decode.py 19.4 KB
Newer Older
Byron Hsu's avatar
Byron Hsu committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
"""
Life cycle of a request in the decode server

1. PreallocQueue:
    a. Initialize a receiver for each request
    b. The request handshakes first, and pre-allocate kv once there is available kv.
    c. Move the request to TransferQueue.

2. TransferQueue:
    a. Poll the receiver to check the transfer state
    b. If the transfer has finished, move the request to waiting queue

3. WaitingQueue:
    a. Use the requests in the queue to construct a PrebuiltExtendBatch
    b. Skip the prefill forward but only populate metadata

4. RunningBatch:
    a. Merge the resolved PrebuiltExtendBatch into running batch to run decoding
"""

from __future__ import annotations

import logging
from dataclasses import dataclass
from typing import TYPE_CHECKING, List, Optional, Tuple

27
import numpy as np
Byron Hsu's avatar
Byron Hsu committed
28
29
30
import torch
from torch.distributed import ProcessGroup

31
from sglang.srt.disaggregation.base import BaseKVManager, BaseKVReceiver, KVArgs, KVPoll
Byron Hsu's avatar
Byron Hsu committed
32
from sglang.srt.disaggregation.utils import (
33
    DisaggregationMode,
34
    KVClassType,
Byron Hsu's avatar
Byron Hsu committed
35
    ReqToMetadataIdxAllocator,
36
37
    TransferBackend,
    get_kv_class,
Byron Hsu's avatar
Byron Hsu committed
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
    poll_and_all_reduce,
)
from sglang.srt.mem_cache.base_prefix_cache import BasePrefixCache
from sglang.srt.mem_cache.memory_pool import ReqToTokenPool, TokenToKVPoolAllocator
from sglang.srt.model_executor.forward_batch_info import ForwardMode
from sglang.srt.sampling.sampling_batch_info import SamplingBatchInfo

logger = logging.getLogger(__name__)

if TYPE_CHECKING:
    from sglang.srt.configs.model_config import ModelConfig
    from sglang.srt.managers.schedule_batch import Req, ScheduleBatch
    from sglang.srt.managers.scheduler import Scheduler
    from sglang.srt.server_args import ServerArgs


@dataclass
class DecodeRequest:
    req: Req
57
    kv_receiver: BaseKVReceiver
Byron Hsu's avatar
Byron Hsu committed
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
    waiting_for_input: bool = False
    metadata_buffer_index: int = -1


class DecodePreallocQueue:
    """
    Store the requests that are preallocating.
    """

    def __init__(
        self,
        req_to_token_pool: ReqToTokenPool,
        token_to_kv_pool_allocator: TokenToKVPoolAllocator,
        req_to_metadata_buffer_idx_allocator: ReqToMetadataIdxAllocator,
        metadata_buffers: List[torch.Tensor],
        aux_dtype: torch.dtype,
        scheduler: Scheduler,
        transfer_queue: DecodeTransferQueue,
        tree_cache: BasePrefixCache,
        gloo_group: ProcessGroup,
        tp_rank: int,
        tp_size: int,
        bootstrap_port: int,
81
        transfer_backend: TransferBackend,
Byron Hsu's avatar
Byron Hsu committed
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
    ):
        self.req_to_token_pool = req_to_token_pool
        self.token_to_kv_pool_allocator = token_to_kv_pool_allocator
        self.token_to_kv_pool = token_to_kv_pool_allocator.get_kvcache()
        self.aux_dtype = aux_dtype
        self.metadata_buffers = metadata_buffers
        self.req_to_metadata_buffer_idx_allocator = req_to_metadata_buffer_idx_allocator
        self.scheduler = scheduler
        self.transfer_queue = transfer_queue
        self.tree_cache = tree_cache  # this is always a chunk cache
        self.gloo_group = gloo_group
        self.tp_rank = tp_rank
        self.tp_size = tp_size
        self.bootstrap_port = bootstrap_port

        self.num_reserved_decode_tokens = 512

        # Queue for requests pending pre-allocation
        self.queue: List[DecodeRequest] = []
101
        self.transfer_backend = transfer_backend
Byron Hsu's avatar
Byron Hsu committed
102
103
        self.kv_manager = self._init_kv_manager()

104
    def _init_kv_manager(self) -> BaseKVManager:
Byron Hsu's avatar
Byron Hsu committed
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
        kv_args = KVArgs()
        kv_args.engine_rank = self.tp_rank
        kv_data_ptrs, kv_data_lens, kv_item_lens = (
            self.token_to_kv_pool.get_contiguous_buf_infos()
        )

        kv_args.kv_data_ptrs = kv_data_ptrs
        kv_args.kv_data_lens = kv_data_lens
        kv_args.kv_item_lens = kv_item_lens

        kv_args.aux_data_ptrs = [
            output_id_tensor.data_ptr() for output_id_tensor in self.metadata_buffers
        ]
        kv_args.aux_data_lens = [
            metadata_buffer.nbytes for metadata_buffer in self.metadata_buffers
        ]
        kv_args.aux_item_lens = [
            metadata_buffer[0].nbytes for metadata_buffer in self.metadata_buffers
        ]
        kv_args.ib_device = "mock-ib-device"
125
        kv_args.gpu_id = self.scheduler.gpu_id
126
        kv_manager_class = get_kv_class(self.transfer_backend, KVClassType.MANAGER)
127
128
129
        kv_manager = kv_manager_class(
            kv_args, DisaggregationMode.DECODE, self.scheduler.server_args
        )
Byron Hsu's avatar
Byron Hsu committed
130
131
132
133
134
        return kv_manager

    def add(self, req: Req) -> None:
        """Add a request to the pending queue."""

135
136
        kv_receiver_class = get_kv_class(self.transfer_backend, KVClassType.RECEIVER)
        kv_receiver = kv_receiver_class(
Byron Hsu's avatar
Byron Hsu committed
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
            mgr=self.kv_manager,
            bootstrap_addr=f"{req.bootstrap_host}:{self.bootstrap_port}",
            bootstrap_room=req.bootstrap_room,
        )
        self.queue.append(DecodeRequest(req=req, kv_receiver=kv_receiver))

    def extend(self, reqs: List[Req]) -> None:
        """Add a request to the pending queue."""
        for req in reqs:
            self.add(req)

    def _update_handshake_waiters(self) -> None:
        if not self.queue:
            return

        if all(decode_req.waiting_for_input for decode_req in self.queue):
            return

        polls = poll_and_all_reduce(
            [decode_req.kv_receiver for decode_req in self.queue], self.gloo_group
        )

        for i, (decode_req, poll) in enumerate(zip(self.queue, polls)):
            if poll == KVPoll.Bootstrapping:
                pass
            elif poll == KVPoll.WaitingForInput:
                decode_req.waiting_for_input = True
            elif poll == KVPoll.Failed:
                raise Exception("Handshake failed")

    def pop_preallocated(self) -> List[DecodeRequest]:
        """Pop the preallocated requests from the pending queue (FIFO)."""
        self._update_handshake_waiters()

        preallocated_reqs = []
        indices_to_remove = set()
173
        allocatable_tokens = self._allocatable_tokens()
Byron Hsu's avatar
Byron Hsu committed
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200

        for i, decode_req in enumerate(self.queue):
            if not decode_req.waiting_for_input:
                continue

            if self.req_to_token_pool.available_size() <= 0:
                break

            if self.req_to_metadata_buffer_idx_allocator.available_size() <= 0:
                break

            required_tokens_for_request = (
                len(decode_req.req.origin_input_ids) + self.num_reserved_decode_tokens
            )

            if required_tokens_for_request > allocatable_tokens:
                break

            allocatable_tokens -= required_tokens_for_request
            self._pre_alloc(decode_req.req)

            kv_indices = (
                self.req_to_token_pool.req_to_token[decode_req.req.req_pool_idx][
                    : len(decode_req.req.origin_input_ids)
                ]
                .cpu()
                .numpy()
201
                .astype(np.int64)
Byron Hsu's avatar
Byron Hsu committed
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
            )

            decode_req.metadata_buffer_index = (
                self.req_to_metadata_buffer_idx_allocator.alloc()
            )
            assert decode_req.metadata_buffer_index is not None
            decode_req.kv_receiver.init(kv_indices, decode_req.metadata_buffer_index)
            preallocated_reqs.append(decode_req)
            indices_to_remove.add(i)

        self.queue = [
            entry for i, entry in enumerate(self.queue) if i not in indices_to_remove
        ]

        return preallocated_reqs

    def _allocatable_tokens(self) -> int:
        allocatable_tokens = (
            self.token_to_kv_pool_allocator.available_size()
            - self.num_reserved_decode_tokens
            * (
                len(self.scheduler.running_batch.reqs)
                + len(self.transfer_queue.queue)
                + len(self.scheduler.waiting_queue)
            )
        )

        # Note: if the last fake extend just finishes, and we enter `pop_preallocated` immediately in the next iteration
        #       the extend batch is not in any queue, so we need to explicitly add the tokens slots here
        if (
            self.scheduler.last_batch
            and self.scheduler.last_batch.forward_mode.is_extend()
        ):
            allocatable_tokens -= self.num_reserved_decode_tokens * len(
                self.scheduler.last_batch.reqs
            )

        return allocatable_tokens

    def _pre_alloc(self, req: Req) -> torch.Tensor:
        """Pre-allocate the memory for req_to_token and token_kv_pool"""
        req_pool_indices = self.req_to_token_pool.alloc(1)

        assert req_pool_indices is not None

        req.req_pool_idx = req_pool_indices[0]
        kv_loc = self.token_to_kv_pool_allocator.alloc(
            len(req.origin_input_ids) + max(len(req.output_ids) - 1, 0)
        )

        assert kv_loc is not None

        self.req_to_token_pool.write((req.req_pool_idx, slice(0, len(kv_loc))), kv_loc)

        # populate metadata
        req.fill_ids = req.origin_input_ids + req.output_ids
        req.extend_input_len = len(req.origin_input_ids)

        return kv_loc


class DecodeTransferQueue:
    """
    Store the requests that is polling kv
    """

    def __init__(
        self,
        gloo_group: ProcessGroup,
        req_to_metadata_buffer_idx_allocator: ReqToMetadataIdxAllocator,
        metadata_buffers: torch.Tensor,
    ):
        self.queue: List[DecodeRequest] = []
        self.gloo_group = gloo_group
        self.req_to_metadata_buffer_idx_allocator = req_to_metadata_buffer_idx_allocator
        self.metadata_buffers = metadata_buffers

    def add(self, req_conn: DecodeRequest) -> None:
        self.queue.append(req_conn)

    def extend(self, req_conns) -> None:
        self.queue.extend(req_conns)

    def pop_transferred(self) -> List[Req]:
        if not self.queue:
            return []

        polls = poll_and_all_reduce(
            [decode_req.kv_receiver for decode_req in self.queue], self.gloo_group
        )

        transferred_reqs = []
        indices_to_remove = set()
        for i, (decode_req, poll) in enumerate(zip(self.queue, polls)):
            if poll == KVPoll.Failed:
                raise Exception("Transfer failed")
            elif poll == KVPoll.Success:
                # pop and push it to waiting queue
                idx = decode_req.metadata_buffer_index
                assert len(decode_req.req.output_ids) == 0
                output_id_buffer = self.metadata_buffers[0]
                # the last dimension is padded by the same values.
                output_id = output_id_buffer[idx][0].item()
                assert len(decode_req.req.output_ids) == 0
                assert decode_req.req.transferred_output_id is None
                decode_req.req.transferred_output_id = output_id
                transferred_reqs.append(decode_req.req)
                indices_to_remove.add(i)
            elif poll in [
                KVPoll.Bootstrapping,
                KVPoll.WaitingForInput,
                KVPoll.Transferring,
            ]:
                pass
            else:
                raise ValueError(f"Unexpected poll case: {poll}")

        for i in indices_to_remove:
            idx = self.queue[i].metadata_buffer_index
            assert idx != -1
            self.req_to_metadata_buffer_idx_allocator.free(idx)

        self.queue = [
            entry for i, entry in enumerate(self.queue) if i not in indices_to_remove
        ]

        return transferred_reqs


class ScheduleBatchDisaggregationDecodeMixin:

    def prepare_for_prebuilt_extend(self: ScheduleBatch):
        """
        Prepare a prebuilt extend by populate metadata
        Adapted from .prepare_for_extend().
        """

        self.forward_mode = ForwardMode.EXTEND
        reqs = self.reqs
        input_ids = [r.fill_ids[len(r.prefix_indices) :] for r in reqs]
        extend_num_tokens = sum(len(ids) for ids in input_ids)
        seq_lens = []
        pre_lens = []
        req_pool_indices = []

        # Pre-calculate total size
        total_size = sum(req.extend_input_len for req in reqs)
        out_cache_loc = torch.empty(total_size, dtype=torch.int64, device=self.device)

        # Fill the tensor in one pass
        offset = 0
        for i, req in enumerate(reqs):
            req_pool_indices.append(req.req_pool_idx)

            chunk = self.req_to_token_pool.req_to_token[req.req_pool_idx][
                : req.extend_input_len
            ]
            assert (
                offset + req.extend_input_len <= total_size
            ), f"Exceeds total size: offset={offset}, req.extend_input_len={req.extend_input_len}, total_size={total_size}"
            out_cache_loc[offset : offset + req.extend_input_len] = chunk
            offset += req.extend_input_len

            pre_len = len(req.prefix_indices)
            seq_len = len(req.origin_input_ids) + max(0, len(req.output_ids) - 1)
            seq_lens.append(seq_len)
            if len(req.output_ids) == 0:
                assert (
                    seq_len - pre_len == req.extend_input_len
                ), f"seq_len={seq_len}, pre_len={pre_len}, req.extend_input_len={req.extend_input_len}"

            req.cached_tokens += pre_len - req.already_computed
            req.already_computed = seq_len
            req.is_retracted = False
            pre_lens.append(pre_len)
            req.extend_logprob_start_len = 0

        extend_input_logprob_token_ids = None

        # Set fields
        self.input_ids = torch.tensor(
            sum(input_ids, []), dtype=torch.int32, device=self.device
        )
        self.req_pool_indices = torch.tensor(
            req_pool_indices, dtype=torch.int64, device=self.device
        )
        self.seq_lens = torch.tensor(seq_lens, dtype=torch.int64, device=self.device)
        self.out_cache_loc = out_cache_loc
        self.seq_lens_sum = sum(seq_lens)
        self.extend_num_tokens = extend_num_tokens
        self.prefix_lens = [len(r.prefix_indices) for r in reqs]
        self.extend_lens = [r.extend_input_len for r in reqs]
        self.extend_logprob_start_lens = [r.extend_logprob_start_len for r in reqs]
        self.extend_input_logprob_token_ids = extend_input_logprob_token_ids

        # Build sampling info
        self.sampling_info = SamplingBatchInfo.from_schedule_batch(
            self,
            self.model_config.vocab_size,
        )

    def process_prebuilt_extend(
        self: ScheduleBatch, server_args: ServerArgs, model_config: ModelConfig
    ):
        """Assign the buffered last input id to schedule batch"""
        self.output_ids = []
        for req in self.reqs:
            if req.output_ids and len(req.output_ids) > 0:
                # resumed retracted req
                self.output_ids.append(req.output_ids[-1])
            else:
                assert req.transferred_output_id is not None
                req.output_ids.append(req.transferred_output_id)
                self.output_ids.append(req.transferred_output_id)
            self.tree_cache.cache_unfinished_req(req)
        self.output_ids = torch.tensor(self.output_ids, device=self.device)


class SchedulerDisaggregationDecodeMixin:

422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
    @torch.no_grad()
    def event_loop_normal_disagg_decode(self):
        """A normal scheduler loop for decode worker in disaggregation mode."""

        while True:
            recv_reqs = self.recv_requests()
            self.process_input_requests(recv_reqs)
            # polling and allocating kv cache
            self.process_decode_queue()
            batch = self.get_next_disagg_decode_batch_to_run()
            self.cur_batch = batch

            if batch:
                # Generate fake extend output.
                if batch.forward_mode.is_extend():
                    # Note: Logprobs should be handled on the prefill engine.
                    self.stream_output(batch.reqs, False)
                else:
                    result = self.run_batch(batch)
                    self.process_batch_result(batch, result)

            if batch is None and (
                len(self.disagg_decode_transfer_queue.queue)
                + len(self.disagg_decode_prealloc_queue.queue)
                == 0
            ):
                # When the server is idle, do self-check and re-init some states
                self.check_memory()
                self.new_token_ratio = self.init_new_token_ratio

            self.last_batch = batch

Byron Hsu's avatar
Byron Hsu committed
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
    def get_next_disagg_decode_batch_to_run(
        self: Scheduler,
    ) -> Optional[Tuple[ScheduleBatch, bool]]:
        """Create fake completed prefill if possible and merge with running batch"""
        # Merge the prefill batch into the running batch
        last_batch = self.last_batch
        if last_batch and last_batch.forward_mode.is_extend():
            # chunked prefill doesn't happen in decode instance.
            assert self.chunked_req is None
            # Filter finished batches.
            last_batch.filter_batch()
            if not last_batch.is_empty():
                if self.running_batch.is_empty():
                    self.running_batch = last_batch
                else:
                    # merge running_batch with prefill batch
                    self.running_batch.merge_batch(last_batch)

        new_prebuilt_batch = self.get_new_prebuilt_batch()

        ret: Optional[ScheduleBatch] = None
        if new_prebuilt_batch:
            ret = new_prebuilt_batch
        else:
            if self.running_batch.is_empty():
                ret = None
            else:
                self.running_batch = self.update_running_batch(self.running_batch)
                ret = self.running_batch if not self.running_batch.is_empty() else None

        return ret

    def get_new_prebuilt_batch(self: Scheduler) -> Optional[ScheduleBatch]:
        """Create a schedulebatch for fake completed prefill"""
        if len(self.waiting_queue) == 0:
            return None

        curr_batch_size = self.running_batch.batch_size()

        batch_size = min(self.req_to_token_pool.size, self.max_running_requests)

        num_not_used_batch = batch_size - curr_batch_size

        # pop req from waiting queue
        can_run_list: List[Req] = []
        waiting_queue: List[Req] = []

        for i in range(len(self.waiting_queue)):
            req = self.waiting_queue[i]
            # we can only add at least `num_not_used_batch` new batch to the running queue
            if i < num_not_used_batch:
                can_run_list.append(req)
                req.init_next_round_input(self.tree_cache)
            else:
                waiting_queue.append(req)

        self.waiting_queue = waiting_queue
        if len(can_run_list) == 0:
            return None
        # local import to avoid circular import
        from sglang.srt.managers.schedule_batch import ScheduleBatch

        # construct a schedule batch with those requests and mark as decode
        new_batch = ScheduleBatch.init_new(
            can_run_list,
            self.req_to_token_pool,
            self.token_to_kv_pool_allocator,
            self.tree_cache,
            self.model_config,
            self.enable_overlap,
            self.spec_algorithm,
            self.server_args.enable_custom_logit_processor,
        )

        # construct fake completed prefill
        new_batch.prepare_for_prebuilt_extend()
        new_batch.process_prebuilt_extend(self.server_args, self.model_config)

        return new_batch

    def process_decode_queue(self: Scheduler):
        req_conns = self.disagg_decode_prealloc_queue.pop_preallocated()
        self.disagg_decode_transfer_queue.extend(req_conns)
        alloc_reqs = (
            self.disagg_decode_transfer_queue.pop_transferred()
        )  # the requests which kv has arrived
        self.waiting_queue.extend(alloc_reqs)