8a8_block_fp8_matmul_triton,
HandH1998's avatar
HandH1998 committed
28
)
HandH1998's avatar
HandH1998 committed
29
from sglang.srt.utils import (
30
    align,
HandH1998's avatar
HandH1998 committed
31
32
33
    get_bool_env_var,
    get_cuda_version,
    get_device_capability,
Lianmin Zheng's avatar
Lianmin Zheng committed
34
    is_cuda,
35
    is_flashinfer_available,
HandH1998's avatar
HandH1998 committed
36
37
38
    is_hip,
)

39
_is_hip = is_hip()
Lianmin Zheng's avatar
Lianmin Zheng committed
40
_is_cuda = is_cuda()
41
_is_fp8_fnuz = is_fp8_fnuz()
Lianmin Zheng's avatar
Lianmin Zheng committed
42

43
_use_aiter = get_bool_env_var("SGLANG_USE_AITER") and _is_hip
44

45
if _use_aiter:
46
    import aiter
47
    from aiter import gemm_a8w8_blockscale, gemm_a8w8_bpreshuffle, get_hip_quant
48
49

    aiter_per1x128_quant = get_hip_quant(aiter.QuantType.per_1x128)
yigex's avatar
yigex committed
50

51
if _is_cuda:
52
    from sgl_kernel import fp8_blockwise_scaled_mm, fp8_scaled_mm
HAI's avatar
HAI committed
53

Lianmin Zheng's avatar
Lianmin Zheng committed
54
use_vllm_cutlass_w8a8_fp8_kernel = get_bool_env_var("USE_VLLM_CUTLASS_W8A8_FP8_KERNEL")
55
use_triton_w8a8_fp8_kernel = get_bool_env_var("USE_TRITON_W8A8_FP8_KERNEL")
HandH1998's avatar
HandH1998 committed
56

HandH1998's avatar
HandH1998 committed
57
58
# Input scaling factors are no longer optional in _scaled_mm starting
# from pytorch 2.5. Allocating a dummy tensor to pass as input_scale
Lianmin Zheng's avatar
Lianmin Zheng committed
59
TORCH_DEVICE_IDENTITY = None
HandH1998's avatar
HandH1998 committed
60

61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77

def use_rowwise_torch_scaled_mm():
    _TORCH_VERSION = torch.__version__.split("+")[0]
    try:
        _TORCH_VERSION_TUPLE = tuple(map(int, _TORCH_VERSION.split(".")[:3]))
    except ValueError:
        _TORCH_VERSION_TUPLE = (0, 0, 0)
    if _is_hip:
        # The condition to determine if it is on a platform that supports
        # torch._scaled_mm rowwise feature.
        # The condition is determined once as the operations
        # are time consuming.
        return get_device_capability() >= (9, 4) and _TORCH_VERSION_TUPLE >= (2, 7, 0)
    return False


USE_ROWWISE_TORCH_SCALED_MM = use_rowwise_torch_scaled_mm()
78

HandH1998's avatar
HandH1998 committed
79
80
81
82
83
84
85
86
87
88
89
90

def cutlass_fp8_supported():
    if not _is_cuda:
        return False
    major, minor = get_device_capability()
    cuda_version = get_cuda_version()
    if major >= 9:
        return cuda_version >= (12, 0)
    elif major == 8 and minor == 9:
        return cuda_version >= (12, 4)
    return False

HAI's avatar
HAI committed
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113

def normalize_e4m3fn_to_e4m3fnuz(
    weight: torch.Tensor,
    weight_scale: torch.Tensor,
    input_scale: Optional[torch.Tensor] = None,
) -> Tuple[torch.Tensor, torch.Tensor, Optional[torch.Tensor]]:
    assert weight.dtype == torch.float8_e4m3fn
    # The bits pattern 10000000(-128) represents zero in e4m3fn
    # but NaN in e4m3fnuz. So here we set it to 0.
    # https://onnx.ai/onnx/technical/float8.html
    weight_as_int8 = weight.view(torch.int8)
    ROCM_FP8_NAN_AS_INT = -128
    weight_as_int8[weight_as_int8 == ROCM_FP8_NAN_AS_INT] = 0
    weight = weight_as_int8.view(torch.float8_e4m3fnuz)

    # For the same bits representation, e4m3fnuz value is half of
    # the e4m3fn value, so we should double the scaling factor to
    # get the same dequantized value.
    # https://onnx.ai/onnx/technical/float8.html
    weight_scale = weight_scale * 2.0
    if input_scale is not None:
        input_scale = input_scale * 2.0
    return weight, weight_scale, input_scale
HandH1998's avatar
HandH1998 committed
114
115


116
# TODO(ch-wan): define these backends in --moe-runner-backend
117
def cutlass_block_fp8_supported() -> bool:
118
    if not get_bool_env_var("SGLANG_SUPPORT_CUTLASS_BLOCK_FP8"):
119
        return False
120
121
122
123
124
125
126
127
128
129
    if _is_cuda:
        major, minor = torch.cuda.get_device_capability()
        sm_version = major * 10 + minor
        cuda_version = tuple(map(int, torch.version.cuda.split(".")))
        if cuda_version >= (12, 0) and sm_version >= 90:
            return True
    return False


CUTLASS_BLOCK_FP8_SUPPORTED = cutlass_block_fp8_supported()
130
131
132
133
134
135
136
ENABLE_FLASHINFER_GEMM = (
    get_bool_env_var("SGLANG_ENABLE_FLASHINFER_GEMM")
    and is_sm100_supported()
    and is_flashinfer_available()
)
if ENABLE_FLASHINFER_GEMM:
    from flashinfer.gemm import gemm_fp8_nt_groupwise
137
138


139
140
141
142
143
def dispatch_w8a8_block_fp8_linear() -> Callable:
    if ENABLE_FLASHINFER_GEMM:
        return flashinfer_gemm_w8a8_block_fp8_linear
    elif CUTLASS_BLOCK_FP8_SUPPORTED:
        return cutlass_w8a8_block_fp8_linear_with_fallback
144
    elif _use_aiter:
145
        return aiter_w8a8_block_fp8_linear
146
    elif deep_gemm_wrapper.ENABLE_JIT_DEEPGEMM:
147
148
149
150
151
152
        return deepgemm_w8a8_block_fp8_linear_with_fallback
    else:
        return triton_w8a8_block_fp8_linear


def flashinfer_gemm_w8a8_block_fp8_linear(
HandH1998's avatar
HandH1998 committed
153
154
155
156
157
158
159
160
    input: torch.Tensor,
    weight: torch.Tensor,
    block_size: List[int],
    weight_scale: torch.Tensor,
    input_scale: Optional[torch.Tensor] = None,
    bias: Optional[torch.Tensor] = None,
) -> torch.Tensor:
    assert input_scale is None
161

HandH1998's avatar
HandH1998 committed
162
163
    input_2d = input.view(-1, input.shape[-1])
    output_shape = [*input.shape[:-1], weight.shape[0]]
164
165

    q_input, x_scale = sglang_per_token_group_quant_fp8(
166
        input_2d, block_size[1], column_major_scales=True
HandH1998's avatar
HandH1998 committed
167
    )
168
    # TRTLLM requires column-major scaling factors
169
    output = gemm_fp8_nt_groupwise(
170
171
172
173
174
        q_input,
        weight,
        x_scale,
        weight_scale,
        out_dtype=input_2d.dtype,
175
        backend="trtllm",
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
    )

    if bias is not None:
        output += bias

    return output.to(dtype=input_2d.dtype).view(*output_shape)


def cutlass_w8a8_block_fp8_linear_with_fallback(
    input: torch.Tensor,
    weight: torch.Tensor,
    block_size: List[int],
    weight_scale: torch.Tensor,
    input_scale: Optional[torch.Tensor] = None,
    bias: Optional[torch.Tensor] = None,
) -> torch.Tensor:
    assert input_scale is None

    # TODO: add more robust shape check here
    shape_supported = weight.shape[0] % 128 == 0 and weight.shape[1] % 128 == 0

    if not shape_supported:
        # fallback to triton
        return triton_w8a8_block_fp8_linear(
            input, weight, block_size, weight_scale, input_scale, bias
yigex's avatar
yigex committed
201
        )
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229

    input_2d = input.view(-1, input.shape[-1])
    output_shape = [*input.shape[:-1], weight.shape[0]]

    q_input, x_scale = per_token_group_quant_fp8(
        input_2d, block_size[1], column_major_scales=True
    )
    output = fp8_blockwise_scaled_mm(
        q_input, weight.T, x_scale, weight_scale.T, out_dtype=input_2d.dtype
    )
    if bias is not None:
        output += bias
    return output.to(dtype=input_2d.dtype).view(*output_shape)


def deepgemm_w8a8_block_fp8_linear_with_fallback(
    input: torch.Tensor,
    weight: torch.Tensor,
    block_size: List[int],
    weight_scale: torch.Tensor,
    input_scale: Optional[torch.Tensor] = None,
    bias: Optional[torch.Tensor] = None,
) -> torch.Tensor:
    assert input_scale is None

    output_dtype = input.dtype
    dtype_supported = output_dtype == torch.bfloat16

230
231
    # TODO: https://github.com/sgl-project/sglang/pull/6890#issuecomment-2943395737
    shape_supported = weight.shape[0] % 64 == 0 and weight.shape[1] % 128 == 0
232
233
234
235
236

    if not (shape_supported and dtype_supported):
        # fall back to triton
        return triton_w8a8_block_fp8_linear(
            input, weight, block_size, weight_scale, input_scale, bias
237
        )
HandH1998's avatar
HandH1998 committed
238

239
240
241
242
243
244
245
246
    input_2d = input.view(-1, input.shape[-1])
    output_shape = [*input.shape[:-1], weight.shape[0]]

    q_input, x_scale = sglang_per_token_group_quant_fp8(
        input_2d,
        block_size[1],
        column_major_scales=True,
        scale_tma_aligned=True,
fzyzcjy's avatar
fzyzcjy committed
247
        scale_ue8m0=deep_gemm_wrapper.DEEPGEMM_SCALE_UE8M0,
248
    )
249

250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
    output = w8a8_block_fp8_matmul_deepgemm(
        q_input, weight, x_scale, weight_scale, block_size, output_dtype=output_dtype
    )
    if bias is not None:
        output += bias
    return output.to(dtype=output_dtype).view(*output_shape)


def aiter_w8a8_block_fp8_linear(
    input: torch.Tensor,
    weight: torch.Tensor,
    block_size: List[int],
    weight_scale: torch.Tensor,
    input_scale: Optional[torch.Tensor] = None,
    bias: Optional[torch.Tensor] = None,
) -> torch.Tensor:
    assert input_scale is None
    input_2d = input.view(-1, input.shape[-1])
    output_shape = [*input.shape[:-1], weight.shape[0]]

270
    q_input, x_scale = aiter_per1x128_quant(input_2d, quant_dtype=aiter.dtypes.fp8)
271
    output = gemm_a8w8_blockscale(
272
        q_input, weight, x_scale, weight_scale, dtype=input.dtype
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
    )

    if bias is not None:
        output += bias

    return output.to(dtype=input_2d.dtype).view(*output_shape)


def triton_w8a8_block_fp8_linear(
    input: torch.Tensor,
    weight: torch.Tensor,
    block_size: List[int],
    weight_scale: torch.Tensor,
    input_scale: Optional[torch.Tensor] = None,
    bias: Optional[torch.Tensor] = None,
) -> torch.Tensor:
    assert input_scale is None
    input_2d = input.view(-1, input.shape[-1])
    output_shape = [*input.shape[:-1], weight.shape[0]]

    q_input, x_scale = per_token_group_quant_fp8(
        input_2d, block_size[1], column_major_scales=False
    )
    output = w8a8_block_fp8_matmul_triton(
        q_input, weight, x_scale, weight_scale, block_size, output_dtype=input_2d.dtype
    )
HandH1998's avatar
HandH1998 committed
299
    if bias is not None:
300
301
        output += bias
    return output.to(dtype=input_2d.dtype).view(*output_shape)
HandH1998's avatar
HandH1998 committed
302
303


304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
def dequant_mxfp4(
    w_block: torch.Tensor,
    w_scale: torch.Tensor,
    out_dtype,
) -> torch.Tensor:
    """
    :param w_block: (batch, n, k, 16), uint8, pack two mxfp4 into one byte
    :param w_scale: (batch, n, k), uint8
    :return: (batch, n, k * 32), float32
    """

    assert w_block.dtype == torch.uint8
    assert w_scale.dtype == torch.uint8

    batch, n, k, pack_dim = w_block.shape
    batch_, n_, k_ = w_scale.shape
    assert pack_dim == 16
    assert batch == batch_
    assert n == n_
    assert k == k_

    out_raw = MXFP4QuantizeUtil.dequantize(
        quantized_data=w_block, scale=w_scale, dtype=out_dtype, block_sizes=[32]
    )
    return out_raw.reshape(batch, n, k * 32)


HandH1998's avatar
HandH1998 committed
331
def input_to_float8(
332
    x: torch.Tensor, dtype: torch.dtype = fp8_dtype
HandH1998's avatar
HandH1998 committed
333
334
335
) -> Tuple[torch.Tensor, torch.Tensor]:
    """This function quantizes input values to float8 values with tensor-wise quantization."""
    min_val, max_val = x.aminmax()
336
    amax = torch.maximum(min_val.abs(), max_val.abs()).float().clamp(min=1e-12)
337
338
339
340
341
342
343
344
345
346

    if _is_fp8_fnuz:
        dtype = fp8_dtype
        fp_max = fp8_max
    else:
        finfo = torch.finfo(dtype)
        fp_max = finfo.max

    scale = fp_max / amax
    x_scl_sat = (x.float() * scale).clamp(min=-fp_max, max=fp_max)
HandH1998's avatar
HandH1998 committed
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
    return x_scl_sat.to(dtype).contiguous(), scale.float().reciprocal()


def block_quant_to_tensor_quant(
    x_q_block: torch.Tensor,
    x_s: torch.Tensor,
    block_size: List[int],
) -> Tuple[torch.Tensor, torch.Tensor]:
    """This function converts block-wise quantization to tensor-wise quantization.
    The inputs are block-wise quantization tensor `x_q_block`, block-wise quantization scale
    and the block size.
    The outputs are tensor-wise quantization tensor and tensor-wise quantization scale.
    Note only float8 is supported for now.
    """
    block_n, block_k = block_size[0], block_size[1]
    n, k = x_q_block.shape
    n_tiles = (n + block_n - 1) // block_n
    k_tiles = (k + block_k - 1) // block_k
    assert n_tiles == x_s.shape[0]
    assert k_tiles == x_s.shape[1]

    x_dq_block = x_q_block.to(torch.float32)

    x_dq_block_tiles = [
        [
            x_dq_block[
                j * block_n : min((j + 1) * block_n, n),
                i * block_k : min((i + 1) * block_k, k),
            ]
            for i in range(k_tiles)
        ]
        for j in range(n_tiles)
    ]

    for i in range(k_tiles):
        for j in range(n_tiles):
            x_dq_block_tiles[j][i][:, :] = x_dq_block_tiles[j][i] * x_s[j][i]

385
    x_q_tensor, scale = (
Lianmin Zheng's avatar
Lianmin Zheng committed
386
        scaled_fp8_quant(x_dq_block)
387
388
389
        if _is_cuda
        else input_to_float8(x_dq_block, dtype=x_q_block.dtype)
    )
HandH1998's avatar
HandH1998 committed
390
391
392
    return x_q_tensor, scale


393
394
395
396
397
398
399
400
401
402
403
404
def block_quant_dequant(
    x_q_block: torch.Tensor,
    x_s: torch.Tensor,
    block_size: List[int],
    dtype: torch.dtype,
) -> torch.Tensor:
    """This function converts block-wise quantization to unquantized.
    The inputs are block-wise quantization tensor `x_q_block`, block-wise quantization scale
    and the block size.
    The output is an unquantized tensor with dtype.
    """
    block_n, block_k = block_size[0], block_size[1]
405
    *_, n, k = x_q_block.shape
406

407
408
409
410
411
    # ... n_scale k_scale -> ... (n_scale block_n) (k_scale block_k)
    x_scale_repeat = x_s.repeat_interleave(block_n, dim=-2).repeat_interleave(
        block_k, dim=-1
    )
    x_scale_repeat = x_scale_repeat[..., :n, :k]
412

413
    return (x_q_block.to(torch.float32) * x_scale_repeat).to(dtype)
414
415


416
417
418
def requant_weight_ue8m0_inplace(weight, weight_scale_inv, weight_block_size):
    assert isinstance(weight, torch.nn.Parameter)
    assert isinstance(weight_scale_inv, torch.nn.Parameter)
fzyzcjy's avatar
fzyzcjy committed
419
420
421

    new_weight, new_weight_scale_inv = _requant_weight_ue8m0(
        weight.to(weight_scale_inv.device), weight_scale_inv, weight_block_size
422
423
    )

fzyzcjy's avatar
fzyzcjy committed
424
425
426
    offloader.update_param(weight, new_weight)
    weight_scale_inv.data = new_weight_scale_inv

427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454

def _requant_weight_ue8m0(
    weight: torch.Tensor,
    weight_scale_inv: torch.Tensor,
    weight_block_size: List[int],
):
    assert weight_block_size == [128, 128]

    *_, n, k = weight.shape

    weight_dequant = block_quant_dequant(
        weight,
        weight_scale_inv,
        weight_block_size,
        torch.bfloat16,
    )

    weight_dequant_flat = weight_dequant.view((-1, k))
    out_w_flat, out_s_flat = per_block_cast_to_fp8(weight_dequant_flat)

    out_w = out_w_flat.view(weight.shape)
    out_s = out_s_flat.view(weight_scale_inv.shape)

    # NOTE copy and modified from DeepGEMM
    def _transform_scale(sf, mn: int):
        import deep_gemm.utils.layout

        sf = sf.index_select(-2, torch.arange(mn, device=sf.device) // 128)
455
        sf = deep_gemm.utils.layout.get_mn_major_tma_aligned_packed_ue8m0_tensor(sf)
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
        return sf

    out_s = _transform_scale(out_s, mn=out_w.shape[-2])

    return out_w, out_s


# COPIED FROM DeepGEMM
def per_block_cast_to_fp8(x: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
    assert x.dim() == 2
    m, n = x.shape
    x_padded = torch.zeros(
        (align(m, 128), align(n, 128)), dtype=x.dtype, device=x.device
    )
    x_padded[:m, :n] = x
    x_view = x_padded.view(-1, 128, x_padded.size(1) // 128, 128)
    x_amax = x_view.abs().float().amax(dim=(1, 3), keepdim=True).clamp(1e-4)
    sf = ceil_to_ue8m0(x_amax / 448.0)
    x_scaled = (x_view * (1.0 / sf)).to(torch.float8_e4m3fn)
    return x_scaled.view_as(x_padded)[:m, :n].contiguous(), sf.view(
        x_view.size(0), x_view.size(2)
    )


480
481
482
483
484
# COPIED FROM DeepGEMM
def ceil_to_ue8m0(x: torch.Tensor):
    return torch.pow(2.0, torch.ceil(torch.log2(x.abs())))


485
486
487
488
489
def channel_quant_to_tensor_quant(
    x_q_channel: torch.Tensor,
    x_s: torch.Tensor,
) -> Tuple[torch.Tensor, torch.Tensor]:
    x_dq_channel = x_q_channel.to(torch.float32) * x_s
490
    x_q_tensor, scale = (
Lianmin Zheng's avatar
Lianmin Zheng committed
491
        scaled_fp8_quant(x_dq_channel)
492
493
494
        if _is_cuda
        else input_to_float8(x_dq_channel, dtype=x_q_channel.dtype)
    )
495
496
497
    return x_q_tensor, scale


498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
def _process_scaled_mm_output(output, input_2d_shape, output_shape):
    if type(output) is tuple and len(output) == 2:
        output = output[0]
    return torch.narrow(output, 0, 0, input_2d_shape[0]).view(*output_shape)


def _apply_fallback_scaled_mm(
    qinput,
    weight,
    x_scale,
    weight_scale,
    input_2d_shape,
    output_shape,
    bias,
    input_dtype,
):
    global TORCH_DEVICE_IDENTITY
    if TORCH_DEVICE_IDENTITY is None:
        TORCH_DEVICE_IDENTITY = torch.ones(1, dtype=torch.float32, device=weight.device)

    output = torch._scaled_mm(
        qinput,
        weight,
        scale_a=TORCH_DEVICE_IDENTITY,
        scale_b=TORCH_DEVICE_IDENTITY,
        out_dtype=torch.float32,
    )

    output = _process_scaled_mm_output(output, input_2d_shape, output_shape)
    x_scale = torch.narrow(x_scale, 0, 0, input_2d_shape[0])

    output = output * x_scale * weight_scale.t()
    if bias is not None:
        output = output + bias
    return output.to(dtype=input_dtype)


HandH1998's avatar
HandH1998 committed
535
536
537
538
539
540
541
def apply_fp8_linear(
    input: torch.Tensor,
    weight: torch.Tensor,
    weight_scale: torch.Tensor,
    input_scale: Optional[torch.Tensor] = None,
    input_scale_ub: Optional[torch.Tensor] = None,
    bias: Optional[torch.Tensor] = None,
542
    cutlass_fp8_supported: bool = cutlass_fp8_supported(),
HandH1998's avatar
HandH1998 committed
543
    use_per_token_if_dynamic: bool = False,
544
545
    pad_output: Optional[bool] = None,
    compressed_tensor_quant: bool = False,
HandH1998's avatar
HandH1998 committed
546
) -> torch.Tensor:
547
548
549
550
551
552
    # Note: we pad the input because torch._scaled_mm is more performant
    # for matrices with batch dimension > 16.
    # This could change in the future.
    # We also don't pad when using torch.compile,
    # as it breaks with dynamic shapes.
    if pad_output is None:
553
554
555
556
        pad_output = (
            not get_bool_env_var("SGLANG_ENABLE_TORCH_COMPILE")
            and not cutlass_fp8_supported
        )
557
558
    output_padding = 17 if pad_output else None

HandH1998's avatar
HandH1998 committed
559
560
561
562
    # View input as 2D matrix for fp8 methods
    input_2d = input.view(-1, input.shape[-1])
    output_shape = [*input.shape[:-1], weight.shape[1]]

563
    if compressed_tensor_quant:
564
565
        # cutlass_scaled_mm supports per tensor/channel W and per tensor/token A
        # for sgl-kernel fp8_scaled_mm, it support per channel W now
566
567
568
569
570
571
        if cutlass_fp8_supported and weight_scale.numel() == weight.shape[1]:
            qinput, x_scale = scaled_fp8_quant(
                input_2d,
                input_scale,
                use_per_token_if_dynamic=use_per_token_if_dynamic,
            )
572
573
574

            # Fused GEMM_DQ
            if VLLM_AVAILABLE and use_vllm_cutlass_w8a8_fp8_kernel:
575
                # Fall back to vllm cutlass w8a8 fp8 kernel
576
                output = ops.cutlass_scaled_mm(
577
578
579
580
581
582
583
584
585
586
587
                    qinput,
                    weight,
                    out_dtype=input.dtype,
                    scale_a=x_scale,
                    scale_b=weight_scale,
                    bias=bias,
                )
            else:
                assert (
                    weight_scale.numel() == weight.shape[1]
                ), "cutlass w8a8 fp8 sgl-kernel only supports per-channel scale"
588
589
590

                cutlass_compatible_b = (
                    weight.shape[0] % 16 == 0 and weight.shape[1] % 16 == 0
591
                )
592
                if not cutlass_compatible_b or use_triton_w8a8_fp8_kernel:
593
594
595
596
597
598
599
600
601
602
603
604
605
606
                    # Massage the input to be 2D
                    qinput = qinput.view(-1, qinput.shape[-1])
                    output = triton_scaled_mm(
                        qinput, weight, x_scale, weight_scale, input.dtype, bias
                    )
                else:
                    output = fp8_scaled_mm(
                        qinput,
                        weight,
                        x_scale,
                        weight_scale,
                        out_dtype=input.dtype,
                        bias=bias,
                    )
607
608
609
610
611
612
            return output.view(*output_shape)

        # torch.scaled_mm supports per tensor weights + activations only
        # so fallback to naive if per channel or per token
        else:
            # Maybe apply padding to output, see comment in __init__
613
614
            qinput, x_scale = (
                scaled_fp8_quant(
615
616
                    input_2d,
                    input_scale,
617
                    num_token_padding=output_padding,
618
619
                    use_per_token_if_dynamic=use_per_token_if_dynamic,
                )
620
621
                if _is_cuda
                else ops.scaled_fp8_quant(
622
623
                    input_2d,
                    input_scale,
624
                    num_token_padding=output_padding,
625
626
                    use_per_token_if_dynamic=use_per_token_if_dynamic,
                )
627
            )
628
629
630
631
632
633
634
635
636
637
638
639
640
641

            per_tensor_weights = weight_scale.numel() == 1
            per_tensor_activations = x_scale.numel() == 1

            if per_tensor_weights and per_tensor_activations:
                # Fused GEMM_DQ
                output = torch._scaled_mm(
                    qinput,
                    weight,
                    out_dtype=input.dtype,
                    scale_a=x_scale,
                    scale_b=weight_scale,
                    bias=bias,
                )
642
                return _process_scaled_mm_output(output, input_2d.shape, output_shape)
643
644
645
646
647

            elif (
                use_per_token_if_dynamic
                and not per_tensor_weights
                and not per_tensor_activations
648
                and (USE_ROWWISE_TORCH_SCALED_MM or _use_aiter)
649
            ):
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
                # into this sector means use dynamic per-token-per-channel quant
                # per-token scale quant for input matrix, every row(one token) have one scale factor
                # per-channel scale quant for weight matrix, every col(one channel) have one scale factor
                if _use_aiter:
                    # gemm_a8w8_bpreshuffle(XQ, WQ, x_scale, w_scale, dtype)
                    # XQ -> input tensor, shape = (m, k)
                    # WQ -> weight tensor, shape = (n, k), with preshuffe get better perf
                    # x_scale -> input scale tensor, shape = (m, 1)
                    # w_scale -> weight scale tensor, shape = (n ,1)
                    # dtype -> output dtype
                    output = gemm_a8w8_bpreshuffle(
                        XQ=qinput,
                        WQ=weight,
                        x_scale=x_scale,
                        w_scale=weight_scale,
                        dtype=input.dtype,
                    )
                    if bias is not None:
                        output += bias
                    return _process_scaled_mm_output(
                        output, input_2d.shape, [*input.shape[:-1], weight.shape[0]]
                    )
                else:
                    # For now validated on ROCm platform
                    # fp8 rowwise scaling in torch._scaled_mm is introduced in
                    # https://github.com/pytorch/pytorch/pull/144432 using hipBLASLt
                    # and ROCm 6.3, which only exists in torch 2.7 and above.
                    # For CUDA platform please validate if the
                    # torch._scaled_mm support rowwise scaled GEMM
                    # Fused GEMM_DQ Rowwise GEMM
                    output = torch._scaled_mm(
                        qinput,
                        weight,
                        out_dtype=input.dtype,
                        scale_a=x_scale,
                        scale_b=weight_scale.t(),
                        bias=bias,
                    )
                    return _process_scaled_mm_output(
                        output, input_2d.shape, output_shape
                    )
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
            else:
                # Fallback for channelwise case, where we use unfused DQ
                # due to limitations with scaled_mm

                # Symmetric quantized GEMM by definition computes the following:
                #   C = (s_x * X) (s_w * W) + bias
                # This is equivalent to dequantizing the weights and activations
                # before applying a GEMM.
                #
                # In order to compute quantized operands, a quantized kernel
                # will rewrite the above like so:
                #   C = s_w * s_x * (X * W) + bias
                #
                # For the scaled_mm fallback case, we break this down, since it
                # does not support s_w being a vector.
706
                return _apply_fallback_scaled_mm(
707
708
                    qinput,
                    weight,
709
710
711
712
713
714
                    x_scale,
                    weight_scale,
                    input_2d.shape,
                    output_shape,
                    bias,
                    input.dtype,
715
                )
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
    else:
        # cutlass w8a8 fp8 sgl-kernel only supports per-token scale
        if input_scale is not None:
            assert input_scale.numel() == 1
            # broadcast per-tensor scale to per-token scale when supporting cutlass
            qinput, x_scale = static_quant_fp8(
                input_2d, input_scale, repeat_scale=cutlass_fp8_supported
            )
        else:
            # default use per-token quantization if dynamic
            if _is_cuda:
                qinput, x_scale = sglang_per_token_quant_fp8(input_2d)
            else:
                # TODO(kkhuang): temporarily enforce per-tensor activation scaling if weight is per-tensor scaling
                # final solution should be: 1. add support to per-tensor activation scaling.
                # 2. solve the torch.compile error from weight_scale.numel() == 1 and x_scale.numel() > 1 (below line#308)
                if _is_hip and weight_scale.numel() == 1:
733
                    qinput, x_scale = scaled_fp8_quant(
734
735
736
737
738
739
740
741
742
743
744
745
                        input_2d,
                        input_scale,
                        use_per_token_if_dynamic=use_per_token_if_dynamic,
                    )
                else:
                    qinput, x_scale = per_token_group_quant_fp8(
                        input_2d, group_size=input_2d.shape[1]
                    )

        if cutlass_fp8_supported:
            try:
                if VLLM_AVAILABLE and use_vllm_cutlass_w8a8_fp8_kernel:
746
                    # Fall back to vllm cutlass w8a8 fp8 kernel
747
748
749
750
751
752
753
754
755
756
757
758
                    output = ops.cutlass_scaled_mm(
                        qinput,
                        weight,
                        out_dtype=input.dtype,
                        scale_a=x_scale,
                        scale_b=weight_scale,
                        bias=bias,
                    )
                else:
                    assert (
                        weight_scale.numel() == weight.shape[1]
                    ), "cutlass w8a8 fp8 sgl-kernel only supports per-channel scale"
759
760
761

                    cutlass_compatible_b = (
                        weight.shape[0] % 16 == 0 and weight.shape[1] % 16 == 0
762
                    )
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
                    if not cutlass_compatible_b or use_triton_w8a8_fp8_kernel:
                        # Massage the input to be 2D
                        qinput = qinput.view(-1, qinput.shape[-1])
                        output = triton_scaled_mm(
                            qinput, weight, x_scale, weight_scale, input.dtype, bias
                        )
                    else:
                        output = fp8_scaled_mm(
                            qinput,
                            weight,
                            x_scale,
                            weight_scale,
                            out_dtype=input.dtype,
                            bias=bias,
                        )
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
                return output.view(*output_shape)
            except (ImportError, NameError, AttributeError):
                pass

        # torch.scaled_mm supports per tensor weights + activations only
        # so fallback to naive if per channel or per token
        per_tensor_weights = weight_scale.numel() == 1
        per_tensor_activations = x_scale.numel() == 1

        if per_tensor_weights and per_tensor_activations:
            # Fused GEMM_DQ
            output = torch._scaled_mm(
                qinput,
                weight,
                out_dtype=input.dtype,
                scale_a=x_scale,
                scale_b=weight_scale,
                bias=bias,
            )
            return _process_scaled_mm_output(output, input_2d.shape, output_shape)

        else:
            # Fallback for channelwise case, where we use unfused DQ
            # due to limitations with scaled_mm

            # Symmetric quantized GEMM by definition computes the following:
            #   C = (s_x * X) (s_w * W) + bias
            # This is equivalent to dequantizing the weights and activations
            # before applying a GEMM.
            #
            # In order to compute quantized operands, a quantized kernel
            # will rewrite the above like so:
            #   C = s_w * s_x * (X * W) + bias
            #
            # For the scaled_mm fallback case, we break this down, since it
            # does not support s_w being a vector.
            return _apply_fallback_scaled_mm(
                qinput,
                weight,
                x_scale,
                weight_scale,
                input_2d.shape,
                output_shape,
                bias,
                input.dtype,
            )
824
825
826
827
828
829
830
831
832


def can_auto_enable_marlin_fp8() -> bool:
    try:
        major, minor = get_device_capability()
        sm = major * 10 + minor
        return 80 <= sm < 89
    except Exception:
        return False