bench_serving.py 56.3 KB
Newer Older
zhyncs's avatar
zhyncs committed
1
2
# Adapted from https://github.com/vllm-project/vllm/blob/6366efc67b0aedd2c1721c14385370e50b297fb3/benchmarks/backend_request_func.py
# Adapted from https://github.com/vllm-project/vllm/blob/6366efc67b0aedd2c1721c14385370e50b297fb3/benchmarks/benchmark_serving.py
3

Ying Sheng's avatar
Ying Sheng committed
4
"""
5
Benchmark online serving with dynamic requests.
Ying Sheng's avatar
Ying Sheng committed
6
7

Usage:
8
python3 -m sglang.bench_serving --backend sglang --num-prompt 10
Ying Sheng's avatar
Ying Sheng committed
9

10
python3 -m sglang.bench_serving --backend sglang --dataset-name random --num-prompts 3000 --random-input 1024 --random-output 1024 --random-range-ratio 0.5
Ying Sheng's avatar
Ying Sheng committed
11
"""
zhyncs's avatar
zhyncs committed
12
13
14
15
16

import argparse
import asyncio
import json
import os
17
import pickle
zhyncs's avatar
zhyncs committed
18
19
20
21
22
23
import random
import resource
import sys
import time
import traceback
import warnings
24
from argparse import ArgumentParser
zhyncs's avatar
zhyncs committed
25
from dataclasses import dataclass, field
26
from datetime import datetime
27
from pathlib import Path
28
from typing import Any, AsyncGenerator, Dict, List, Optional, Tuple, Union
zhyncs's avatar
zhyncs committed
29
30
31
32
33
34
35
36
37
38
39
40
41

import aiohttp
import numpy as np
import requests
from tqdm.asyncio import tqdm
from transformers import (
    AutoTokenizer,
    PreTrainedTokenizer,
    PreTrainedTokenizerBase,
    PreTrainedTokenizerFast,
)

AIOHTTP_TIMEOUT = aiohttp.ClientTimeout(total=6 * 60 * 60)
42
ASSISTANT_SUFFIX = "Assistant:"
zhyncs's avatar
zhyncs committed
43

44
45
global args

zhyncs's avatar
zhyncs committed
46

Yineng Zhang's avatar
Yineng Zhang committed
47
48
49
50
51
52
# don't want to import sglang package here
def _get_bool_env_var(name: str, default: str = "false") -> bool:
    value = os.getenv(name, default)
    return value.lower() in ("true", "1")


zhyncs's avatar
zhyncs committed
53
54
55
56
57
58
59
@dataclass
class RequestFuncInput:
    prompt: str
    api_url: str
    prompt_len: int
    output_len: int
    model: str
60
    lora_name: str
61
    extra_request_body: Dict[str, Any]
zhyncs's avatar
zhyncs committed
62
63
64
65
66
67
68
69
70
71
72


@dataclass
class RequestFuncOutput:
    generated_text: str = ""
    success: bool = False
    latency: float = 0.0
    ttft: float = 0.0  # Time to first token
    itl: List[float] = field(default_factory=list)  # List of inter-token latencies
    prompt_len: int = 0
    error: str = ""
73
    output_len: int = 0
zhyncs's avatar
zhyncs committed
74
75
76
77
78
79


def remove_prefix(text: str, prefix: str) -> str:
    return text[len(prefix) :] if text.startswith(prefix) else text


80
81
82
83
def remove_suffix(text: str, suffix: str) -> str:
    return text[: -len(suffix)] if text.endswith(suffix) else text


84
85
86
87
88
89
90
91
def get_auth_headers() -> Dict[str, str]:
    api_key = os.environ.get("OPENAI_API_KEY")
    if api_key:
        return {"Authorization": f"Bearer {api_key}"}
    else:
        return {}


92
# trt llm does not support ignore_eos
93
94
95
96
97
98
99
100
101
102
103
104
# https://github.com/triton-inference-server/tensorrtllm_backend/issues/505
async def async_request_trt_llm(
    request_func_input: RequestFuncInput,
    pbar: Optional[tqdm] = None,
) -> RequestFuncOutput:
    api_url = request_func_input.api_url
    assert api_url.endswith("generate_stream")

    async with aiohttp.ClientSession(timeout=AIOHTTP_TIMEOUT) as session:
        payload = {
            "accumulate_tokens": True,
            "text_input": request_func_input.prompt,
zhyncs's avatar
zhyncs committed
105
            "temperature": 0.000001,
106
107
108
            "top_p": 1.0,
            "max_tokens": request_func_input.output_len,
            "stream": True,
Ying Sheng's avatar
Ying Sheng committed
109
110
            "min_length": request_func_input.output_len,
            "end_id": 1048576,
111
            **request_func_input.extra_request_body,
112
        }
113
114
115
        if args.disable_ignore_eos:
            del payload["min_length"]
            del payload["end_id"]
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
        output = RequestFuncOutput()
        output.prompt_len = request_func_input.prompt_len

        ttft = 0.0
        st = time.perf_counter()
        most_recent_timestamp = st
        try:
            async with session.post(url=api_url, json=payload) as response:
                if response.status == 200:
                    async for chunk_bytes in response.content:
                        chunk_bytes = chunk_bytes.strip()
                        if not chunk_bytes:
                            continue

                        chunk = remove_prefix(chunk_bytes.decode("utf-8"), "data:")

                        data = json.loads(chunk)
                        output.generated_text += data["text_output"]
                        timestamp = time.perf_counter()
                        # First token
                        if ttft == 0.0:
Xu Song's avatar
Xu Song committed
137
                            ttft = timestamp - st
138
139
140
141
142
143
144
145
146
147
                            output.ttft = ttft

                        # Decoding phase
                        else:
                            output.itl.append(timestamp - most_recent_timestamp)

                        most_recent_timestamp = timestamp

                    output.latency = most_recent_timestamp - st
                    output.success = True
Ying Sheng's avatar
Ying Sheng committed
148
                    output.output_len = request_func_input.output_len
149
150
151
152
153
154
155
156
157
158
159
160
161
162

                else:
                    output.error = response.reason or ""
                    output.success = False
        except Exception:
            output.success = False
            exc_info = sys.exc_info()
            output.error = "".join(traceback.format_exception(*exc_info))

        if pbar:
            pbar.update(1)
        return output


zhyncs's avatar
zhyncs committed
163
164
165
166
167
168
169
170
171
172
# set ignore_eos True by default
async def async_request_openai_completions(
    request_func_input: RequestFuncInput,
    pbar: Optional[tqdm] = None,
) -> RequestFuncOutput:
    api_url = request_func_input.api_url
    assert api_url.endswith(
        "completions"
    ), "OpenAI Completions API URL must end with 'completions'."

Lianmin Zheng's avatar
Lianmin Zheng committed
173
174
    prompt = request_func_input.prompt

zhyncs's avatar
zhyncs committed
175
176
177
    async with aiohttp.ClientSession(timeout=AIOHTTP_TIMEOUT) as session:
        payload = {
            "model": request_func_input.model,
Lianmin Zheng's avatar
Lianmin Zheng committed
178
            "prompt": prompt,
zhyncs's avatar
zhyncs committed
179
180
181
            "temperature": 0.0,
            "best_of": 1,
            "max_tokens": request_func_input.output_len,
182
            "stream": not args.disable_stream,
183
            "ignore_eos": not args.disable_ignore_eos,
184
            **request_func_input.extra_request_body,
zhyncs's avatar
zhyncs committed
185
        }
186
        headers = get_auth_headers()
zhyncs's avatar
zhyncs committed
187
188
189
190
191

        output = RequestFuncOutput()
        output.prompt_len = request_func_input.prompt_len

        generated_text = ""
192
        output_len = request_func_input.output_len
zhyncs's avatar
zhyncs committed
193
194
195
196
197
198
199
200
201
202
203
204
205
206
        ttft = 0.0
        st = time.perf_counter()
        most_recent_timestamp = st
        try:
            async with session.post(
                url=api_url, json=payload, headers=headers
            ) as response:
                if response.status == 200:
                    async for chunk_bytes in response.content:
                        chunk_bytes = chunk_bytes.strip()
                        if not chunk_bytes:
                            continue

                        chunk = remove_prefix(chunk_bytes.decode("utf-8"), "data: ")
207
                        latency = time.perf_counter() - st
zhyncs's avatar
zhyncs committed
208
                        if chunk == "[DONE]":
209
                            pass
zhyncs's avatar
zhyncs committed
210
211
212
213
214
215
216
217
218
219
220
221
222
223
                        else:
                            data = json.loads(chunk)

                            # NOTE: Some completion API might have a last
                            # usage summary response without a token so we
                            # want to check a token was generated
                            if data["choices"][0]["text"]:
                                timestamp = time.perf_counter()
                                # First token
                                if ttft == 0.0:
                                    ttft = time.perf_counter() - st
                                    output.ttft = ttft

                                # Decoding phase
224
225
                                else:
                                    output.itl.append(timestamp - most_recent_timestamp)
zhyncs's avatar
zhyncs committed
226
227
228

                                most_recent_timestamp = timestamp
                                generated_text += data["choices"][0]["text"]
Lzhang-hub's avatar
Lzhang-hub committed
229
                                output_len = (data.get("usage") or {}).get(
230
231
                                    "completion_tokens", output_len
                                )
zhyncs's avatar
zhyncs committed
232
233
234
235

                    output.generated_text = generated_text
                    output.success = True
                    output.latency = latency
236
                    output.output_len = output_len
zhyncs's avatar
zhyncs committed
237
238
239
240
241
242
243
244
245
246
247
248
249
                else:
                    output.error = response.reason or ""
                    output.success = False
        except Exception:
            output.success = False
            exc_info = sys.exc_info()
            output.error = "".join(traceback.format_exception(*exc_info))

    if pbar:
        pbar.update(1)
    return output


250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
async def async_request_truss(
    request_func_input: RequestFuncInput,
    pbar: Optional[tqdm] = None,
) -> RequestFuncOutput:
    api_url = request_func_input.api_url

    prompt = request_func_input.prompt

    async with aiohttp.ClientSession(timeout=AIOHTTP_TIMEOUT) as session:
        payload = {
            "model": request_func_input.model,
            "prompt": prompt,
            "temperature": 0.0,
            "best_of": 1,
            "max_tokens": request_func_input.output_len,
            "stream": not args.disable_stream,
            "ignore_eos": not args.disable_ignore_eos,
            **request_func_input.extra_request_body,
        }
269
        headers = get_auth_headers()
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297

        output = RequestFuncOutput()
        output.prompt_len = request_func_input.prompt_len

        generated_text = ""
        ttft = 0.0
        st = time.perf_counter()
        most_recent_timestamp = st
        try:
            async with session.post(
                url=api_url, json=payload, headers=headers
            ) as response:
                if response.status == 200:
                    async for chunk_bytes in response.content:
                        chunk_bytes = chunk_bytes.strip()
                        if not chunk_bytes:
                            continue

                        chunk = remove_prefix(chunk_bytes.decode("utf-8"), "data: ")
                        latency = time.perf_counter() - st
                        if chunk == "[DONE]":
                            pass
                        else:
                            data = json.loads(chunk)

                            # NOTE: Some completion API might have a last
                            # usage summary response without a token so we
                            # want to check a token was generated
298
                            if data["choices"][0]["text"]:
299
300
301
302
303
304
305
306
307
308
309
                                timestamp = time.perf_counter()
                                # First token
                                if ttft == 0.0:
                                    ttft = time.perf_counter() - st
                                    output.ttft = ttft

                                # Decoding phase
                                else:
                                    output.itl.append(timestamp - most_recent_timestamp)

                                most_recent_timestamp = timestamp
310
                                generated_text += data["choices"][0]["text"]
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328

                    output.generated_text = generated_text
                    output.success = True
                    output.latency = latency
                    output.output_len = request_func_input.output_len
                else:
                    output.error = response.reason or ""
                    output.success = False
        except Exception:
            output.success = False
            exc_info = sys.exc_info()
            output.error = "".join(traceback.format_exception(*exc_info))

    if pbar:
        pbar.update(1)
    return output


329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
async def async_request_sglang_generate(
    request_func_input: RequestFuncInput,
    pbar: Optional[tqdm] = None,
) -> RequestFuncOutput:
    api_url = request_func_input.api_url
    prompt = request_func_input.prompt

    async with aiohttp.ClientSession(timeout=AIOHTTP_TIMEOUT) as session:
        payload = {
            "text": prompt,
            "sampling_params": {
                "temperature": 0.0,
                "max_new_tokens": request_func_input.output_len,
                "ignore_eos": not args.disable_ignore_eos,
            },
            "stream": not args.disable_stream,
345
            "lora_path": request_func_input.lora_name,
346
347
            "return_logprob": args.return_logprob,
            "logprob_start_len": -1,
348
349
            **request_func_input.extra_request_body,
        }
350
        headers = get_auth_headers()
351
352
353
354
355

        output = RequestFuncOutput()
        output.prompt_len = request_func_input.prompt_len

        generated_text = ""
356
        output_len = request_func_input.output_len
357
358
359
        ttft = 0.0
        st = time.perf_counter()
        most_recent_timestamp = st
360
        last_output_len = 0
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
        try:
            async with session.post(
                url=api_url, json=payload, headers=headers
            ) as response:
                if response.status == 200:
                    async for chunk_bytes in response.content:
                        chunk_bytes = chunk_bytes.strip()
                        if not chunk_bytes:
                            continue
                        # print(chunk_bytes)

                        chunk = remove_prefix(chunk_bytes.decode("utf-8"), "data: ")
                        latency = time.perf_counter() - st
                        if chunk == "[DONE]":
                            pass
                        else:
                            data = json.loads(chunk)

                            # NOTE: Some completion API might have a last
                            # usage summary response without a token so we
                            # want to check a token was generated
                            if data["text"]:
                                timestamp = time.perf_counter()
384
385
386
                                generated_text = data["text"]
                                output_len = data["meta_info"]["completion_tokens"]

387
388
389
390
391
392
393
                                # First token
                                if ttft == 0.0:
                                    ttft = time.perf_counter() - st
                                    output.ttft = ttft

                                # Decoding phase
                                else:
394
395
396
397
398
399
400
                                    num_new_tokens = output_len - last_output_len
                                    if num_new_tokens == 0:
                                        continue
                                    adjust_itl = (
                                        timestamp - most_recent_timestamp
                                    ) / num_new_tokens
                                    output.itl.extend([adjust_itl] * num_new_tokens)
401
402

                                most_recent_timestamp = timestamp
Lianmin Zheng's avatar
Lianmin Zheng committed
403
                                last_output_len = output_len
404
405
406
407

                    output.generated_text = generated_text
                    output.success = True
                    output.latency = latency
408
                    output.output_len = output_len
409
410
411
412
413
414
415
                else:
                    output.error = response.reason or ""
                    output.success = False
        except Exception:
            output.success = False
            exc_info = sys.exc_info()
            output.error = "".join(traceback.format_exception(*exc_info))
416
            print(f"{output.error=}")
417
418
419
420
421
422

    if pbar:
        pbar.update(1)
    return output


423
async def async_request_gserver(
Lianmin Zheng's avatar
Lianmin Zheng committed
424
425
426
427
428
429
    request_func_input: RequestFuncInput,
    pbar: Optional[tqdm] = None,
) -> RequestFuncOutput:
    raise NotImplementedError()


430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
async def async_request_profile(api_url: str) -> RequestFuncOutput:
    async with aiohttp.ClientSession(timeout=AIOHTTP_TIMEOUT) as session:
        output = RequestFuncOutput()
        try:
            async with session.post(url=api_url) as response:
                if response.status == 200:
                    output.success = True
                else:
                    output.error = response.reason or ""
                    output.success = False
        except Exception:
            output.success = False
            exc_info = sys.exc_info()
            output.error = "".join(traceback.format_exception(*exc_info))

    return output


zhyncs's avatar
zhyncs committed
448
def get_model(pretrained_model_name_or_path: str) -> str:
449
    if os.getenv("SGLANG_USE_MODELSCOPE", "false").lower() == "true":
zhyncs's avatar
zhyncs committed
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
        import huggingface_hub.constants
        from modelscope import snapshot_download

        model_path = snapshot_download(
            model_id=pretrained_model_name_or_path,
            local_files_only=huggingface_hub.constants.HF_HUB_OFFLINE,
            ignore_file_pattern=[".*.pt", ".*.safetensors", ".*.bin"],
        )

        return model_path
    return pretrained_model_name_or_path


def get_tokenizer(
    pretrained_model_name_or_path: str,
) -> Union[PreTrainedTokenizer, PreTrainedTokenizerFast]:
Lianmin Zheng's avatar
Lianmin Zheng committed
466
467
468
469
470
471
472
    if pretrained_model_name_or_path.endswith(
        ".json"
    ) or pretrained_model_name_or_path.endswith(".model"):
        from sglang.srt.hf_transformers_utils import get_tokenizer

        return get_tokenizer(pretrained_model_name_or_path)

zhyncs's avatar
zhyncs committed
473
474
475
476
477
478
479
480
481
    if pretrained_model_name_or_path is not None and not os.path.exists(
        pretrained_model_name_or_path
    ):
        pretrained_model_name_or_path = get_model(pretrained_model_name_or_path)
    return AutoTokenizer.from_pretrained(
        pretrained_model_name_or_path, trust_remote_code=True
    )


482
483
484
485
486
487
488
def get_dataset(args, tokenizer):
    if args.dataset_name == "sharegpt":
        input_requests = sample_sharegpt_requests(
            dataset_path=args.dataset_path,
            num_requests=args.num_prompts,
            tokenizer=tokenizer,
            fixed_output_len=args.sharegpt_output_len,
489
            context_len=args.sharegpt_context_len,
490
            prompt_suffix=args.prompt_suffix,
491
            apply_chat_template=args.apply_chat_template,
492
        )
493
    elif args.dataset_name.startswith("random"):
494
495
496
497
498
499
500
        input_requests = sample_random_requests(
            input_len=args.random_input_len,
            output_len=args.random_output_len,
            num_prompts=args.num_prompts,
            range_ratio=args.random_range_ratio,
            tokenizer=tokenizer,
            dataset_path=args.dataset_path,
501
            random_sample=args.dataset_name == "random",
502
503
504
        )
    elif args.dataset_name == "generated-shared-prefix":
        input_requests = sample_generated_shared_prefix_requests(
505
506
507
508
509
            num_groups=args.gsp_num_groups,
            prompts_per_group=args.gsp_prompts_per_group,
            system_prompt_len=args.gsp_system_prompt_len,
            question_len=args.gsp_question_len,
            output_len=args.gsp_output_len,
510
            tokenizer=tokenizer,
511
            args=args,
512
513
514
515
516
517
        )
    else:
        raise ValueError(f"Unknown dataset: {args.dataset_name}")
    return input_requests


zhyncs's avatar
zhyncs committed
518
ASYNC_REQUEST_FUNCS = {
519
520
521
    "sglang": async_request_sglang_generate,
    "sglang-native": async_request_sglang_generate,
    "sglang-oai": async_request_openai_completions,
zhyncs's avatar
zhyncs committed
522
523
    "vllm": async_request_openai_completions,
    "lmdeploy": async_request_openai_completions,
524
    "trt": async_request_trt_llm,
525
    "gserver": async_request_gserver,
526
    "truss": async_request_truss,
zhyncs's avatar
zhyncs committed
527
528
529
530
531
532
533
534
}


@dataclass
class BenchmarkMetrics:
    completed: int
    total_input: int
    total_output: int
Ying Sheng's avatar
Ying Sheng committed
535
    total_output_retokenized: int
zhyncs's avatar
zhyncs committed
536
537
538
    request_throughput: float
    input_throughput: float
    output_throughput: float
Ying Sheng's avatar
Ying Sheng committed
539
    output_throughput_retokenized: float
540
541
    total_throughput: float
    total_throughput_retokenized: float
zhyncs's avatar
zhyncs committed
542
543
544
545
546
547
548
549
550
551
552
    mean_ttft_ms: float
    median_ttft_ms: float
    std_ttft_ms: float
    p99_ttft_ms: float
    mean_tpot_ms: float
    median_tpot_ms: float
    std_tpot_ms: float
    p99_tpot_ms: float
    mean_itl_ms: float
    median_itl_ms: float
    std_itl_ms: float
553
    p95_itl_ms: float
zhyncs's avatar
zhyncs committed
554
    p99_itl_ms: float
555
    max_itl_ms: float
zhyncs's avatar
zhyncs committed
556
557
    mean_e2e_latency_ms: float
    median_e2e_latency_ms: float
558
559
    std_e2e_latency_ms: float
    p99_e2e_latency_ms: float
560
    concurrency: float
zhyncs's avatar
zhyncs committed
561
562


Lianmin Zheng's avatar
Lianmin Zheng committed
563
SHAREGPT_URL = "https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/resolve/main/ShareGPT_V3_unfiltered_cleaned_split.json"
Lianmin Zheng's avatar
Lianmin Zheng committed
564
565


Lianmin Zheng's avatar
Lianmin Zheng committed
566
567
568
569
def download_and_cache_file(url: str, filename: Optional[str] = None):
    """Read and cache a file from a url."""
    if filename is None:
        filename = os.path.join("/tmp", url.split("/")[-1])
Lianmin Zheng's avatar
Lianmin Zheng committed
570

Lianmin Zheng's avatar
Lianmin Zheng committed
571
572
573
    # Check if the cache file already exists
    if os.path.exists(filename):
        return filename
Lianmin Zheng's avatar
Lianmin Zheng committed
574

Lianmin Zheng's avatar
Lianmin Zheng committed
575
    print(f"Downloading from {url} to {filename}")
Lianmin Zheng's avatar
Lianmin Zheng committed
576

Lianmin Zheng's avatar
Lianmin Zheng committed
577
578
579
    # Stream the response to show the progress bar
    response = requests.get(url, stream=True)
    response.raise_for_status()  # Check for request errors
Lianmin Zheng's avatar
Lianmin Zheng committed
580

Lianmin Zheng's avatar
Lianmin Zheng committed
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
    # Total size of the file in bytes
    total_size = int(response.headers.get("content-length", 0))
    chunk_size = 1024  # Download in chunks of 1KB

    # Use tqdm to display the progress bar
    with open(filename, "wb") as f, tqdm(
        desc=filename,
        total=total_size,
        unit="B",
        unit_scale=True,
        unit_divisor=1024,
    ) as bar:
        for chunk in response.iter_content(chunk_size=chunk_size):
            f.write(chunk)
            bar.update(len(chunk))

    return filename
Lianmin Zheng's avatar
Lianmin Zheng committed
598
599


zhyncs's avatar
zhyncs committed
600
601
602
603
604
def sample_sharegpt_requests(
    dataset_path: str,
    num_requests: int,
    tokenizer: PreTrainedTokenizerBase,
    fixed_output_len: Optional[int] = None,
605
    context_len: Optional[int] = None,
606
    prompt_suffix: Optional[str] = "",
607
    apply_chat_template=False,
zhyncs's avatar
zhyncs committed
608
609
610
611
) -> List[Tuple[str, int, int]]:
    if fixed_output_len is not None and fixed_output_len < 4:
        raise ValueError("output_len too small")

Lianmin Zheng's avatar
Lianmin Zheng committed
612
    # Download sharegpt if necessary
613
    if not os.path.isfile(dataset_path) and dataset_path == "":
Lianmin Zheng's avatar
Lianmin Zheng committed
614
        dataset_path = download_and_cache_file(SHAREGPT_URL)
zhyncs's avatar
zhyncs committed
615
616
617
618

    # Load the dataset.
    with open(dataset_path) as f:
        dataset = json.load(f)
619

zhyncs's avatar
zhyncs committed
620
    # Filter out the conversations with less than 2 turns.
621
622
623
624
625
    dataset = [
        data
        for data in dataset
        if len(data.get("conversations", data.get("conversation", []))) >= 2
    ]
zhyncs's avatar
zhyncs committed
626
627
    # Only keep the first two turns of each conversation.
    dataset = [
628
629
630
631
        (
            data.get("conversations", data.get("conversation", []))[0]["value"],
            data.get("conversations", data.get("conversation", []))[1]["value"],
        )
zhyncs's avatar
zhyncs committed
632
633
634
635
636
637
638
639
640
641
642
643
644
645
        for data in dataset
    ]

    # Shuffle the dataset.
    random.shuffle(dataset)

    # Filter out sequences that are too long or too short
    filtered_dataset: List[Tuple[str, int, int]] = []
    for i in range(len(dataset)):
        if len(filtered_dataset) == num_requests:
            break

        # Tokenize the prompts and completions.
        prompt = dataset[i][0]
646
        if prompt_suffix:
647
648
649
650
651
            prompt = (
                remove_suffix(prompt, ASSISTANT_SUFFIX)
                + prompt_suffix
                + ASSISTANT_SUFFIX
            )
652
653
654
655
656
657
658
659
660

        if apply_chat_template:
            prompt = tokenizer.apply_chat_template(
                [{"role": "user", "content": prompt}],
                add_generation_prompt=True,
                tokenize=False,
            )
            prompt = prompt.replace(tokenizer.bos_token, "")

Lianmin Zheng's avatar
Lianmin Zheng committed
661
        prompt_token_ids = tokenizer.encode(prompt)
zhyncs's avatar
zhyncs committed
662
        completion = dataset[i][1]
Lianmin Zheng's avatar
Lianmin Zheng committed
663
        completion_token_ids = tokenizer.encode(completion)
zhyncs's avatar
zhyncs committed
664
665
666
667
        prompt_len = len(prompt_token_ids)
        output_len = (
            len(completion_token_ids) if fixed_output_len is None else fixed_output_len
        )
668

669
        if prompt_len < 2 or output_len < 2:
zhyncs's avatar
zhyncs committed
670
671
            # Prune too short sequences.
            continue
672
673

        if context_len and prompt_len + output_len > context_len:
zhyncs's avatar
zhyncs committed
674
675
            # Prune too long sequences.
            continue
676

zhyncs's avatar
zhyncs committed
677
678
        filtered_dataset.append((prompt, prompt_len, output_len))

679
680
    print(f"#Input tokens: {np.sum([x[1] for x in filtered_dataset])}")
    print(f"#Output tokens: {np.sum([x[2] for x in filtered_dataset])}")
zhyncs's avatar
zhyncs committed
681
682
683
    return filtered_dataset


684
685
686
687
688
689
def sample_random_requests(
    input_len: int,
    output_len: int,
    num_prompts: int,
    range_ratio: float,
    tokenizer: PreTrainedTokenizerBase,
Lianmin Zheng's avatar
Lianmin Zheng committed
690
    dataset_path: str,
691
    random_sample: bool = True,
692
693
) -> List[Tuple[str, int, int]]:
    input_lens = np.random.randint(
Yineng Zhang's avatar
Yineng Zhang committed
694
        max(int(input_len * range_ratio), 1),
695
696
697
698
699
700
701
702
        input_len + 1,
        size=num_prompts,
    )
    output_lens = np.random.randint(
        int(output_len * range_ratio),
        output_len + 1,
        size=num_prompts,
    )
Lianmin Zheng's avatar
Lianmin Zheng committed
703

704
    if random_sample:
Lianmin Zheng's avatar
Lianmin Zheng committed
705
706
707
        # Sample token ids from ShareGPT and repeat/truncate them to satisfy the input_lens

        # Download sharegpt if necessary
Lianmin Zheng's avatar
Lianmin Zheng committed
708
709
        if not os.path.isfile(dataset_path):
            dataset_path = download_and_cache_file(SHAREGPT_URL)
Lianmin Zheng's avatar
Lianmin Zheng committed
710
711
712
713
714

        # Load the dataset.
        with open(dataset_path) as f:
            dataset = json.load(f)
        # Filter out the conversations with less than 2 turns.
715
716
717
718
719
        dataset = [
            data
            for data in dataset
            if len(data.get("conversations", data.get("conversation", []))) >= 2
        ]
Lianmin Zheng's avatar
Lianmin Zheng committed
720
721
        # Only keep the first two turns of each conversation.
        dataset = [
722
723
724
725
            (
                data.get("conversations", data.get("conversation", []))[0]["value"],
                data.get("conversations", data.get("conversation", []))[1]["value"],
            )
Lianmin Zheng's avatar
Lianmin Zheng committed
726
727
728
729
730
731
732
            for data in dataset
        ]
        # Shuffle the dataset.
        random.shuffle(dataset)

        # Filter out sequences that are too long or too short
        input_requests: List[Tuple[str, int, int]] = []
733
734
735
736
737
        for data in dataset:
            i = len(input_requests)
            if i == num_prompts:
                break

Lianmin Zheng's avatar
Lianmin Zheng committed
738
            # Tokenize the prompts and completions.
739
            prompt = data[0]
Lianmin Zheng's avatar
Lianmin Zheng committed
740
            prompt_token_ids = tokenizer.encode(prompt)
Lianmin Zheng's avatar
Lianmin Zheng committed
741
742
            prompt_len = len(prompt_token_ids)

743
744
745
746
            # Skip empty prompt
            if prompt_len == 0:
                continue

Yineng Zhang's avatar
Yineng Zhang committed
747
            if prompt_len > input_lens[i]:
Lianmin Zheng's avatar
Lianmin Zheng committed
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
                input_ids = prompt_token_ids[: input_lens[i]]
            else:
                ratio = (input_lens[i] + prompt_len - 1) // prompt_len
                input_ids = (prompt_token_ids * ratio)[: input_lens[i]]
            prompt = tokenizer.decode(input_ids)
            input_requests.append((prompt, int(input_lens[i]), int(output_lens[i])))
    else:
        # Sample token ids from random integers. This can cause some NaN issues.
        offsets = np.random.randint(0, tokenizer.vocab_size, size=num_prompts)
        input_requests = []
        for i in range(num_prompts):
            prompt = tokenizer.decode(
                [
                    (offsets[i] + i + j) % tokenizer.vocab_size
                    for j in range(input_lens[i])
                ]
            )
            input_requests.append((prompt, int(input_lens[i]), int(output_lens[i])))
766
767
768
769
770
771

    print(f"#Input tokens: {np.sum(input_lens)}")
    print(f"#Output tokens: {np.sum(output_lens)}")
    return input_requests


772
773
774
775
776
777
778
def gen_prompt(tokenizer, token_num):
    """Generate a random prompt of specified token length using tokenizer vocabulary."""
    all_available_tokens = list(tokenizer.get_vocab().values())
    selected_tokens = random.choices(all_available_tokens, k=token_num)
    return tokenizer.decode(selected_tokens)


779
780
781
782
783
784
def get_gen_prefix_cache_path(args, tokenizer):
    """Create cache directory under ~/.cache/sglang/benchmark"""
    cache_dir = Path.home() / ".cache" / "sglang" / "benchmark"

    # Create a unique cache filename based on the generation parameters
    cache_key = (
785
786
        f"gen_shared_prefix_{args.gsp_num_groups}_{args.gsp_prompts_per_group}_"
        f"{args.gsp_system_prompt_len}_{args.gsp_question_len}_{args.gsp_output_len}_"
787
788
789
790
791
        f"{tokenizer.__class__.__name__}.pkl"
    )
    return cache_dir / cache_key


792
793
794
795
796
797
798
def sample_generated_shared_prefix_requests(
    num_groups: int,
    prompts_per_group: int,
    system_prompt_len: int,
    question_len: int,
    output_len: int,
    tokenizer: PreTrainedTokenizerBase,
799
    args: argparse.Namespace,
800
) -> List[Tuple[str, int, int]]:
801
802
803
804
805
806
807
    """Generate benchmark requests with shared system prompts using random tokens and caching."""
    cache_path = get_gen_prefix_cache_path(args, tokenizer)

    # Try to load from cache first
    if cache_path.exists():
        print(f"\nLoading cached generated input data from {cache_path}")
        with open(cache_path, "rb") as f:
808
809
            return pickle.load(f)

810
811
    print("\nGenerating new input data...")

812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
    # Generate system prompts for each group
    system_prompts = []
    for _ in range(num_groups):
        system_prompt = gen_prompt(tokenizer, system_prompt_len)
        system_prompts.append(system_prompt)

    # Generate questions
    questions = []
    for _ in range(num_groups * prompts_per_group):
        question = gen_prompt(tokenizer, question_len)
        questions.append(question)

    # Combine system prompts with questions
    input_requests = []
    total_input_tokens = 0
    total_output_tokens = 0

829
    for group_idx in tqdm(range(num_groups), desc="Generating system prompt"):
830
        system_prompt = system_prompts[group_idx]
831
832
833
        for prompt_idx in tqdm(
            range(prompts_per_group), desc="Generating questions", leave=False
        ):
834
835
836
837
838
839
840
841
            question = questions[group_idx * prompts_per_group + prompt_idx]
            full_prompt = f"{system_prompt}\n\n{question}"
            prompt_len = len(tokenizer.encode(full_prompt))

            input_requests.append((full_prompt, prompt_len, output_len))
            total_input_tokens += prompt_len
            total_output_tokens += output_len

842
843
844
845
    # Shuffle questions
    random.shuffle(input_requests)

    # Print statistics
846
847
848
849
850
851
852
853
854
855
856
857
    print(f"\nGenerated shared prefix dataset statistics:")
    print(f"Number of groups: {num_groups}")
    print(f"Prompts per group: {prompts_per_group}")
    print(f"Total prompts: {len(input_requests)}")
    print(f"Total input tokens: {total_input_tokens}")
    print(f"Total output tokens: {total_output_tokens}")
    print(
        f"Average system prompt length: {sum(len(tokenizer.encode(sp)) for sp in system_prompts) / len(system_prompts):.1f} tokens"
    )
    print(
        f"Average question length: {sum(len(tokenizer.encode(q)) for q in questions) / len(questions):.1f} tokens\n"
    )
858
859
860
861
862
863

    # Save to cache
    cache_path.parent.mkdir(parents=True, exist_ok=True)
    print(f"Caching generated input data to {cache_path}")
    with open(cache_path, "wb") as f:
        pickle.dump(input_requests, f)
864
865
866
867

    return input_requests


zhyncs's avatar
zhyncs committed
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
async def get_request(
    input_requests: List[Tuple[str, int, int]],
    request_rate: float,
) -> AsyncGenerator[Tuple[str, int, int], None]:
    input_requests = iter(input_requests)
    for request in input_requests:
        yield request

        if request_rate == float("inf"):
            # If the request rate is infinity, then we don't need to wait.
            continue

        # Sample the request interval from the exponential distribution.
        interval = np.random.exponential(1.0 / request_rate)
        # The next request will be sent after the interval.
        await asyncio.sleep(interval)


def calculate_metrics(
    input_requests: List[Tuple[str, int, int]],
    outputs: List[RequestFuncOutput],
    dur_s: float,
    tokenizer: PreTrainedTokenizerBase,
891
    backend: str,
zhyncs's avatar
zhyncs committed
892
) -> Tuple[BenchmarkMetrics, List[int]]:
Ying Sheng's avatar
Ying Sheng committed
893
894
    output_lens: List[int] = []
    retokenized_output_lens: List[int] = []
zhyncs's avatar
zhyncs committed
895
896
897
898
899
    total_input = 0
    completed = 0
    itls: List[float] = []
    tpots: List[float] = []
    ttfts: List[float] = []
zhyncs's avatar
zhyncs committed
900
    e2e_latencies: List[float] = []
zhyncs's avatar
zhyncs committed
901
902
    for i in range(len(outputs)):
        if outputs[i].success:
Ying Sheng's avatar
Ying Sheng committed
903
904
905
            output_len = outputs[i].output_len
            output_lens.append(output_len)
            retokenized_output_len = len(
Lianmin Zheng's avatar
Lianmin Zheng committed
906
                tokenizer.encode(outputs[i].generated_text, add_special_tokens=False)
Ying Sheng's avatar
Ying Sheng committed
907
908
            )
            retokenized_output_lens.append(retokenized_output_len)
zhyncs's avatar
zhyncs committed
909
910
911
912
913
            total_input += input_requests[i][1]
            if output_len > 1:
                tpots.append((outputs[i].latency - outputs[i].ttft) / (output_len - 1))
            itls += outputs[i].itl
            ttfts.append(outputs[i].ttft)
zhyncs's avatar
zhyncs committed
914
915
916

            e2e_latencies.append(outputs[i].latency)

zhyncs's avatar
zhyncs committed
917
918
            completed += 1
        else:
Ying Sheng's avatar
Ying Sheng committed
919
920
            output_lens.append(0)
            retokenized_output_lens.append(0)
zhyncs's avatar
zhyncs committed
921
922
923
924
925
926
927
928
929
930

    if completed == 0:
        warnings.warn(
            "All requests failed. This is likely due to a misconfiguration "
            "on the benchmark arguments.",
            stacklevel=2,
        )
    metrics = BenchmarkMetrics(
        completed=completed,
        total_input=total_input,
Ying Sheng's avatar
Ying Sheng committed
931
932
        total_output=sum(output_lens),
        total_output_retokenized=sum(retokenized_output_lens),
zhyncs's avatar
zhyncs committed
933
934
        request_throughput=completed / dur_s,
        input_throughput=total_input / dur_s,
Ying Sheng's avatar
Ying Sheng committed
935
936
        output_throughput=sum(output_lens) / dur_s,
        output_throughput_retokenized=sum(retokenized_output_lens) / dur_s,
937
938
939
        total_throughput=(total_input + sum(output_lens)) / dur_s,
        total_throughput_retokenized=(total_input + sum(retokenized_output_lens))
        / dur_s,
zhyncs's avatar
zhyncs committed
940
941
942
943
944
945
946
947
948
949
950
951
        mean_ttft_ms=np.mean(ttfts or 0)
        * 1000,  # ttfts is empty if streaming is not supported by backend
        median_ttft_ms=np.median(ttfts or 0) * 1000,
        std_ttft_ms=np.std(ttfts or 0) * 1000,
        p99_ttft_ms=np.percentile(ttfts or 0, 99) * 1000,
        mean_tpot_ms=np.mean(tpots or 0) * 1000,
        median_tpot_ms=np.median(tpots or 0) * 1000,
        std_tpot_ms=np.std(tpots or 0) * 1000,
        p99_tpot_ms=np.percentile(tpots or 0, 99) * 1000,
        mean_itl_ms=np.mean(itls or 0) * 1000,
        median_itl_ms=np.median(itls or 0) * 1000,
        std_itl_ms=np.std(itls or 0) * 1000,
952
        p95_itl_ms=np.percentile(itls or 0, 95) * 1000,
zhyncs's avatar
zhyncs committed
953
        p99_itl_ms=np.percentile(itls or 0, 99) * 1000,
954
        max_itl_ms=np.max(itls or 0) * 1000,
zhyncs's avatar
zhyncs committed
955
956
        mean_e2e_latency_ms=np.mean(e2e_latencies) * 1000,
        median_e2e_latency_ms=np.median(e2e_latencies) * 1000,
957
958
        std_e2e_latency_ms=np.std(e2e_latencies) * 1000,
        p99_e2e_latency_ms=np.percentile(e2e_latencies, 99) * 1000,
959
        concurrency=np.sum(e2e_latencies) / dur_s,
zhyncs's avatar
zhyncs committed
960
961
    )

Ying Sheng's avatar
Ying Sheng committed
962
    return metrics, output_lens
zhyncs's avatar
zhyncs committed
963
964
965
966
967


async def benchmark(
    backend: str,
    api_url: str,
968
    base_url: str,
zhyncs's avatar
zhyncs committed
969
970
971
972
    model_id: str,
    tokenizer: PreTrainedTokenizerBase,
    input_requests: List[Tuple[str, int, int]],
    request_rate: float,
973
    max_concurrency: Optional[int],
zhyncs's avatar
zhyncs committed
974
    disable_tqdm: bool,
975
    lora_names: List[str],
976
    extra_request_body: Dict[str, Any],
977
    profile: bool,
978
    pd_seperated: bool = False,
Yineng Zhang's avatar
Yineng Zhang committed
979
    flush_cache: bool = False,
zhyncs's avatar
zhyncs committed
980
981
982
983
984
985
):
    if backend in ASYNC_REQUEST_FUNCS:
        request_func = ASYNC_REQUEST_FUNCS[backend]
    else:
        raise ValueError(f"Unknown backend: {backend}")

986
    # Limit concurrency
987
988
989
990
991
992
993
994
995
    # From https://github.com/vllm-project/vllm/pull/9390
    semaphore = asyncio.Semaphore(max_concurrency) if max_concurrency else None

    async def limited_request_func(request_func_input, pbar):
        if semaphore is None:
            return await request_func(request_func_input=request_func_input, pbar=pbar)
        async with semaphore:
            return await request_func(request_func_input=request_func_input, pbar=pbar)

996
997
    if not hasattr(args, "warmup_requests"):
        args.warmup_requests = 1
998
    # Warmup
999
1000
1001
    print(f"Starting warmup with {args.warmup_requests} sequences...")

    # Use the first request for all warmup iterations
zhyncs's avatar
zhyncs committed
1002
    test_prompt, test_prompt_len, test_output_len = input_requests[0]
1003
    if lora_names is not None and len(lora_names) != 0:
1004
1005
1006
1007
        lora_name = lora_names[0]
    else:
        lora_name = None

1008
    # Create the test input once
zhyncs's avatar
zhyncs committed
1009
1010
1011
1012
1013
    test_input = RequestFuncInput(
        model=model_id,
        prompt=test_prompt,
        api_url=api_url,
        prompt_len=test_prompt_len,
1014
        output_len=min(test_output_len, 32),
1015
        lora_name=lora_name,
1016
        extra_request_body=extra_request_body,
zhyncs's avatar
zhyncs committed
1017
    )
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028

    # Run warmup requests
    warmup_tasks = []
    for _ in range(args.warmup_requests):
        warmup_tasks.append(
            asyncio.create_task(request_func(request_func_input=test_input))
        )

    warmup_outputs = await asyncio.gather(*warmup_tasks)

    # Check if at least one warmup request succeeded
1029
1030
1031
    if args.warmup_requests > 0 and not any(
        output.success for output in warmup_outputs
    ):
zhyncs's avatar
zhyncs committed
1032
        raise ValueError(
1033
1034
            "Warmup failed - Please make sure benchmark arguments "
            f"are correctly specified. Error: {warmup_outputs[0].error}"
zhyncs's avatar
zhyncs committed
1035
1036
        )
    else:
1037
1038
1039
        print(
            f"Warmup completed with {args.warmup_requests} sequences. Starting main benchmark run..."
        )
zhyncs's avatar
zhyncs committed
1040

1041
    # Flush cache
Yineng Zhang's avatar
Yineng Zhang committed
1042
    if ("sglang" in backend and _get_bool_env_var("SGLANG_IS_IN_CI")) or flush_cache:
1043
        requests.post(base_url + "/flush_cache", headers=get_auth_headers())
1044
1045

    time.sleep(1.0)
1046

1047
    # Start profiler
1048
1049
1050
1051
1052
1053
1054
1055
    if profile:
        print("Starting profiler...")
        profile_output = await async_request_profile(
            api_url=base_url + "/start_profile"
        )
        if profile_output.success:
            print("Profiler started")

zhyncs's avatar
zhyncs committed
1056
1057
    pbar = None if disable_tqdm else tqdm(total=len(input_requests))

1058
    # Run all requests
zhyncs's avatar
zhyncs committed
1059
1060
1061
1062
    benchmark_start_time = time.perf_counter()
    tasks: List[asyncio.Task] = []
    async for request in get_request(input_requests, request_rate):
        prompt, prompt_len, output_len = request
1063
        if lora_names is not None and len(lora_names) != 0:
1064
1065
1066
1067
1068
            idx = random.randint(0, len(lora_names) - 1)
            lora_name = lora_names[idx]
        else:
            lora_name = None

zhyncs's avatar
zhyncs committed
1069
1070
1071
1072
1073
1074
        request_func_input = RequestFuncInput(
            model=model_id,
            prompt=prompt,
            api_url=api_url,
            prompt_len=prompt_len,
            output_len=output_len,
1075
            lora_name=lora_name,
1076
            extra_request_body=extra_request_body,
zhyncs's avatar
zhyncs committed
1077
1078
1079
        )
        tasks.append(
            asyncio.create_task(
1080
                limited_request_func(request_func_input=request_func_input, pbar=pbar)
zhyncs's avatar
zhyncs committed
1081
1082
1083
1084
            )
        )
    outputs: List[RequestFuncOutput] = await asyncio.gather(*tasks)

1085
    # Stop profiler
1086
1087
1088
1089
1090
1091
    if profile:
        print("Stopping profiler...")
        profile_output = await async_request_profile(api_url=base_url + "/stop_profile")
        if profile_output.success:
            print("Profiler stopped")

zhyncs's avatar
zhyncs committed
1092
1093
1094
    if pbar is not None:
        pbar.close()

1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
    if "sglang" in backend:
        server_info = requests.get(base_url + "/get_server_info")
        if pd_seperated:
            accept_length = server_info.json()["decode"][0].get(
                "avg_spec_accept_length", None
            )
        else:
            accept_length = server_info.json().get("avg_spec_accept_length", None)
    else:
        accept_length = None

1106
    # Compute metrics and print results
zhyncs's avatar
zhyncs committed
1107
    benchmark_duration = time.perf_counter() - benchmark_start_time
Ying Sheng's avatar
Ying Sheng committed
1108
    metrics, output_lens = calculate_metrics(
zhyncs's avatar
zhyncs committed
1109
1110
1111
1112
        input_requests=input_requests,
        outputs=outputs,
        dur_s=benchmark_duration,
        tokenizer=tokenizer,
1113
        backend=backend,
zhyncs's avatar
zhyncs committed
1114
1115
1116
    )

    print("\n{s:{c}^{n}}".format(s=" Serving Benchmark Result ", n=50, c="="))
1117
    print("{:<40} {:<10}".format("Backend:", backend))
zhyncs's avatar
zhyncs committed
1118
    print("{:<40} {:<10}".format("Traffic request rate:", request_rate))
1119
1120
1121
1122
1123
1124
    print(
        "{:<40} {:<10}".format(
            "Max reqeuest concurrency:",
            max_concurrency if max_concurrency else "not set",
        )
    )
zhyncs's avatar
zhyncs committed
1125
1126
1127
1128
    print("{:<40} {:<10}".format("Successful requests:", metrics.completed))
    print("{:<40} {:<10.2f}".format("Benchmark duration (s):", benchmark_duration))
    print("{:<40} {:<10}".format("Total input tokens:", metrics.total_input))
    print("{:<40} {:<10}".format("Total generated tokens:", metrics.total_output))
Ying Sheng's avatar
Ying Sheng committed
1129
1130
1131
1132
1133
    print(
        "{:<40} {:<10}".format(
            "Total generated tokens (retokenized):", metrics.total_output_retokenized
        )
    )
zhyncs's avatar
zhyncs committed
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
    print(
        "{:<40} {:<10.2f}".format(
            "Request throughput (req/s):", metrics.request_throughput
        )
    )
    print(
        "{:<40} {:<10.2f}".format(
            "Input token throughput (tok/s):", metrics.input_throughput
        )
    )
    print(
        "{:<40} {:<10.2f}".format(
            "Output token throughput (tok/s):", metrics.output_throughput
        )
    )
1149
1150
1151
1152
1153
    print(
        "{:<40} {:<10.2f}".format(
            "Total token throughput (tok/s):", metrics.total_throughput
        )
    )
1154
    print("{:<40} {:<10.2f}".format("Concurrency:", metrics.concurrency))
1155
1156
    if accept_length:
        print("{:<40} {:<10.2f}".format("Accept length:", accept_length))
zhyncs's avatar
zhyncs committed
1157
1158
1159
1160
1161
1162
1163
1164
1165
    print("{s:{c}^{n}}".format(s="End-to-End Latency", n=50, c="-"))
    print(
        "{:<40} {:<10.2f}".format("Mean E2E Latency (ms):", metrics.mean_e2e_latency_ms)
    )
    print(
        "{:<40} {:<10.2f}".format(
            "Median E2E Latency (ms):", metrics.median_e2e_latency_ms
        )
    )
zhyncs's avatar
zhyncs committed
1166
1167
1168
1169
    print("{s:{c}^{n}}".format(s="Time to First Token", n=50, c="-"))
    print("{:<40} {:<10.2f}".format("Mean TTFT (ms):", metrics.mean_ttft_ms))
    print("{:<40} {:<10.2f}".format("Median TTFT (ms):", metrics.median_ttft_ms))
    print("{:<40} {:<10.2f}".format("P99 TTFT (ms):", metrics.p99_ttft_ms))
1170
    print("{s:{c}^{n}}".format(s="Inter-Token Latency", n=50, c="-"))
zhyncs's avatar
zhyncs committed
1171
1172
    print("{:<40} {:<10.2f}".format("Mean ITL (ms):", metrics.mean_itl_ms))
    print("{:<40} {:<10.2f}".format("Median ITL (ms):", metrics.median_itl_ms))
1173
    print("{:<40} {:<10.2f}".format("P95 ITL (ms):", metrics.p95_itl_ms))
zhyncs's avatar
zhyncs committed
1174
    print("{:<40} {:<10.2f}".format("P99 ITL (ms):", metrics.p99_itl_ms))
1175
    print("{:<40} {:<10.2f}".format("Max ITL (ms):", metrics.max_itl_ms))
zhyncs's avatar
zhyncs committed
1176
1177
    print("=" * 50)

zhyncs's avatar
zhyncs committed
1178
1179
1180
1181
1182
1183
    if (
        metrics.median_ttft_ms is not None
        and metrics.mean_itl_ms is not None
        and metrics.output_throughput is not None
    ):
        result = {
1184
            # Arguments
zhyncs's avatar
zhyncs committed
1185
1186
1187
            "backend": args.backend,
            "dataset_name": args.dataset_name,
            "request_rate": request_rate,
1188
            "max_concurrency": max_concurrency,
1189
1190
1191
1192
1193
1194
1195
            "sharegpt_output_len": args.sharegpt_output_len,
            "random_input_len": args.random_input_len,
            "random_output_len": args.random_output_len,
            "random_range_ratio": args.random_range_ratio,
            # Results
            "duration": benchmark_duration,
            "completed": metrics.completed,
1196
1197
1198
            "total_input_tokens": metrics.total_input,
            "total_output_tokens": metrics.total_output,
            "total_output_tokens_retokenized": metrics.total_output_retokenized,
1199
1200
1201
            "request_throughput": metrics.request_throughput,
            "input_throughput": metrics.input_throughput,
            "output_throughput": metrics.output_throughput,
1202
1203
            "mean_e2e_latency_ms": metrics.mean_e2e_latency_ms,
            "median_e2e_latency_ms": metrics.median_e2e_latency_ms,
1204
1205
            "std_e2e_latency_ms": metrics.std_e2e_latency_ms,
            "p99_e2e_latency_ms": metrics.p99_e2e_latency_ms,
1206
            "mean_ttft_ms": metrics.mean_ttft_ms,
1207
            "median_ttft_ms": metrics.median_ttft_ms,
1208
1209
1210
1211
1212
1213
            "std_ttft_ms": metrics.std_ttft_ms,
            "p99_ttft_ms": metrics.p99_ttft_ms,
            "mean_tpot_ms": metrics.mean_tpot_ms,
            "median_tpot_ms": metrics.median_tpot_ms,
            "std_tpot_ms": metrics.std_tpot_ms,
            "p99_tpot_ms": metrics.p99_tpot_ms,
1214
            "mean_itl_ms": metrics.mean_itl_ms,
1215
            "median_itl_ms": metrics.median_itl_ms,
1216
            "std_itl_ms": metrics.std_itl_ms,
1217
            "p95_itl_ms": metrics.p95_itl_ms,
1218
            "p99_itl_ms": metrics.p99_itl_ms,
1219
            "concurrency": metrics.concurrency,
1220
            "accept_length": accept_length,
zhyncs's avatar
zhyncs committed
1221
1222
1223
1224
        }
    else:
        print(f"Error running benchmark for request rate: {request_rate}")
        print("-" * 30)
1225

zhyncs's avatar
zhyncs committed
1226
1227
1228
1229
1230
    # Determine output file name
    if args.output_file:
        output_file_name = args.output_file
    else:
        now = datetime.now().strftime("%m%d")
1231
        if args.dataset_name.startswith("random"):
zhyncs's avatar
zhyncs committed
1232
            output_file_name = f"{args.backend}_{now}_{args.num_prompts}_{args.random_input_len}_{args.random_output_len}.jsonl"
1233
        else:
zhyncs's avatar
zhyncs committed
1234
            output_file_name = f"{args.backend}_{now}_{args.num_prompts}_sharegpt.jsonl"
1235

zhyncs's avatar
zhyncs committed
1236
1237
1238
    # Append results to a JSONL file
    with open(output_file_name, "a") as file:
        file.write(json.dumps(result) + "\n")
1239

1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
    result.update(
        {
            "input_lens": [output.prompt_len for output in outputs],
            "output_lens": output_lens,
            "ttfts": [output.ttft for output in outputs],
            "itls": [output.itl for output in outputs],
            "generated_texts": [output.generated_text for output in outputs],
            "errors": [output.error for output in outputs],
        }
    )
zhyncs's avatar
zhyncs committed
1250
1251
1252
    return result


1253
1254
1255
1256
1257
1258
1259
1260
1261
def check_chat_template(model_path):
    try:
        tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
        return "chat_template" in tokenizer.init_kwargs
    except Exception as e:
        print(f"Fail to load tokenizer config with error={e}")
        return False


1262
1263
1264
1265
1266
1267
def set_global_args(args_: argparse.Namespace):
    """Set the global args."""
    global args
    args = args_


1268
1269
1270
1271
def run_benchmark(args_: argparse.Namespace):
    global args
    args = args_

1272
1273
1274
1275
    # Set default value for max_concurrency if not present
    if not hasattr(args, "max_concurrency"):
        args.max_concurrency = None

1276
1277
1278
1279
    # Set default value for warmup_requests if not present
    if not hasattr(args, "warmup_requests"):
        args.warmup_requests = 1

1280
1281
    print(f"benchmark_args={args}")

Lianmin Zheng's avatar
Lianmin Zheng committed
1282
    # Set global environments
1283
    set_ulimit()
zhyncs's avatar
zhyncs committed
1284
1285
1286
    random.seed(args.seed)
    np.random.seed(args.seed)

1287
1288
1289
1290
    extra_request_body = {}
    if args.extra_request_body:
        extra_request_body = json.loads(args.extra_request_body)

Lianmin Zheng's avatar
Lianmin Zheng committed
1291
    # Set url
zhyncs's avatar
zhyncs committed
1292
1293
1294
    if args.port is None:
        args.port = {
            "sglang": 30000,
1295
1296
            "sglang-native": 30000,
            "sglang-oai": 30000,
zhyncs's avatar
zhyncs committed
1297
1298
            "lmdeploy": 23333,
            "vllm": 8000,
1299
            "trt": 8000,
1300
            "gserver": 9988,
1301
            "truss": 8080,
zhyncs's avatar
zhyncs committed
1302
1303
1304
1305
1306
1307
1308
1309
        }.get(args.backend, 30000)

    model_url = (
        f"{args.base_url}/v1/models"
        if args.base_url
        else f"http://{args.host}:{args.port}/v1/models"
    )

1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
    if args.backend in ["sglang", "sglang-native"]:
        api_url = (
            f"{args.base_url}/generate"
            if args.base_url
            else f"http://{args.host}:{args.port}/generate"
        )
    elif args.backend in ["sglang-oai", "vllm", "lmdeploy"]:
        api_url = (
            f"{args.base_url}/v1/completions"
            if args.base_url
            else f"http://{args.host}:{args.port}/v1/completions"
        )
    elif args.backend == "trt":
1323
1324
1325
1326
1327
1328
1329
1330
        api_url = (
            f"{args.base_url}/v2/models/ensemble/generate_stream"
            if args.base_url
            else f"http://{args.host}:{args.port}/v2/models/ensemble/generate_stream"
        )
        if args.model is None:
            print("Please provide a model using `--model` when using `trt` backend.")
            sys.exit(1)
1331
    elif args.backend == "gserver":
Lianmin Zheng's avatar
Lianmin Zheng committed
1332
1333
        api_url = args.base_url if args.base_url else f"{args.host}:{args.port}"
        args.model = args.model or "default"
1334
1335
1336
1337
1338
1339
    elif args.backend == "truss":
        api_url = (
            f"{args.base_url}/v1/models/model:predict"
            if args.base_url
            else f"http://{args.host}:{args.port}/v1/models/model:predict"
        )
1340
1341
1342
    base_url = (
        f"http://{args.host}:{args.port}" if args.base_url is None else args.base_url
    )
1343

Lianmin Zheng's avatar
Lianmin Zheng committed
1344
    # Get model name
zhyncs's avatar
zhyncs committed
1345
    if args.model is None:
1346
1347
1348
1349
1350
        if args.backend == "truss":
            print(
                "Please provide a model with `--model` when using truss backend. e.g. --model meta-llama/Llama-3.1-8B-Instruct"
            )
            sys.exit(1)
zhyncs's avatar
zhyncs committed
1351
        try:
1352
            response = requests.get(model_url, headers=get_auth_headers())
zhyncs's avatar
zhyncs committed
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
            model_list = response.json().get("data", [])
            args.model = model_list[0]["id"] if model_list else None
        except Exception as e:
            print(f"Failed to fetch model from {model_url}. Error: {e}")
            print(
                "Please specify the correct host and port using `--host` and `--port`."
            )
            sys.exit(1)

    if args.model is None:
        print("No model specified or found. Please provide a model using `--model`.")
        sys.exit(1)

1366
1367
1368
1369
1370
1371
    if not check_chat_template(args.model):
        print(
            "\nWARNING It is recommended to use the `Chat` or `Instruct` model for benchmarking.\n"
            "Because when the tokenizer counts the output tokens, if there is gibberish, it might count incorrectly.\n"
        )

zhyncs's avatar
zhyncs committed
1372
1373
    print(f"{args}\n")

Lianmin Zheng's avatar
Lianmin Zheng committed
1374
    # Read dataset
zhyncs's avatar
zhyncs committed
1375
1376
1377
1378
    backend = args.backend
    model_id = args.model
    tokenizer_id = args.tokenizer if args.tokenizer is not None else args.model
    tokenizer = get_tokenizer(tokenizer_id)
1379
    input_requests = get_dataset(args, tokenizer)
zhyncs's avatar
zhyncs committed
1380

Yineng Zhang's avatar
Yineng Zhang committed
1381
1382
1383
1384
    # compatible with SimpleNamespace
    if not hasattr(args, "flush_cache"):
        args.flush_cache = False

1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
    return asyncio.run(
        benchmark(
            backend=backend,
            api_url=api_url,
            base_url=base_url,
            model_id=model_id,
            tokenizer=tokenizer,
            input_requests=input_requests,
            request_rate=args.request_rate,
            max_concurrency=args.max_concurrency,
            disable_tqdm=args.disable_tqdm,
1396
            lora_names=args.lora_name,
1397
1398
1399
            extra_request_body=extra_request_body,
            profile=args.profile,
            pd_seperated=args.pd_seperated,
Yineng Zhang's avatar
Yineng Zhang committed
1400
            flush_cache=args.flush_cache,
Lianmin Zheng's avatar
Lianmin Zheng committed
1401
        )
1402
    )
zhyncs's avatar
zhyncs committed
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415


def set_ulimit(target_soft_limit=65535):
    resource_type = resource.RLIMIT_NOFILE
    current_soft, current_hard = resource.getrlimit(resource_type)

    if current_soft < target_soft_limit:
        try:
            resource.setrlimit(resource_type, (target_soft_limit, current_hard))
        except ValueError as e:
            print(f"Fail to set RLIMIT_NOFILE: {e}")


1416
1417
1418
1419
1420
1421
1422
class LoRAPathAction(argparse.Action):
    def __call__(self, parser, namespace, values, option_string=None):
        setattr(namespace, self.dest, [])
        for lora_name in values:
            getattr(namespace, self.dest).append(lora_name)


zhyncs's avatar
zhyncs committed
1423
if __name__ == "__main__":
1424
    parser = ArgumentParser(description="Benchmark the online serving throughput.")
zhyncs's avatar
zhyncs committed
1425
1426
1427
1428
    parser.add_argument(
        "--backend",
        type=str,
        choices=list(ASYNC_REQUEST_FUNCS.keys()),
1429
        default="sglang",
zhyncs's avatar
zhyncs committed
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
        help="Must specify a backend, depending on the LLM Inference Engine.",
    )
    parser.add_argument(
        "--base-url",
        type=str,
        default=None,
        help="Server or API base url if not using http host and port.",
    )
    parser.add_argument(
        "--host", type=str, default="0.0.0.0", help="Default host is 0.0.0.0."
    )
    parser.add_argument(
        "--port",
        type=int,
        help="If not set, the default port is configured according to its default value for different LLM Inference Engines.",
    )
    parser.add_argument(
1447
1448
1449
        "--dataset-name",
        type=str,
        default="sharegpt",
1450
        choices=["sharegpt", "random", "random-ids", "generated-shared-prefix"],
1451
1452
1453
1454
        help="Name of the dataset to benchmark on.",
    )
    parser.add_argument(
        "--dataset-path", type=str, default="", help="Path to the dataset."
zhyncs's avatar
zhyncs committed
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
    )
    parser.add_argument(
        "--model",
        type=str,
        help="Name or path of the model. If not set, the default model will request /v1/models for conf.",
    )
    parser.add_argument(
        "--tokenizer",
        type=str,
        help="Name or path of the tokenizer. If not set, using the model conf.",
    )
    parser.add_argument(
        "--num-prompts",
        type=int,
        default=1000,
        help="Number of prompts to process. Default is 1000.",
    )
    parser.add_argument(
        "--sharegpt-output-len",
        type=int,
        default=None,
        help="Output length for each request. Overrides the output length from the ShareGPT dataset.",
    )
1478
1479
1480
1481
1482
1483
    parser.add_argument(
        "--sharegpt-context-len",
        type=int,
        default=None,
        help="The context length of the model for the ShareGPT dataset. Requests longer than the context length will be dropped.",
    )
1484
1485
1486
    parser.add_argument(
        "--random-input-len",
        type=int,
1487
        default=1024,
1488
1489
1490
1491
        help="Number of input tokens per request, used only for random dataset.",
    )
    parser.add_argument(
        "--random-output-len",
1492
        default=1024,
1493
1494
1495
1496
1497
1498
        type=int,
        help="Number of output tokens per request, used only for random dataset.",
    )
    parser.add_argument(
        "--random-range-ratio",
        type=float,
Yineng Zhang's avatar
Yineng Zhang committed
1499
        default=0.0,
1500
1501
1502
        help="Range of sampled ratio of input/output length, "
        "used only for random dataset.",
    )
zhyncs's avatar
zhyncs committed
1503
1504
1505
    parser.add_argument(
        "--request-rate",
        type=float,
1506
        default=float("inf"),
zhyncs's avatar
zhyncs committed
1507
        help="Number of requests per second. If this is inf, then all the requests are sent at time 0. "
min-xu-et's avatar
min-xu-et committed
1508
        "Otherwise, we use Poisson process to synthesize the request arrival times. Default is inf.",
zhyncs's avatar
zhyncs committed
1509
    )
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
    parser.add_argument(
        "--max-concurrency",
        type=int,
        default=None,
        help="Maximum number of concurrent requests. This can be used "
        "to help simulate an environment where a higher level component "
        "is enforcing a maximum number of concurrent requests. While the "
        "--request-rate argument controls the rate at which requests are "
        "initiated, this argument will control how many are actually allowed "
        "to execute at a time. This means that when used in combination, the "
        "actual request rate may be lower than specified with --request-rate, "
        "if the server is not processing requests fast enough to keep up.",
    )
1523
    parser.add_argument("--output-file", type=str, help="Output JSONL file name.")
1524
1525
1526
1527
1528
    parser.add_argument(
        "--disable-tqdm",
        action="store_true",
        help="Specify to disable tqdm progress bar.",
    )
1529
1530
1531
1532
1533
    parser.add_argument(
        "--disable-stream",
        action="store_true",
        help="Disable streaming mode.",
    )
1534
    parser.add_argument(
1535
        "--return-logprob",
1536
        action="store_true",
1537
        help="Return logprob.",
1538
    )
1539
    parser.add_argument("--seed", type=int, default=1, help="The random seed.")
1540
    parser.add_argument(
1541
        "--disable-ignore-eos",
1542
        action="store_true",
1543
        help="Disable ignoring EOS.",
1544
    )
1545
1546
1547
1548
1549
1550
1551
    parser.add_argument(
        "--extra-request-body",
        metavar='{"key1": "value1", "key2": "value2"}',
        type=str,
        help="Append given JSON object to the request payload. You can use this to specify"
        "additional generate params like sampling params.",
    )
1552
1553
1554
1555
1556
    parser.add_argument(
        "--apply-chat-template",
        action="store_true",
        help="Apply chat template",
    )
1557
1558
1559
1560
1561
1562
1563
1564
1565
    parser.add_argument(
        "--profile",
        action="store_true",
        help="Use Torch Profiler. The endpoint must be launched with "
        "SGLANG_TORCH_PROFILER_DIR to enable profiler.",
    )
    parser.add_argument(
        "--lora-name",
        type=str,
1566
        nargs="*",
1567
        default=None,
1568
1569
        action=LoRAPathAction,
        help="The names of LoRA adapters. You can provide a list of names in the format {name} {name} {name}...",
1570
    )
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
    parser.add_argument(
        "--prompt-suffix",
        type=str,
        default="",
        help="Suffix applied to the end of all user prompts, followed by assistant prompt suffix.",
    )
    parser.add_argument(
        "--pd-seperated",
        action="store_true",
        help="Benchmark PD disaggregation server",
    )
Yineng Zhang's avatar
Yineng Zhang committed
1582
1583
1584
1585
1586
    parser.add_argument(
        "--flush-cache",
        action="store_true",
        help="Flush the cache before running the benchmark",
    )
1587
1588
1589
1590
1591
1592
    parser.add_argument(
        "--warmup-requests",
        type=int,
        default=1,
        help="Number of warmup requests to run before the benchmark",
    )
1593
1594
1595

    group = parser.add_argument_group("generated-shared-prefix dataset arguments")
    group.add_argument(
1596
        "--gsp-num-groups",
1597
1598
1599
1600
1601
        type=int,
        default=64,
        help="Number of system prompt groups for generated-shared-prefix dataset",
    )
    group.add_argument(
1602
        "--gsp-prompts-per-group",
1603
1604
1605
1606
1607
        type=int,
        default=16,
        help="Number of prompts per system prompt group for generated-shared-prefix dataset",
    )
    group.add_argument(
1608
        "--gsp-system-prompt-len",
1609
1610
1611
1612
1613
        type=int,
        default=2048,
        help="Target length in tokens for system prompts in generated-shared-prefix dataset",
    )
    group.add_argument(
1614
        "--gsp-question-len",
1615
1616
1617
1618
1619
        type=int,
        default=128,
        help="Target length in tokens for questions in generated-shared-prefix dataset",
    )
    group.add_argument(
1620
        "--gsp-output-len",
1621
1622
1623
1624
        type=int,
        default=256,
        help="Target length in tokens for outputs in generated-shared-prefix dataset",
    )
zhyncs's avatar
zhyncs committed
1625
    args = parser.parse_args()
1626
    run_benchmark(args)