tokenizer_manager.py 65.4 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
# Copyright 2023-2024 SGLang Team
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
14
"""TokenizerManager is a process that tokenizes the text."""
15

Lianmin Zheng's avatar
Lianmin Zheng committed
16
import asyncio
17
18
import copy
import dataclasses
19
import json
20
import logging
21
import math
Lianmin Zheng's avatar
Lianmin Zheng committed
22
import os
23
import pickle
24
25
import signal
import sys
26
import threading
27
import time
28
import uuid
29
from collections import deque
30
31
from datetime import datetime
from http import HTTPStatus
32
33
34
35
36
37
38
39
40
41
42
43
from typing import (
    Any,
    Awaitable,
    Deque,
    Dict,
    Generic,
    List,
    Optional,
    Tuple,
    TypeVar,
    Union,
)
Lianmin Zheng's avatar
Lianmin Zheng committed
44

45
import fastapi
46
import torch
Lianmin Zheng's avatar
Lianmin Zheng committed
47
48
49
import uvloop
import zmq
import zmq.asyncio
50
from fastapi import BackgroundTasks
Liangsheng Yin's avatar
Liangsheng Yin committed
51

52
from sglang.srt.aio_rwlock import RWLock
53
from sglang.srt.configs.model_config import ModelConfig
54
55
56
57
58
59
from sglang.srt.disaggregation.utils import (
    DisaggregationMode,
    KVClassType,
    TransferBackend,
    get_kv_class,
)
xm:D's avatar
xm:D committed
60
61
62
63
64
from sglang.srt.hf_transformers_utils import (
    get_processor,
    get_tokenizer,
    get_tokenizer_from_processor,
)
Lianmin Zheng's avatar
Lianmin Zheng committed
65
from sglang.srt.managers.io_struct import (
66
    AbortReq,
67
    BatchEmbeddingOut,
68
    BatchMultimodalOut,
Lianmin Zheng's avatar
Lianmin Zheng committed
69
    BatchStrOut,
70
    BatchTokenIDOut,
71
    CloseSessionReqInput,
72
    ConfigureLoggingReq,
73
    EmbeddingReqInput,
74
    ExpertDistributionReq,
75
    ExpertDistributionReqOutput,
76
77
    FlushCacheReqInput,
    FlushCacheReqOutput,
Lianmin Zheng's avatar
Lianmin Zheng committed
78
    GenerateReqInput,
79
80
    GetInternalStateReq,
    GetInternalStateReqOutput,
81
82
    GetWeightsByNameReqInput,
    GetWeightsByNameReqOutput,
83
    HealthCheckOutput,
84
85
    InitWeightsUpdateGroupReqInput,
    InitWeightsUpdateGroupReqOutput,
86
87
88
    LoadLoRAAdapterReqInput,
    LoadLoRAAdapterReqOutput,
    LoRAUpdateResult,
89
90
    OpenSessionReqInput,
    OpenSessionReqOutput,
91
    ProfileReq,
92
93
    ProfileReqOutput,
    ProfileReqType,
94
95
96
97
    ReleaseMemoryOccupationReqInput,
    ReleaseMemoryOccupationReqOutput,
    ResumeMemoryOccupationReqInput,
    ResumeMemoryOccupationReqOutput,
98
    SessionParams,
99
100
    SetInternalStateReq,
    SetInternalStateReqOutput,
101
102
    SlowDownReqInput,
    SlowDownReqOutput,
103
104
    TokenizedEmbeddingReqInput,
    TokenizedGenerateReqInput,
105
106
    UnloadLoRAAdapterReqInput,
    UnloadLoRAAdapterReqOutput,
Chayenne's avatar
Chayenne committed
107
108
    UpdateWeightFromDiskReqInput,
    UpdateWeightFromDiskReqOutput,
109
110
    UpdateWeightsFromDistributedReqInput,
    UpdateWeightsFromDistributedReqOutput,
111
112
    UpdateWeightsFromTensorReqInput,
    UpdateWeightsFromTensorReqOutput,
Lianmin Zheng's avatar
Lianmin Zheng committed
113
)
Mick's avatar
Mick committed
114
115
116
117
118
from sglang.srt.managers.multimodal_processor import (
    get_dummy_processor,
    get_mm_processor,
    import_processors,
)
119
120
from sglang.srt.metrics.collector import TokenizerMetricsCollector
from sglang.srt.sampling.sampling_params import SamplingParams
Lianmin Zheng's avatar
Lianmin Zheng committed
121
from sglang.srt.server_args import PortArgs, ServerArgs
122
123
from sglang.srt.utils import (
    dataclass_to_string_truncated,
124
    get_bool_env_var,
125
126
127
    get_zmq_socket,
    kill_process_tree,
)
128
from sglang.utils import TypeBasedDispatcher, get_exception_traceback
Lianmin Zheng's avatar
Lianmin Zheng committed
129
130
131

asyncio.set_event_loop_policy(uvloop.EventLoopPolicy())

132
133
logger = logging.getLogger(__name__)

Lianmin Zheng's avatar
Lianmin Zheng committed
134

135
136
137
138
@dataclasses.dataclass
class ReqState:
    """Store the state a request."""

139
    out_list: List[Dict[Any, Any]]
140
141
    finished: bool
    event: asyncio.Event
142
    obj: Union[GenerateReqInput, EmbeddingReqInput]
143
144
145

    # For metrics
    created_time: float
146
147
148
149
    finished_time: float = 0.0
    first_token_time: float = 0.0
    last_time: float = 0.0
    last_completion_tokens: int = 1
150
151
152

    # For streaming output
    last_output_offset: int = 0
153

154
    # For incremental state update.
155
    # TODO(lianmin): do not initialize some lists if not needed.
156
157
158
159
160
161
162
163
164
165
166
167
168
169
    text: str = ""
    output_ids: List[int] = dataclasses.field(default_factory=list)
    input_token_logprobs_val: List[float] = dataclasses.field(default_factory=list)
    input_token_logprobs_idx: List[int] = dataclasses.field(default_factory=list)
    output_token_logprobs_val: List[float] = dataclasses.field(default_factory=list)
    output_token_logprobs_idx: List[int] = dataclasses.field(default_factory=list)
    input_top_logprobs_val: List[List[float]] = dataclasses.field(default_factory=list)
    input_top_logprobs_idx: List[List[int]] = dataclasses.field(default_factory=list)
    output_top_logprobs_val: List[List[float]] = dataclasses.field(default_factory=list)
    output_top_logprobs_idx: List[List[int]] = dataclasses.field(default_factory=list)
    input_token_ids_logprobs_val: List = dataclasses.field(default_factory=list)
    input_token_ids_logprobs_idx: List = dataclasses.field(default_factory=list)
    output_token_ids_logprobs_val: List = dataclasses.field(default_factory=list)
    output_token_ids_logprobs_idx: List = dataclasses.field(default_factory=list)
170
171


172
173
class TokenizerManager:
    """TokenizerManager is a process that tokenizes the text."""
174

Lianmin Zheng's avatar
Lianmin Zheng committed
175
176
177
178
179
    def __init__(
        self,
        server_args: ServerArgs,
        port_args: PortArgs,
    ):
180
        # Parse args
Liangsheng Yin's avatar
Liangsheng Yin committed
181
        self.server_args = server_args
182
        self.enable_metrics = server_args.enable_metrics
183
        self.log_requests = server_args.log_requests
184
        self.log_requests_level = server_args.log_requests_level
185
186
187
188
189
        self.preferred_sampling_params = (
            json.loads(server_args.preferred_sampling_params)
            if server_args.preferred_sampling_params
            else None
        )
Liangsheng Yin's avatar
Liangsheng Yin committed
190

191
        # Init inter-process communication
Lianmin Zheng's avatar
Lianmin Zheng committed
192
        context = zmq.asyncio.Context(2)
193
        self.recv_from_detokenizer = get_zmq_socket(
Lianmin Zheng's avatar
Lianmin Zheng committed
194
            context, zmq.PULL, port_args.tokenizer_ipc_name, True
195
196
        )
        self.send_to_scheduler = get_zmq_socket(
Lianmin Zheng's avatar
Lianmin Zheng committed
197
            context, zmq.PUSH, port_args.scheduler_input_ipc_name, True
198
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
199

200
        # Read model args
Lianmin Zheng's avatar
Lianmin Zheng committed
201
        self.model_path = server_args.model_path
202
        self.served_model_name = server_args.served_model_name
203
        self.model_config = ModelConfig.from_server_args(server_args)
204
        self.is_generation = self.model_config.is_generation
205
        self.is_image_gen = self.model_config.is_image_gen
206
207
208
        self.context_len = self.model_config.context_len
        self.image_token_id = self.model_config.image_token_id

209
        if self.model_config.is_multimodal:
Mick's avatar
Mick committed
210
            import_processors()
211
212
213
214
215
            _processor = get_processor(
                server_args.tokenizer_path,
                tokenizer_mode=server_args.tokenizer_mode,
                trust_remote_code=server_args.trust_remote_code,
                revision=server_args.revision,
216
                use_fast=not server_args.disable_fast_image_processor,
217
218
219
            )

            # We want to parallelize the image pre-processing so we create an executor for it
Mick's avatar
Mick committed
220
            # We create mm_processor for any skip_tokenizer_init to make sure we still encode
221
            # images even with skip_tokenizer_init=False.
Mick's avatar
Mick committed
222
            self.mm_processor = get_mm_processor(
223
224
225
226
227
228
229
                self.model_config.hf_config, server_args, _processor
            )

            if server_args.skip_tokenizer_init:
                self.tokenizer = self.processor = None
            else:
                self.processor = _processor
xm:D's avatar
xm:D committed
230
                self.tokenizer = get_tokenizer_from_processor(self.processor)
231
                os.environ["TOKENIZERS_PARALLELISM"] = "false"
232
        else:
233
            self.mm_processor = None
234

235
236
            if server_args.skip_tokenizer_init:
                self.tokenizer = self.processor = None
237
238
239
240
241
242
243
            else:
                self.tokenizer = get_tokenizer(
                    server_args.tokenizer_path,
                    tokenizer_mode=server_args.tokenizer_mode,
                    trust_remote_code=server_args.trust_remote_code,
                    revision=server_args.revision,
                )
Lianmin Zheng's avatar
Lianmin Zheng committed
244

245
        # Store states
246
        self.no_create_loop = False
247
        self.rid_to_state: Dict[str, ReqState] = {}
248
        self.health_check_failed = False
249
250
        self.gracefully_exit = False
        self.last_receive_tstamp = 0
251
252
253
        self.dump_requests_folder = ""  # By default do not dump
        self.dump_requests_threshold = 1000
        self.dump_request_list: List[Tuple] = []
254
        self.log_request_metadata = self.get_log_request_metadata()
255
256
257
        self.asyncio_tasks = set()
        self.session_futures = {}  # session_id -> asyncio event
        self.max_req_input_len = None
Lianmin Zheng's avatar
Lianmin Zheng committed
258

259
260
261
262
263
        # The event to notify the weight sync is finished.
        self.model_update_lock = RWLock()
        self.model_update_result: Optional[Awaitable[UpdateWeightFromDiskReqOutput]] = (
            None
        )
264

265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
        # For pd disaggregtion
        self.disaggregation_mode = DisaggregationMode(
            self.server_args.disaggregation_mode
        )
        self.transfer_backend = TransferBackend(
            self.server_args.disaggregation_transfer_backend
        )
        # Start kv boostrap server on prefill
        if self.disaggregation_mode == DisaggregationMode.PREFILL:
            # only start bootstrap server on prefill tm
            kv_bootstrap_server_class = get_kv_class(
                self.transfer_backend, KVClassType.BOOTSTRAP_SERVER
            )
            self.bootstrap_server = kv_bootstrap_server_class(
                self.server_args.disaggregation_bootstrap_port
            )
281

282
283
284
        # For load balancing
        self.current_load = 0
        self.current_load_lock = asyncio.Lock()
285
286
287
288
289
290

        # Metrics
        if self.enable_metrics:
            self.metrics_collector = TokenizerMetricsCollector(
                labels={
                    "model_name": self.server_args.served_model_name,
291
                    # TODO: Add lora name/path in the future,
292
                },
293
294
295
296
                bucket_time_to_first_token=self.server_args.bucket_time_to_first_token,
                bucket_e2e_request_latency=self.server_args.bucket_e2e_request_latency,
                bucket_inter_token_latency=self.server_args.bucket_inter_token_latency,
                collect_tokens_histogram=self.server_args.collect_tokens_histogram,
297
298
299
            )

        # Communicators
300
301
302
303
304
305
        self.init_weights_update_group_communicator = _Communicator(
            self.send_to_scheduler, server_args.dp_size
        )
        self.update_weights_from_distributed_communicator = _Communicator(
            self.send_to_scheduler, server_args.dp_size
        )
306
307
308
        self.update_weights_from_tensor_communicator = _Communicator(
            self.send_to_scheduler, server_args.dp_size
        )
309
310
311
        self.get_weights_by_name_communicator = _Communicator(
            self.send_to_scheduler, server_args.dp_size
        )
312
313
314
315
316
317
        self.release_memory_occupation_communicator = _Communicator(
            self.send_to_scheduler, server_args.dp_size
        )
        self.resume_memory_occupation_communicator = _Communicator(
            self.send_to_scheduler, server_args.dp_size
        )
318
319
320
        self.slow_down_communicator = _Communicator(
            self.send_to_scheduler, server_args.dp_size
        )
321
322
323
        self.flush_cache_communicator = _Communicator(
            self.send_to_scheduler, server_args.dp_size
        )
324
        self.profile_communicator = _Communicator(
325
326
            self.send_to_scheduler, server_args.dp_size
        )
327
        self.health_check_communitcator = _Communicator(self.send_to_scheduler, 1)
328
329
330
        self.get_internal_state_communicator = _Communicator(
            self.send_to_scheduler, server_args.dp_size
        )
331
332
333
        self.set_internal_state_communicator = _Communicator(
            self.send_to_scheduler, server_args.dp_size
        )
334
335
336
        self.expert_distribution_communicator = _Communicator(
            self.send_to_scheduler, server_args.dp_size
        )
337
338
339
        self.update_lora_adapter_communicator = _Communicator(
            self.send_to_scheduler, server_args.dp_size
        )
340

341
        self._result_dispatcher = TypeBasedDispatcher(
342
            [
343
                (
344
345
346
347
348
349
                    (
                        BatchStrOut,
                        BatchEmbeddingOut,
                        BatchTokenIDOut,
                        BatchMultimodalOut,
                    ),
350
                    self._handle_batch_output,
351
                ),
Lianmin Zheng's avatar
Lianmin Zheng committed
352
                (AbortReq, self._handle_abort_req),
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
                (OpenSessionReqOutput, self._handle_open_session_req_output),
                (
                    UpdateWeightFromDiskReqOutput,
                    self._handle_update_weights_from_disk_req_output,
                ),
                (
                    InitWeightsUpdateGroupReqOutput,
                    self.init_weights_update_group_communicator.handle_recv,
                ),
                (
                    UpdateWeightsFromDistributedReqOutput,
                    self.update_weights_from_distributed_communicator.handle_recv,
                ),
                (
                    UpdateWeightsFromTensorReqOutput,
                    self.update_weights_from_tensor_communicator.handle_recv,
                ),
                (
                    GetWeightsByNameReqOutput,
                    self.get_weights_by_name_communicator.handle_recv,
                ),
                (
                    ReleaseMemoryOccupationReqOutput,
                    self.release_memory_occupation_communicator.handle_recv,
                ),
                (
                    ResumeMemoryOccupationReqOutput,
                    self.resume_memory_occupation_communicator.handle_recv,
                ),
382
383
384
385
                (
                    SlowDownReqOutput,
                    self.slow_down_communicator.handle_recv,
                ),
386
387
388
389
                (
                    FlushCacheReqOutput,
                    self.flush_cache_communicator.handle_recv,
                ),
390
391
                (
                    ProfileReqOutput,
392
                    self.profile_communicator.handle_recv,
393
394
395
396
397
                ),
                (
                    GetInternalStateReqOutput,
                    self.get_internal_state_communicator.handle_recv,
                ),
398
399
400
401
                (
                    SetInternalStateReqOutput,
                    self.set_internal_state_communicator.handle_recv,
                ),
402
403
404
405
                (
                    ExpertDistributionReqOutput,
                    self.expert_distribution_communicator.handle_recv,
                ),
406
407
408
409
                (
                    LoRAUpdateResult,
                    self.update_lora_adapter_communicator.handle_recv,
                ),
410
                (HealthCheckOutput, lambda x: None),
411
412
413
            ]
        )

414
    async def generate_request(
415
        self,
416
        obj: Union[GenerateReqInput, EmbeddingReqInput],
417
        request: Optional[fastapi.Request] = None,
418
    ):
419
        created_time = time.time()
420
        self.auto_create_handle_loop()
421
        obj.normalize_batch_and_arguments()
422
423
424
425
426
427
428
429

        if isinstance(obj, EmbeddingReqInput) and self.is_generation:
            raise ValueError(
                "This model does not appear to be an embedding model by default. "
                "Please add `--is-embedding` when launching the server or try another model."
            )

        if self.log_requests:
430
            max_length, skip_names, _ = self.log_request_metadata
431
            logger.info(
432
                f"Receive: obj={dataclass_to_string_truncated(obj, max_length, skip_names=skip_names)}"
433
434
            )

435
        async with self.model_update_lock.reader_lock:
436
            if obj.is_single:
437
                tokenized_obj = await self._tokenize_one_request(obj)
438
439
                state = self._send_one_request(obj, tokenized_obj, created_time)
                async for response in self._wait_one_response(obj, state, request):
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
                    yield response
            else:
                async for response in self._handle_batch_request(
                    obj, request, created_time
                ):
                    yield response

    async def _tokenize_one_request(
        self,
        obj: Union[GenerateReqInput, EmbeddingReqInput],
    ):
        """Tokenize one request."""
        # Tokenize
        input_embeds = None
        input_text = obj.text
woodx's avatar
woodx committed
455
456
457
458
        token_type_ids = None
        is_cross_encoder_request = (
            isinstance(obj, EmbeddingReqInput) and obj.is_cross_encoder_request
        )
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
        if obj.input_embeds is not None:
            if not self.server_args.disable_radix_cache:
                raise ValueError(
                    "input_embeds is provided while disable_radix_cache is False. "
                    "Please add `--disable-radix-cache` when you launch the server "
                    "if you want to use input_embeds as inputs."
                )
            input_embeds = obj.input_embeds
            input_ids = obj.input_ids
        elif obj.input_ids is not None:
            input_ids = obj.input_ids
        else:
            if self.tokenizer is None:
                raise ValueError(
                    "The engine initialized with skip_tokenizer_init=True cannot "
                    "accept text prompts. Please provide input_ids or re-initialize "
                    "the engine with skip_tokenizer_init=False."
                )
woodx's avatar
woodx committed
477
478
479
480
481
482
483
484
            encoded = self.tokenizer(
                input_text, return_token_type_ids=is_cross_encoder_request
            )

            input_ids = encoded["input_ids"]
            if is_cross_encoder_request:
                input_ids = encoded["input_ids"][0]
                token_type_ids = encoded.get("token_type_ids", [None])[0]
485

486
        if self.mm_processor and obj.contains_mm_input():
487
488
489
490
491
492
493
494
            image_inputs = await self.mm_processor.process_mm_data_async(
                image_data=obj.image_data,
                input_text=input_text or input_ids,
                request_obj=obj,
                max_req_input_len=self.max_req_input_len,
            )
            if image_inputs and "input_ids" in image_inputs:
                input_ids = image_inputs["input_ids"]
495
496
        else:
            image_inputs: Optional[Dict] = None
497

498
        self._validate_one_request(obj, input_ids)
499
        return self._create_tokenized_object(
woodx's avatar
woodx committed
500
            obj, input_text, input_ids, input_embeds, image_inputs, token_type_ids
501
502
        )

503
    def _validate_one_request(
504
505
506
        self, obj: Union[GenerateReqInput, EmbeddingReqInput], input_ids: List[int]
    ) -> None:
        """Validates that the input token count and the requested token count doesn't exceed the model's context length."""
507
508

        input_token_num = len(input_ids) if input_ids is not None else 0
509
        # Check if input alone exceeds context length
510
511
512
513
514
515
        if input_token_num >= self.context_len:
            raise ValueError(
                f"The input ({input_token_num} tokens) is longer than the "
                f"model's context length ({self.context_len} tokens)."
            )

516
517
        # Check total tokens (input + max_new_tokens)
        max_new_tokens = obj.sampling_params.get("max_new_tokens")
518
        if (
519
520
            max_new_tokens is not None
            and (max_new_tokens + input_token_num) >= self.context_len
521
        ):
522
523
            total_tokens = max_new_tokens + input_token_num
            error_msg = (
524
                f"Requested token count exceeds the model's maximum context length "
525
                f"of {self.context_len} tokens. You requested a total of {total_tokens} "
526
                f"tokens: {input_token_num} tokens from the input messages and "
527
528
529
530
531
                f"{max_new_tokens} tokens for the completion. Please reduce the number "
                f"of tokens in the input messages or the completion to fit within the limit."
            )
            raise ValueError(error_msg)

532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
        if isinstance(obj, GenerateReqInput):
            if (
                obj.return_hidden_states
                and not self.server_args.enable_return_hidden_states
            ):
                raise ValueError(
                    "The server is not configured to return the hidden states. "
                    "Please set `--enable-return-hidden-states` to enable this feature."
                )
            if (
                obj.custom_logit_processor
                and not self.server_args.enable_custom_logit_processor
            ):
                raise ValueError(
                    "The server is not configured to enable custom logit processor. "
                    "Please set `--enable-custom-logits-processor` to enable this feature."
                )

550
551
552
553
554
555
556
    def _create_tokenized_object(
        self,
        obj: Union[GenerateReqInput, EmbeddingReqInput],
        input_text: str,
        input_ids: List[int],
        input_embeds: Optional[Union[List[float], None]] = None,
        image_inputs: Optional[Dict] = None,
woodx's avatar
woodx committed
557
        token_type_ids: Optional[List[int]] = None,
558
559
    ) -> Union[TokenizedGenerateReqInput, TokenizedEmbeddingReqInput]:
        """Create a tokenized request object from common parameters."""
560
561
562
563
564
565
566
567
        # Parse sampling parameters
        # Note: if there are preferred sampling params, we use them if they are not
        # explicitly passed in sampling_params
        if self.preferred_sampling_params:
            sampling_kwargs = {**self.preferred_sampling_params, **obj.sampling_params}
        else:
            sampling_kwargs = obj.sampling_params
        sampling_params = SamplingParams(**sampling_kwargs)
568
569
570
571
572
        sampling_params.normalize(self.tokenizer)
        sampling_params.verify()

        # Build return object
        if isinstance(obj, GenerateReqInput):
573
574
575
576
            session_params = (
                SessionParams(**obj.session_params) if obj.session_params else None
            )

577
578
579
580
581
582
            tokenized_obj = TokenizedGenerateReqInput(
                obj.rid,
                input_text,
                input_ids,
                image_inputs,
                sampling_params,
583
584
585
586
                obj.return_logprob,
                obj.logprob_start_len,
                obj.top_logprobs_num,
                obj.token_ids_logprob,
587
                obj.stream,
588
                bootstrap_host=obj.bootstrap_host,
589
                bootstrap_port=obj.bootstrap_port,
590
                bootstrap_room=obj.bootstrap_room,
591
592
593
594
                lora_path=obj.lora_path,
                input_embeds=input_embeds,
                session_params=session_params,
                custom_logit_processor=obj.custom_logit_processor,
595
                return_hidden_states=obj.return_hidden_states,
596
                data_parallel_rank=obj.data_parallel_rank,
597
598
599
600
601
602
            )
        elif isinstance(obj, EmbeddingReqInput):
            tokenized_obj = TokenizedEmbeddingReqInput(
                obj.rid,
                input_text,
                input_ids,
603
                image_inputs,
woodx's avatar
woodx committed
604
                token_type_ids,
605
606
607
608
609
                sampling_params,
            )

        return tokenized_obj

610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
    async def _batch_tokenize_and_process(
        self, batch_size: int, obj: Union[GenerateReqInput, EmbeddingReqInput]
    ) -> List[Union[TokenizedGenerateReqInput, TokenizedEmbeddingReqInput]]:
        """Handle batch tokenization for text inputs only."""
        logger.debug(f"Starting batch tokenization for {batch_size} text requests")

        # Collect requests and texts
        requests = [obj[i] for i in range(batch_size)]
        texts = [req.text for req in requests]

        # Batch tokenize all texts
        encoded = self.tokenizer(texts)
        input_ids_list = encoded["input_ids"]

        # Process all requests
        tokenized_objs = []
        for i, req in enumerate(requests):
            self._validate_token_len(obj[i], input_ids_list[i])
            tokenized_objs.append(
                self._create_tokenized_object(
                    req, req.text, input_ids_list[i], None, None
                )
            )
        logger.debug(f"Completed batch processing for {batch_size} requests")
        return tokenized_objs

    def _validate_batch_tokenization_constraints(
        self, batch_size: int, obj: Union[GenerateReqInput, EmbeddingReqInput]
    ) -> None:
        """Validate constraints for batch tokenization processing."""
        for i in range(batch_size):
            if self.is_generation and obj[i].image_data:
                raise ValueError(
                    "For image input processing do not set `enable_tokenizer_batch_encode`."
                )
            if obj[i].input_ids is not None:
                raise ValueError(
                    "Batch tokenization is not needed for pre-tokenized input_ids. Do not set `enable_tokenizer_batch_encode`."
                )
            if obj[i].input_embeds is not None:
                raise ValueError(
                    "Batch tokenization is not needed for input_embeds. Do not set `enable_tokenizer_batch_encode`."
                )

654
655
656
657
658
659
    def _send_one_request(
        self,
        obj: Union[GenerateReqInput, EmbeddingReqInput],
        tokenized_obj: Union[TokenizedGenerateReqInput, TokenizedEmbeddingReqInput],
        created_time: Optional[float] = None,
    ):
Lianmin Zheng's avatar
Lianmin Zheng committed
660
        self.send_to_scheduler.send_pyobj(tokenized_obj)
661
        state = ReqState([], False, asyncio.Event(), obj, created_time=created_time)
662
        self.rid_to_state[obj.rid] = state
663
        return state
664
665
666
667

    async def _wait_one_response(
        self,
        obj: Union[GenerateReqInput, EmbeddingReqInput],
668
        state: ReqState,
669
670
671
672
673
674
675
676
        request: Optional[fastapi.Request] = None,
    ):
        """Wait for the response of one request."""
        while True:
            try:
                await asyncio.wait_for(state.event.wait(), timeout=4)
            except asyncio.TimeoutError:
                if request is not None and await request.is_disconnected():
Lianmin Zheng's avatar
Lianmin Zheng committed
677
                    # Abort the request for disconnected requests (non-streaming, waiting queue)
678
                    self.abort_request(obj.rid)
Lianmin Zheng's avatar
Lianmin Zheng committed
679
                    # Use exception to kill the whole call stack and asyncio task
680
                    raise ValueError(
Lianmin Zheng's avatar
Lianmin Zheng committed
681
                        f"Request is disconnected from the client side (type 1). Abort request {obj.rid=}"
682
                    )
683
684
685
686
687
688
689
                continue

            out = state.out_list[-1]

            state.out_list = []
            if state.finished:
                if self.log_requests:
690
691
692
693
694
                    max_length, skip_names, out_skip_names = self.log_request_metadata
                    if self.model_config.is_multimodal_gen:
                        msg = f"Finish: obj={dataclass_to_string_truncated(obj, max_length, skip_names=skip_names)}"
                    else:
                        msg = f"Finish: obj={dataclass_to_string_truncated(obj, max_length, skip_names=skip_names)}, out={dataclass_to_string_truncated(out, max_length, skip_names=out_skip_names)}"
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
                    logger.info(msg)

                # Check if this was an abort/error created by scheduler
                if isinstance(out["meta_info"].get("finish_reason"), dict):
                    finish_reason = out["meta_info"]["finish_reason"]
                    if (
                        finish_reason.get("type") == "abort"
                        and finish_reason.get("status_code") == HTTPStatus.BAD_REQUEST
                    ):
                        raise ValueError(finish_reason["message"])

                yield out
                break

            state.event.clear()

            if obj.stream:
                yield out
            else:
                if request is not None and await request.is_disconnected():
Lianmin Zheng's avatar
Lianmin Zheng committed
715
                    # Abort the request for disconnected requests (non-streaming, running)
716
                    self.abort_request(obj.rid)
Lianmin Zheng's avatar
Lianmin Zheng committed
717
                    # Use exception to kill the whole call stack and asyncio task
718
                    raise ValueError(
Lianmin Zheng's avatar
Lianmin Zheng committed
719
                        f"Request is disconnected from the client side (type 3). Abort request {obj.rid=}"
720
                    )
721
722
723
724
725
726
727
728
729
730
731
732

    async def _handle_batch_request(
        self,
        obj: Union[GenerateReqInput, EmbeddingReqInput],
        request: Optional[fastapi.Request] = None,
        created_time: Optional[float] = None,
    ):
        batch_size = obj.batch_size

        generators = []
        rids = []
        if getattr(obj, "parallel_sample_num", 1) == 1:
733
734
735
736
737
738
739
740
            if self.server_args.enable_tokenizer_batch_encode:
                # Validate batch tokenization constraints
                self._validate_batch_tokenization_constraints(batch_size, obj)

                tokenized_objs = await self._batch_tokenize_and_process(batch_size, obj)

                for i, tokenized_obj in enumerate(tokenized_objs):
                    tmp_obj = obj[i]
741
742
                    state = self._send_one_request(tmp_obj, tokenized_obj, created_time)
                    generators.append(self._wait_one_response(tmp_obj, state, request))
743
744
745
746
747
748
                    rids.append(tmp_obj.rid)
            else:
                # Sequential tokenization and processing
                for i in range(batch_size):
                    tmp_obj = obj[i]
                    tokenized_obj = await self._tokenize_one_request(tmp_obj)
749
750
                    state = self._send_one_request(tmp_obj, tokenized_obj, created_time)
                    generators.append(self._wait_one_response(tmp_obj, state, request))
751
                    rids.append(tmp_obj.rid)
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
        else:
            # FIXME: When using batch and parallel_sample_num together, the perf is not optimal.
            if batch_size > 128:
                logger.warning(
                    "Sending a single large batch with parallel sampling (n > 1) has not been well optimized. "
                    "The performance might be better if you just duplicate the requests n times or use "
                    "many threads to send them one by one with parallel sampling (n > 1)."
                )

            # Tokenize all requests
            objs = [obj[i] for i in range(batch_size)]
            tokenized_objs = await asyncio.gather(
                *(self._tokenize_one_request(obj) for obj in objs)
            )

            # Cache the common prefix for parallel sampling
            for i in range(batch_size):
                tmp_obj = copy.copy(objs[i])
                tokenized_obj = copy.copy(tokenized_objs[i])
                tokenized_obj.rid = tmp_obj.regenerate_rid()
                tokenized_obj.sampling_params = copy.copy(tokenized_obj.sampling_params)
                tokenized_obj.sampling_params.max_new_tokens = 0
                tokenized_obj.stream = False
775
776
                state = self._send_one_request(tmp_obj, tokenized_obj, created_time)
                await self._wait_one_response(tmp_obj, state, request).__anext__()
777
778
779
780
781
782
783

            # Expand requests, assign new rids for them, and send them
            for i in range(batch_size):
                for _ in range(obj.parallel_sample_num):
                    tmp_obj = copy.copy(objs[i])
                    tokenized_obj = copy.copy(tokenized_objs[i])
                    tokenized_obj.rid = tmp_obj.regenerate_rid()
784
785
                    state = self._send_one_request(tmp_obj, tokenized_obj, created_time)
                    generators.append(self._wait_one_response(tmp_obj, state, request))
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
                    rids.append(tmp_obj.rid)

        # Wait for all requests
        is_stream = hasattr(obj, "stream") and obj.stream
        if not is_stream:
            outputs = await asyncio.gather(*(gen.__anext__() for gen in generators))
            yield outputs
        else:
            rid_to_index = {rid: i for i, rid in enumerate(rids)}
            task_map = {asyncio.create_task(gen.__anext__()): gen for gen in generators}
            while task_map:
                done, _ = await asyncio.wait(
                    task_map.keys(), return_when=asyncio.FIRST_COMPLETED
                )

                for task in done:
                    gen = task_map.pop(task)
                    try:
                        result = task.result()
                        result["index"] = rid_to_index[result["meta_info"]["id"]]
                        yield result
                        new_task = asyncio.create_task(gen.__anext__())
                        task_map[new_task] = gen
                    except StopAsyncIteration:
                        pass
811

812
    async def flush_cache(self) -> FlushCacheReqOutput:
Lianmin Zheng's avatar
Lianmin Zheng committed
813
        return (await self.flush_cache_communicator(FlushCacheReqInput()))[0]
Liangsheng Yin's avatar
Liangsheng Yin committed
814

815
    def abort_request(self, rid: str):
816
817
818
819
        if rid not in self.rid_to_state:
            return
        req = AbortReq(rid)
        self.send_to_scheduler.send_pyobj(req)
820

821
822
823
        if self.enable_metrics:
            self.metrics_collector.observe_one_aborted_request()

824
825
826
827
828
    async def start_profile(
        self,
        output_dir: Optional[str] = None,
        num_steps: Optional[int] = None,
        activities: Optional[List[str]] = None,
829
830
        with_stack: Optional[bool] = None,
        record_shapes: Optional[bool] = None,
831
        profile_by_stage: bool = False,
832
    ):
833
        self.auto_create_handle_loop()
834
835
        env_with_stack: bool = get_bool_env_var("SGLANG_PROFILE_WITH_STACK", "true")
        with_stack = False if with_stack is False or env_with_stack is False else True
836
837
838
839
840
        req = ProfileReq(
            type=ProfileReqType.START_PROFILE,
            output_dir=output_dir,
            num_steps=num_steps,
            activities=activities,
841
842
            with_stack=with_stack,
            record_shapes=record_shapes,
843
            profile_by_stage=profile_by_stage,
844
            profile_id=str(time.time()),
845
        )
846
847
848
        return await self._execute_profile(req)

    async def stop_profile(self):
849
        self.auto_create_handle_loop()
850
851
852
853
854
        req = ProfileReq(type=ProfileReqType.STOP_PROFILE)
        return await self._execute_profile(req)

    async def _execute_profile(self, req: ProfileReq):
        result = (await self.profile_communicator(req))[0]
855
856
857
        if not result.success:
            raise RuntimeError(result.message)
        return result
858

859
    async def start_expert_distribution_record(self):
860
        self.auto_create_handle_loop()
861
        await self.expert_distribution_communicator(ExpertDistributionReq.START_RECORD)
862

863
    async def stop_expert_distribution_record(self):
864
        self.auto_create_handle_loop()
865
        await self.expert_distribution_communicator(ExpertDistributionReq.STOP_RECORD)
866

867
    async def dump_expert_distribution_record(self):
868
        self.auto_create_handle_loop()
869
        await self.expert_distribution_communicator(ExpertDistributionReq.DUMP_RECORD)
870

Chayenne's avatar
Chayenne committed
871
872
873
874
    async def update_weights_from_disk(
        self,
        obj: UpdateWeightFromDiskReqInput,
        request: Optional[fastapi.Request] = None,
875
    ) -> Tuple[bool, str]:
876
        self.auto_create_handle_loop()
877
878
879
880

        # default the load format to the server_args
        if obj.load_format is None:
            obj.load_format = self.server_args.load_format
881
        logger.info("Start update_weights. Load format=%s", obj.load_format)
882

883
        if True:  # Keep this redundant check to simplify some internal code sync
884
885
886
887
            # Hold the lock if it is not async. This means that weight sync
            # cannot run while requests are in progress.
            async with self.model_update_lock.writer_lock:
                return await self._wait_for_model_update_from_disk(obj)
888

889
890
    async def _wait_for_model_update_from_disk(
        self, obj: UpdateWeightFromDiskReqInput
891
    ) -> Tuple[bool, str]:
892
893
894
895
896
897
898
899
900
        self.send_to_scheduler.send_pyobj(obj)
        self.model_update_result = asyncio.Future()
        if self.server_args.dp_size == 1:
            result = await self.model_update_result
            if result.success:
                self.served_model_name = obj.model_path
                self.server_args.model_path = obj.model_path
                self.server_args.load_format = obj.load_format
                self.model_path = obj.model_path
901
            return result.success, result.message, result.num_paused_requests
902
903
904
905
906
907
908
909
910
911
912
        else:  # self.server_args.dp_size > 1
            self.model_update_tmp = []
            result = await self.model_update_result

            all_success = all([r.success for r in result])
            if all_success is True:
                self.server_args.model_path = obj.model_path
                self.server_args.load_format = obj.load_format
                self.model_path = obj.model_path
            all_message = [r.message for r in result]
            all_message = " | ".join(all_message)
913
914
            all_paused_requests = [r.num_paused_requests for r in result]
            return all_success, all_message, all_paused_requests
915

916
917
918
919
    async def init_weights_update_group(
        self,
        obj: InitWeightsUpdateGroupReqInput,
        request: Optional[fastapi.Request] = None,
920
    ) -> Tuple[bool, str]:
921
        self.auto_create_handle_loop()
922
923
924
        assert (
            self.server_args.dp_size == 1
        ), "dp_size must be 1 for init parameter update group"
925
        result = (await self.init_weights_update_group_communicator(obj))[0]
926
927
928
929
930
931
        return result.success, result.message

    async def update_weights_from_distributed(
        self,
        obj: UpdateWeightsFromDistributedReqInput,
        request: Optional[fastapi.Request] = None,
932
    ) -> Tuple[bool, str]:
933
934
        self.auto_create_handle_loop()
        assert (
935
936
            self.server_args.dp_size == 1 or self.server_args.enable_dp_attention
        ), "dp_size must be 1 or dp attention must be enabled for update weights from distributed"
937

938
939
940
        # This means that weight sync
        # cannot run while requests are in progress.
        async with self.model_update_lock.writer_lock:
941
            result = (await self.update_weights_from_distributed_communicator(obj))[0]
942
            return result.success, result.message
943

944
945
946
947
948
949
950
    async def update_weights_from_tensor(
        self,
        obj: UpdateWeightsFromTensorReqInput,
        request: Optional[fastapi.Request] = None,
    ) -> Tuple[bool, str]:
        self.auto_create_handle_loop()
        assert (
951
952
            self.server_args.dp_size == 1 or self.server_args.enable_dp_attention
        ), "dp_size must be 1 or dp attention must be enabled for update weights from tensor"
953
954
955
956
957
958
959

        # This means that weight sync
        # cannot run while requests are in progress.
        async with self.model_update_lock.writer_lock:
            result = (await self.update_weights_from_tensor_communicator(obj))[0]
            return result.success, result.message

960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
    async def load_lora_adapter(
        self,
        obj: LoadLoRAAdapterReqInput,
        _: Optional[fastapi.Request] = None,
    ) -> LoadLoRAAdapterReqOutput:
        self.auto_create_handle_loop()

        # TODO (lifuhuang): Remove this after we verify that dynamic lora loading works
        # with dp_size > 1.
        assert (
            self.server_args.dp_size == 1
        ), "dp_size must be 1 for dynamic lora loading"
        logger.info(
            "Start load Lora adapter. Lora name=%s, path=%s",
            obj.lora_name,
            obj.lora_path,
        )

        async with self.model_update_lock.writer_lock:
            result = (await self.update_lora_adapter_communicator(obj))[0]
            return result

    async def unload_lora_adapter(
        self,
        obj: UnloadLoRAAdapterReqInput,
        _: Optional[fastapi.Request] = None,
    ) -> UnloadLoRAAdapterReqOutput:
        self.auto_create_handle_loop()

        # TODO (lifuhuang): Remove this after we verify that dynamic lora loading works
        # with dp_size > 1.
        assert (
            self.server_args.dp_size == 1
        ), "dp_size must be 1 for dynamic lora loading"
        logger.info(
            "Start unload Lora adapter. Lora name=%s",
            obj.lora_name,
        )

        async with self.model_update_lock.writer_lock:
            result = (await self.update_lora_adapter_communicator(obj))[0]
            return result

1003
1004
1005
    async def get_weights_by_name(
        self, obj: GetWeightsByNameReqInput, request: Optional[fastapi.Request] = None
    ):
1006
1007
1008
        self.auto_create_handle_loop()
        results = await self.get_weights_by_name_communicator(obj)
        all_parameters = [r.parameter for r in results]
1009
        if self.server_args.dp_size == 1:
1010
            return all_parameters[0]
1011
1012
1013
        else:
            return all_parameters

1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
    async def release_memory_occupation(
        self,
        obj: ReleaseMemoryOccupationReqInput,
        request: Optional[fastapi.Request] = None,
    ):
        self.auto_create_handle_loop()
        await self.release_memory_occupation_communicator(obj)

    async def resume_memory_occupation(
        self,
        obj: ResumeMemoryOccupationReqInput,
        request: Optional[fastapi.Request] = None,
    ):
        self.auto_create_handle_loop()
        await self.resume_memory_occupation_communicator(obj)

1030
1031
1032
1033
1034
1035
1036
1037
    async def slow_down(
        self,
        obj: SlowDownReqInput,
        request: Optional[fastapi.Request] = None,
    ):
        self.auto_create_handle_loop()
        await self.slow_down_communicator(obj)

1038
1039
1040
    async def open_session(
        self, obj: OpenSessionReqInput, request: Optional[fastapi.Request] = None
    ):
1041
        self.auto_create_handle_loop()
1042

1043
1044
1045
1046
1047
        if obj.session_id is None:
            obj.session_id = uuid.uuid4().hex
        elif obj.session_id in self.session_futures:
            return None

1048
        self.send_to_scheduler.send_pyobj(obj)
1049
1050
1051
1052

        self.session_futures[obj.session_id] = asyncio.Future()
        session_id = await self.session_futures[obj.session_id]
        del self.session_futures[obj.session_id]
1053
1054
1055
1056
1057
1058
1059
        return session_id

    async def close_session(
        self, obj: CloseSessionReqInput, request: Optional[fastapi.Request] = None
    ):
        await self.send_to_scheduler.send_pyobj(obj)

1060
    async def get_internal_state(self) -> List[Dict[Any, Any]]:
1061
        req = GetInternalStateReq()
1062
        responses: List[GetInternalStateReqOutput] = (
1063
1064
            await self.get_internal_state_communicator(req)
        )
1065
1066
        # Many DP ranks
        return [res.internal_state for res in responses]
1067

Liangsheng Yin's avatar
Liangsheng Yin committed
1068
1069
1070
1071
1072
1073
1074
1075
    async def get_load(self) -> dict:
        # TODO(lsyin): fake load report server
        if not self.current_load_lock.locked():
            async with self.current_load_lock:
                internal_state = await self.get_internal_state()
                self.current_load = internal_state[0]["load"]
        return {"load": self.current_load}

1076
1077
1078
1079
1080
1081
1082
1083
    async def set_internal_state(
        self, obj: SetInternalStateReq
    ) -> SetInternalStateReqOutput:
        responses: List[SetInternalStateReqOutput] = (
            await self.set_internal_state_communicator(obj)
        )
        return [res.internal_state for res in responses]

1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
    def get_log_request_metadata(self):
        max_length = None
        skip_names = None
        out_skip_names = None
        if self.log_requests:
            if self.log_requests_level == 0:
                max_length = 1 << 30
                skip_names = set(
                    [
                        "text",
                        "input_ids",
                        "input_embeds",
                        "image_data",
                        "audio_data",
                        "lora_path",
                    ]
                )
1101
                out_skip_names = set(["text", "output_ids", "embedding"])
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
            elif self.log_requests_level == 1:
                max_length = 2048
            elif self.log_requests_level == 2:
                max_length = 1 << 30
            else:
                raise ValueError(
                    f"Invalid --log-requests-level: {self.log_requests_level=}"
                )
        return max_length, skip_names, out_skip_names

1112
    def configure_logging(self, obj: ConfigureLoggingReq):
1113
1114
1115
1116
1117
1118
1119
1120
1121
        if obj.log_requests is not None:
            self.log_requests = obj.log_requests
        if obj.log_requests_level is not None:
            self.log_requests_level = obj.log_requests_level
        if obj.dump_requests_folder is not None:
            self.dump_requests_folder = obj.dump_requests_folder
        if obj.dump_requests_threshold is not None:
            self.dump_requests_threshold = obj.dump_requests_threshold
        logging.info(f"Config logging: {obj=}")
1122
        self.log_request_metadata = self.get_log_request_metadata()
1123

Lianmin Zheng's avatar
Lianmin Zheng committed
1124
    def create_abort_task(self, obj: GenerateReqInput):
1125
1126
        # Abort the request if the client is disconnected.
        async def abort_request():
Lianmin Zheng's avatar
Lianmin Zheng committed
1127
            await asyncio.sleep(2)
1128
1129
1130
            if obj.is_single:
                self.abort_request(obj.rid)
            else:
1131
                for rid in obj.rid:
1132
1133
1134
1135
1136
1137
                    self.abort_request(rid)

        background_tasks = BackgroundTasks()
        background_tasks.add_task(abort_request)
        return background_tasks

1138
    def auto_create_handle_loop(self):
1139
        if self.no_create_loop:
1140
1141
            return

1142
        self.no_create_loop = True
Lianmin Zheng's avatar
Lianmin Zheng committed
1143
        loop = asyncio.get_event_loop()
1144
1145
1146
        self.asyncio_tasks.add(
            loop.create_task(print_exception_wrapper(self.handle_loop))
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1147

1148
1149
        self.event_loop = loop

1150
1151
1152
1153
        # We cannot add signal handler when the tokenizer manager is not in
        # the main thread due to the CPython limitation.
        if threading.current_thread() is threading.main_thread():
            signal_handler = SignalHandler(self)
1154
1155
1156
1157
1158
            loop.add_signal_handler(signal.SIGTERM, signal_handler.sigterm_handler)
            # Update the signal handler for the process. It overrides the sigquit handler in the launch phase.
            loop.add_signal_handler(
                signal.SIGQUIT, signal_handler.running_phase_sigquit_handler
            )
1159
1160
1161
1162
1163
1164
        else:
            logger.warning(
                "Signal handler is not added because the tokenizer manager is "
                "not in the main thread. This disables graceful shutdown of the "
                "tokenizer manager when SIGTERM is received."
            )
1165
1166
1167
        self.asyncio_tasks.add(
            loop.create_task(print_exception_wrapper(self.sigterm_watchdog))
        )
1168
1169
1170

    async def sigterm_watchdog(self):
        while not self.gracefully_exit:
1171
            await asyncio.sleep(5)
1172

1173
        # Drain requests
1174
        while True:
1175
            remain_num_req = len(self.rid_to_state)
1176
1177

            if self.health_check_failed:
1178
                # if health check failed, exit immediately
1179
1180
1181
1182
1183
                logger.error(
                    "Signal SIGTERM received while health check failed. Exiting... remaining number of requests: %d",
                    remain_num_req,
                )
                break
1184
1185
1186
1187
1188
1189
1190
1191

            elif get_bool_env_var("SGL_FORCE_SHUTDOWN"):
                # if force shutdown flag set, exit immediately
                logger.error(
                    "Signal SIGTERM received while force shutdown flag set. Force exiting... remaining number of requests: %d",
                    remain_num_req,
                )
                break
1192

1193
            logger.info(
1194
                f"Gracefully exiting... remaining number of requests {remain_num_req}"
1195
1196
1197
1198
1199
1200
            )
            if remain_num_req > 0:
                await asyncio.sleep(5)
            else:
                break

1201
        kill_process_tree(os.getpid(), include_parent=True)
1202
        sys.exit(0)
1203

Lianmin Zheng's avatar
Lianmin Zheng committed
1204
    async def handle_loop(self):
1205
1206
        """The event loop that handles requests"""

Lianmin Zheng's avatar
Lianmin Zheng committed
1207
        while True:
1208
            recv_obj = await self.recv_from_detokenizer.recv_pyobj()
1209
            self._result_dispatcher(recv_obj)
1210
            self.last_receive_tstamp = time.time()
Lianmin Zheng's avatar
Lianmin Zheng committed
1211

1212
    def _handle_batch_output(
1213
1214
1215
1216
        self,
        recv_obj: Union[
            BatchStrOut, BatchEmbeddingOut, BatchMultimodalOut, BatchTokenIDOut
        ],
1217
1218
1219
1220
    ):
        for i, rid in enumerate(recv_obj.rids):
            state = self.rid_to_state.get(rid, None)
            if state is None:
Lianmin Zheng's avatar
Lianmin Zheng committed
1221
1222
1223
                logger.error(
                    f"Received output for {rid=} but the state was deleted in TokenizerManager."
                )
1224
1225
                continue

1226
            # Build meta_info and return value
1227
1228
1229
1230
1231
1232
1233
1234
1235
            meta_info = {
                "id": rid,
                "finish_reason": recv_obj.finished_reasons[i],
                "prompt_tokens": recv_obj.prompt_tokens[i],
            }

            if getattr(state.obj, "return_logprob", False):
                self.convert_logprob_style(
                    meta_info,
1236
                    state,
1237
                    state.obj.top_logprobs_num,
1238
                    state.obj.token_ids_logprob,
1239
1240
                    state.obj.return_text_in_logprobs
                    and not self.server_args.skip_tokenizer_init,
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
                    recv_obj,
                    i,
                )

            if not isinstance(recv_obj, BatchEmbeddingOut):
                meta_info.update(
                    {
                        "completion_tokens": recv_obj.completion_tokens[i],
                        "cached_tokens": recv_obj.cached_tokens[i],
                    }
                )

1253
            if getattr(recv_obj, "output_hidden_states", None):
1254
1255
1256
                meta_info["hidden_states"] = recv_obj.output_hidden_states[i]

            if isinstance(recv_obj, BatchStrOut):
1257
                state.text += recv_obj.output_strs[i]
1258
                out_dict = {
1259
                    "text": state.text,
1260
1261
1262
                    "meta_info": meta_info,
                }
            elif isinstance(recv_obj, BatchTokenIDOut):
1263
                if self.server_args.stream_output and state.obj.stream:
1264
1265
1266
                    state.output_ids.extend(recv_obj.output_ids[i])
                    output_token_ids = state.output_ids[state.last_output_offset :]
                    state.last_output_offset = len(state.output_ids)
1267
                else:
1268
                    state.output_ids.extend(recv_obj.output_ids[i])
1269
                    output_token_ids = state.output_ids.copy()
1270

1271
                out_dict = {
1272
                    "output_ids": output_token_ids,
1273
1274
                    "meta_info": meta_info,
                }
1275
            elif isinstance(recv_obj, BatchMultimodalOut):
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
                if isinstance(recv_obj.outputs[i], str):
                    out_dict = {
                        "text": recv_obj.outputs[i],
                        "meta_info": meta_info,
                    }
                else:
                    out_dict = {
                        "outputs": json.dumps(recv_obj.outputs[i]),
                        "meta_info": meta_info,
                    }
1286
1287
1288
1289
1290
1291
1292
1293
            else:
                assert isinstance(recv_obj, BatchEmbeddingOut)
                out_dict = {
                    "embedding": recv_obj.embeddings[i],
                    "meta_info": meta_info,
                }

            state.finished = recv_obj.finished_reasons[i] is not None
1294
1295
1296
1297
1298
            if state.finished:
                if self.server_args.speculative_algorithm:
                    meta_info["spec_verify_ct"] = recv_obj.spec_verify_ct[i]
                state.finished_time = time.time()
                meta_info["e2e_latency"] = state.finished_time - state.created_time
Lianmin Zheng's avatar
Lianmin Zheng committed
1299
                del self.rid_to_state[rid]
1300
1301

            state.out_list.append(out_dict)
1302
1303
            state.event.set()

1304
            # Log metrics and dump
1305
1306
1307
1308
1309
1310
1311
1312
            if self.enable_metrics and state.obj.log_metrics:
                self.collect_metrics(state, recv_obj, i)
            if self.dump_requests_folder and state.finished and state.obj.log_metrics:
                self.dump_requests(state, out_dict)

    def convert_logprob_style(
        self,
        meta_info: dict,
1313
        state: ReqState,
1314
        top_logprobs_num: int,
1315
        token_ids_logprob: List[int],
1316
1317
1318
1319
        return_text_in_logprobs: bool,
        recv_obj: BatchStrOut,
        recv_obj_index: int,
    ):
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
        if len(recv_obj.input_token_logprobs_val) > 0:
            state.input_token_logprobs_val.extend(
                recv_obj.input_token_logprobs_val[recv_obj_index]
            )
            state.input_token_logprobs_idx.extend(
                recv_obj.input_token_logprobs_idx[recv_obj_index]
            )
        state.output_token_logprobs_val.extend(
            recv_obj.output_token_logprobs_val[recv_obj_index]
        )
        state.output_token_logprobs_idx.extend(
            recv_obj.output_token_logprobs_idx[recv_obj_index]
        )
1333
        meta_info["input_token_logprobs"] = self.detokenize_logprob_tokens(
1334
1335
            state.input_token_logprobs_val,
            state.input_token_logprobs_idx,
1336
1337
1338
            return_text_in_logprobs,
        )
        meta_info["output_token_logprobs"] = self.detokenize_logprob_tokens(
1339
1340
            state.output_token_logprobs_val,
            state.output_token_logprobs_idx,
1341
1342
1343
1344
            return_text_in_logprobs,
        )

        if top_logprobs_num > 0:
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
            if len(recv_obj.input_top_logprobs_val) > 0:
                state.input_top_logprobs_val.extend(
                    recv_obj.input_top_logprobs_val[recv_obj_index]
                )
                state.input_top_logprobs_idx.extend(
                    recv_obj.input_top_logprobs_idx[recv_obj_index]
                )
            state.output_top_logprobs_val.extend(
                recv_obj.output_top_logprobs_val[recv_obj_index]
            )
            state.output_top_logprobs_idx.extend(
                recv_obj.output_top_logprobs_idx[recv_obj_index]
            )
1358
            meta_info["input_top_logprobs"] = self.detokenize_top_logprobs_tokens(
1359
1360
                state.input_top_logprobs_val,
                state.input_top_logprobs_idx,
1361
1362
1363
                return_text_in_logprobs,
            )
            meta_info["output_top_logprobs"] = self.detokenize_top_logprobs_tokens(
1364
1365
                state.output_top_logprobs_val,
                state.output_top_logprobs_idx,
1366
1367
1368
                return_text_in_logprobs,
            )

1369
        if token_ids_logprob is not None:
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
            if len(recv_obj.input_token_ids_logprobs_val) > 0:
                state.input_token_ids_logprobs_val.extend(
                    recv_obj.input_token_ids_logprobs_val[recv_obj_index]
                )
                state.input_token_ids_logprobs_idx.extend(
                    recv_obj.input_token_ids_logprobs_idx[recv_obj_index]
                )
            state.output_token_ids_logprobs_val.extend(
                recv_obj.output_token_ids_logprobs_val[recv_obj_index]
            )
            state.output_token_ids_logprobs_idx.extend(
                recv_obj.output_token_ids_logprobs_idx[recv_obj_index]
            )
1383
            meta_info["input_token_ids_logprobs"] = self.detokenize_top_logprobs_tokens(
1384
1385
                state.input_token_ids_logprobs_val,
                state.input_token_ids_logprobs_idx,
1386
1387
1388
1389
                return_text_in_logprobs,
            )
            meta_info["output_token_ids_logprobs"] = (
                self.detokenize_top_logprobs_tokens(
1390
1391
                    state.output_token_ids_logprobs_val,
                    state.output_token_ids_logprobs_idx,
1392
1393
1394
1395
                    return_text_in_logprobs,
                )
            )

1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
    def detokenize_logprob_tokens(
        self,
        token_logprobs_val: List[float],
        token_logprobs_idx: List[int],
        decode_to_text: bool,
    ):
        if not decode_to_text:
            return [
                (logprob, token_id, None)
                for logprob, token_id in zip(token_logprobs_val, token_logprobs_idx)
            ]
        else:
            assert self.tokenizer is not None
            token_texts = self.tokenizer.batch_decode(token_logprobs_idx)
            return list(zip(token_logprobs_val, token_logprobs_idx, token_texts))

    def detokenize_top_logprobs_tokens(
        self,
        token_logprobs_val: List[float],
        token_logprobs_idx: List[int],
        decode_to_text: bool,
    ):
        # TODO: The current implementation only batches the detokenization for top-k tokens per single position.
        # We should batch all top-k tokens in all positions.
        ret = []
        for i in range(len(token_logprobs_val)):
            if token_logprobs_val[i]:
                ret.append(
                    self.detokenize_logprob_tokens(
                        token_logprobs_val[i], token_logprobs_idx[i], decode_to_text
                    )
                )
            else:
                ret.append(None)
        return ret

    def collect_metrics(self, state: ReqState, recv_obj: BatchStrOut, i: int):
        completion_tokens = (
            recv_obj.completion_tokens[i]
            if getattr(recv_obj, "completion_tokens", None)
            else 0
        )

1439
1440
1441
        if state.first_token_time == 0.0:
            state.first_token_time = state.last_time = time.time()
            state.last_completion_tokens = completion_tokens
1442
1443
1444
1445
            self.metrics_collector.observe_time_to_first_token(
                state.first_token_time - state.created_time
            )
        else:
1446
1447
1448
1449
1450
1451
1452
            num_new_tokens = completion_tokens - state.last_completion_tokens
            if num_new_tokens:
                new_time = time.time()
                interval = new_time - state.last_time
                self.metrics_collector.observe_inter_token_latency(
                    interval,
                    num_new_tokens,
1453
                )
1454
1455
                state.last_time = new_time
                state.last_completion_tokens = completion_tokens
1456
1457

        if state.finished:
1458
1459
1460
1461
1462
1463
            has_grammar = (
                state.obj.sampling_params.get("json_schema", None)
                or state.obj.sampling_params.get("regex", None)
                or state.obj.sampling_params.get("ebnf", None)
                or state.obj.sampling_params.get("structural_tag", None)
            )
1464
            self.metrics_collector.observe_one_finished_request(
1465
1466
                recv_obj.prompt_tokens[i],
                completion_tokens,
1467
                recv_obj.cached_tokens[i],
1468
                state.finished_time - state.created_time,
1469
                has_grammar,
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
            )

    def dump_requests(self, state: ReqState, out_dict: dict):
        self.dump_request_list.append(
            (state.obj, out_dict, state.created_time, time.time())
        )

        if len(self.dump_request_list) >= self.dump_requests_threshold:
            filename = os.path.join(
                self.dump_requests_folder,
                datetime.now().strftime("%Y-%m-%d_%H-%M-%S") + ".pkl",
            )
            logger.info(f"Dump {len(self.dump_request_list)} requests to {filename}")

            to_dump = self.dump_request_list
            self.dump_request_list = []

            def background_task():
                os.makedirs(self.dump_requests_folder, exist_ok=True)
                with open(filename, "wb") as f:
                    pickle.dump(to_dump, f)

            # Schedule the task to run in the background without awaiting it
            asyncio.create_task(asyncio.to_thread(background_task))

Lianmin Zheng's avatar
Lianmin Zheng committed
1495
    def _handle_abort_req(self, recv_obj):
1496
        self.rid_to_state.pop(recv_obj.rid, None)
Lianmin Zheng's avatar
Lianmin Zheng committed
1497

1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
    def _handle_open_session_req_output(self, recv_obj):
        self.session_futures[recv_obj.session_id].set_result(
            recv_obj.session_id if recv_obj.success else None
        )

    def _handle_update_weights_from_disk_req_output(self, recv_obj):
        if self.server_args.dp_size == 1:
            self.model_update_result.set_result(recv_obj)
        else:  # self.server_args.dp_size > 1
            self.model_update_tmp.append(recv_obj)
1508
            # set future if the all results are received
1509
1510
1511
            if len(self.model_update_tmp) == self.server_args.dp_size:
                self.model_update_result.set_result(self.model_update_tmp)

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
    async def score_request(
        self,
        query: Optional[Union[str, List[int]]] = None,
        items: Optional[Union[str, List[str], List[List[int]]]] = None,
        label_token_ids: Optional[List[int]] = None,
        apply_softmax: bool = False,
        item_first: bool = False,
        request: Optional[Any] = None,
    ) -> List[List[float]]:
        """
        See Engine.score() for more details.
        """
        if label_token_ids is None:
            raise ValueError("label_token_ids must be provided")

        if self.tokenizer is not None:
            vocab_size = self.tokenizer.vocab_size
            for token_id in label_token_ids:
                if token_id >= vocab_size:
                    raise ValueError(
                        f"Token ID {token_id} is out of vocabulary (vocab size: {vocab_size})"
                    )

        # Handle string or tokenized query/items
        if isinstance(query, str) and (
            isinstance(items, str)
            or (isinstance(items, list) and (not items or isinstance(items[0], str)))
        ):
            # Both query and items are text
            items_list = [items] if isinstance(items, str) else items
            if item_first:
                prompts = [f"{item}{query}" for item in items_list]
            else:
                prompts = [f"{query}{item}" for item in items_list]
            batch_request = GenerateReqInput(
                text=prompts,
                return_logprob=True,
                token_ids_logprob=label_token_ids,
                stream=False,
                sampling_params={"max_new_tokens": 1},
            )
        elif (
            isinstance(query, list)
            and isinstance(items, list)
            and items
            and isinstance(items[0], list)
        ):
            # Both query and items are token IDs
            if item_first:
                input_ids_list = [item + query for item in items]
            else:
                input_ids_list = [query + item for item in items]
            batch_request = GenerateReqInput(
                input_ids=input_ids_list,
                return_logprob=True,
                token_ids_logprob=label_token_ids,
                stream=False,
                sampling_params={"max_new_tokens": 1},
            )
        else:
            raise ValueError(
                "Invalid combination of query/items types for score_request."
            )

        results = await self.generate_request(batch_request, request).__anext__()
        scores = []

        for result in results:
            # Get logprobs for each token
            logprobs = {}
            for logprob, token_id, _ in result["meta_info"].get(
                "output_token_ids_logprobs", []
            )[0]:
                if token_id in label_token_ids:
                    logprobs[token_id] = logprob

            # Get scores in order of label_token_ids
            score_list = [
                logprobs.get(token_id, float("-inf")) for token_id in label_token_ids
            ]

            # Apply softmax to logprobs if needed
            if apply_softmax:
                score_list = torch.softmax(torch.tensor(score_list), dim=0).tolist()
            else:
                # Convert logprobs to probabilities if not using softmax
                score_list = [
                    math.exp(x) if x != float("-inf") else 0.0 for x in score_list
                ]

            scores.append(score_list)

        return scores

1606

1607
1608
1609
1610
1611
1612
1613
1614
1615
async def print_exception_wrapper(func):
    """
    Sometimes an asyncio function does not print exception.
    We do another wrapper to handle the exception.
    """
    try:
        await func()
    except Exception:
        traceback = get_exception_traceback()
1616
        logger.error(f"TokenizerManager hit an exception: {traceback}")
1617
1618
1619
1620
        kill_process_tree(os.getpid(), include_parent=True)
        sys.exit(1)


1621
class SignalHandler:
1622
    def __init__(self, tokenizer_manager: TokenizerManager):
1623
        self.tokenizer_manager = tokenizer_manager
1624

1625
    def sigterm_handler(self, signum=None, frame=None):
1626
1627
1628
        logger.warning(
            f"SIGTERM received. {signum=} {frame=}. Draining requests and shutting down..."
        )
1629
        self.tokenizer_manager.gracefully_exit = True
1630

1631
1632
1633
1634
1635
1636
    def running_phase_sigquit_handler(self, signum=None, frame=None):
        logger.error(
            "Received sigquit from a child process. It usually means the child failed."
        )
        kill_process_tree(os.getpid())

1637
1638
1639
1640
1641

T = TypeVar("T")


class _Communicator(Generic[T]):
1642
1643
    """Note: The communicator now only run up to 1 in-flight request at any time."""

1644
1645
1646
    def __init__(self, sender, fan_out: int):
        self._sender = sender
        self._fan_out = fan_out
1647
        self._result_event: Optional[asyncio.Event] = None
1648
        self._result_values: Optional[List[T]] = None
1649
        self._ready_queue: Deque[asyncio.Future] = deque()
1650
1651

    async def __call__(self, obj):
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
        ready_event = asyncio.Event()
        if self._result_event is not None or len(self._ready_queue) > 0:
            self._ready_queue.append(ready_event)
            await ready_event.wait()
            assert self._result_event is None
            assert self._result_values is None

        if obj:
            self._sender.send_pyobj(obj)

        self._result_event = asyncio.Event()
1663
        self._result_values = []
1664
        await self._result_event.wait()
1665
        result_values = self._result_values
1666
1667
1668
1669
1670
        self._result_event = self._result_values = None

        if len(self._ready_queue) > 0:
            self._ready_queue.popleft().set()

1671
1672
1673
1674
1675
        return result_values

    def handle_recv(self, recv_obj: T):
        self._result_values.append(recv_obj)
        if len(self._result_values) == self._fan_out:
1676
            self._result_event.set()
Lianmin Zheng's avatar
Lianmin Zheng committed
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688


# Note: request abort handling logic
# We should handle all of the following cases correctly.
#
# | entrypoint | is_streaming | status          | abort engine    | cancel asyncio task   | rid_to_state                |
# | ---------- | ------------ | --------------- | --------------- | --------------------- | --------------------------- |
# | http       | yes          | waiting queue   | background task | fast api              | del in _handle_abort_req    |
# | http       | yes          | running         | background task | fast api              | del in _handle_batch_output |
# | http       | no           | waiting queue   | type 1          | type 1 exception      | del in _handle_abort_req    |
# | http       | no           | running         | type 3          | type 3 exception      | del in _handle_batch_output |
#