topk_softmax_kernels.cu 20.2 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
/*
 * Adapted from https://github.com/NVIDIA/TensorRT-LLM/blob/v0.7.1/cpp/tensorrt_llm/kernels/mixtureOfExperts/moe_kernels.cu
 * Copyright (c) 2024, The vLLM team.
 * SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
 * SPDX-License-Identifier: Apache-2.0
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
#include <torch/extension.h>
#include <ATen/cuda/CUDAContext.h>
#include <c10/cuda/CUDAGuard.h>

#include <cub/cub.cuh>
#include <cub/util_type.cuh>

static constexpr int WARP_SIZE = 32;

/// Aligned array type
template <
    typename T,
    /// Number of elements in the array
    int N,
    /// Alignment requirement in bytes
    int Alignment = sizeof(T) * N
>
class alignas(Alignment) AlignedArray {
    float data[N];
};

// ====================== Softmax things ===============================
// We have our own implementation of softmax here so we can support transposing the output
// in the softmax kernel when we extend this module to support expert-choice routing.
template <int TPB>
__launch_bounds__(TPB) __global__
    void moeSoftmax(const float* input, const bool* finished, float* output, const int num_cols)
{
    using BlockReduce = cub::BlockReduce<float, TPB>;
    __shared__ typename BlockReduce::TempStorage tmpStorage;

    __shared__ float normalizing_factor;
    __shared__ float float_max;

    const int thread_row_offset = blockIdx.x * num_cols;

    cub::Sum sum;
    float threadData(-FLT_MAX);

    // Don't touch finished rows.
    if ((finished != nullptr) && finished[blockIdx.x])
    {
        return;
    }

    for (int ii = threadIdx.x; ii < num_cols; ii += TPB)
    {
        const int idx = thread_row_offset + ii;
        threadData = max(static_cast<float>(input[idx]), threadData);
    }

    const float maxElem = BlockReduce(tmpStorage).Reduce(threadData, cub::Max());
    if (threadIdx.x == 0)
    {
        float_max = maxElem;
    }
    __syncthreads();

    threadData = 0;

    for (int ii = threadIdx.x; ii < num_cols; ii += TPB)
    {
        const int idx = thread_row_offset + ii;
        threadData += exp((static_cast<float>(input[idx]) - float_max));
    }

    const auto Z = BlockReduce(tmpStorage).Reduce(threadData, sum);

    if (threadIdx.x == 0)
    {
        normalizing_factor = 1.f / Z;
    }
    __syncthreads();

    for (int ii = threadIdx.x; ii < num_cols; ii += TPB)
    {
        const int idx = thread_row_offset + ii;
        const float val = exp((static_cast<float>(input[idx]) - float_max)) * normalizing_factor;
        output[idx] = val;
    }
}

template <int TPB>
__launch_bounds__(TPB) __global__ void moeTopK(const float* inputs_after_softmax, const bool* finished, float* output,
    int* indices, int* source_rows, const int num_experts, const int k, const int start_expert, const int end_expert)
{

    using cub_kvp = cub::KeyValuePair<int, float>;
    using BlockReduce = cub::BlockReduce<cub_kvp, TPB>;
    __shared__ typename BlockReduce::TempStorage tmpStorage;

    cub_kvp thread_kvp;
    cub::ArgMax arg_max;

    const int num_rows = gridDim.x;
    const int block_row = blockIdx.x;

    const bool row_is_active = finished ? !finished[block_row] : true;
    const int thread_read_offset = blockIdx.x * num_experts;
    for (int k_idx = 0; k_idx < k; ++k_idx)
    {
        thread_kvp.key = 0;
        thread_kvp.value = -1.f; // This is OK because inputs are probabilities

        cub_kvp inp_kvp;
        for (int expert = threadIdx.x; expert < num_experts; expert += TPB)
        {
            const int idx = thread_read_offset + expert;
            inp_kvp.key = expert;
            inp_kvp.value = inputs_after_softmax[idx];

            for (int prior_k = 0; prior_k < k_idx; ++prior_k)
            {
                const int prior_winning_expert = indices[k * block_row + prior_k];

                if (prior_winning_expert == expert)
                {
                    inp_kvp = thread_kvp;
                }
            }

            thread_kvp = arg_max(inp_kvp, thread_kvp);
        }

        const cub_kvp result_kvp = BlockReduce(tmpStorage).Reduce(thread_kvp, arg_max);
        if (threadIdx.x == 0)
        {
            // Ignore experts the node isn't responsible for with expert parallelism
            const int expert = result_kvp.key;
            const bool node_uses_expert = expert >= start_expert && expert < end_expert;
            const bool should_process_row = row_is_active && node_uses_expert;

            const int idx = k * block_row + k_idx;
            output[idx] = result_kvp.value;
            indices[idx] = should_process_row ? (expert - start_expert) : num_experts;
            assert(indices[idx] >= 0);
            source_rows[idx] = k_idx * num_rows + block_row;
        }
        __syncthreads();
    }
}

// ====================== TopK softmax things ===============================

/*
  A Top-K gating softmax written to exploit when the number of experts in the MoE layers
  are a small power of 2. This allows us to cleanly share the rows among the threads in
  a single warp and eliminate communication between warps (so no need to use shared mem).

  It fuses the softmax, max and argmax into a single kernel.

  Limitations:
  1) This implementation is intended for when the number of experts is a small power of 2.
  2) This implementation assumes k is small, but will work for any k.
*/

template <int VPT, int NUM_EXPERTS, int WARPS_PER_CTA, int BYTES_PER_LDG>
__launch_bounds__(WARPS_PER_CTA* WARP_SIZE) __global__
    void topkGatingSoftmax(const float* input, const bool* finished, float* output, const int num_rows, int* indices,
        int* source_rows, const int k, const int start_expert, const int end_expert)
{
    // We begin by enforcing compile time assertions and setting up compile time constants.
    static_assert(VPT == (VPT & -VPT), "VPT must be power of 2");
    static_assert(NUM_EXPERTS == (NUM_EXPERTS & -NUM_EXPERTS), "NUM_EXPERTS must be power of 2");
    static_assert(BYTES_PER_LDG == (BYTES_PER_LDG & -BYTES_PER_LDG), "BYTES_PER_LDG must be power of 2");
    static_assert(BYTES_PER_LDG <= 16, "BYTES_PER_LDG must be leq 16");

    // Number of bytes each thread pulls in per load
    static constexpr int ELTS_PER_LDG = BYTES_PER_LDG / sizeof(float);
    static constexpr int ELTS_PER_ROW = NUM_EXPERTS;
    static constexpr int THREADS_PER_ROW = ELTS_PER_ROW / VPT;
    static constexpr int LDG_PER_THREAD = VPT / ELTS_PER_LDG;

    // Restrictions based on previous section.
    static_assert(VPT % ELTS_PER_LDG == 0, "The elements per thread must be a multiple of the elements per ldg");
    static_assert(WARP_SIZE % THREADS_PER_ROW == 0, "The threads per row must cleanly divide the threads per warp");
    static_assert(THREADS_PER_ROW == (THREADS_PER_ROW & -THREADS_PER_ROW), "THREADS_PER_ROW must be power of 2");
    static_assert(THREADS_PER_ROW <= WARP_SIZE, "THREADS_PER_ROW can be at most warp size");

    // We have NUM_EXPERTS elements per row. We specialize for small #experts
    static constexpr int ELTS_PER_WARP = WARP_SIZE * VPT;
    static constexpr int ROWS_PER_WARP = ELTS_PER_WARP / ELTS_PER_ROW;
    static constexpr int ROWS_PER_CTA = WARPS_PER_CTA * ROWS_PER_WARP;

    // Restrictions for previous section.
    static_assert(ELTS_PER_WARP % ELTS_PER_ROW == 0, "The elts per row must cleanly divide the total elt per warp");

    // ===================== From this point, we finally start computing run-time variables. ========================

    // Compute CTA and warp rows. We pack multiple rows into a single warp, and a block contains WARPS_PER_CTA warps.
    // This, each block processes a chunk of rows. We start by computing the start row for each block.
    const int cta_base_row = blockIdx.x * ROWS_PER_CTA;

    // Now, using the base row per thread block, we compute the base row per warp.
    const int warp_base_row = cta_base_row + threadIdx.y * ROWS_PER_WARP;

    // The threads in a warp are split into sub-groups that will work on a row.
    // We compute row offset for each thread sub-group
    const int thread_row_in_warp = threadIdx.x / THREADS_PER_ROW;
    const int thread_row = warp_base_row + thread_row_in_warp;

    // Threads with indices out of bounds should early exit here.
    if (thread_row >= num_rows)
    {
        return;
    }
    const bool row_is_active = finished ? !finished[thread_row] : true;

    // We finally start setting up the read pointers for each thread. First, each thread jumps to the start of the
    // row it will read.
    const float* thread_row_ptr = input + thread_row * ELTS_PER_ROW;

    // Now, we compute the group each thread belong to in order to determine the first column to start loads.
    const int thread_group_idx = threadIdx.x % THREADS_PER_ROW;
    const int first_elt_read_by_thread = thread_group_idx * ELTS_PER_LDG;
    const float* thread_read_ptr = thread_row_ptr + first_elt_read_by_thread;

    // Determine the pointer type to use to read in the data depending on the BYTES_PER_LDG template param. In theory,
    // this can support all powers of 2 up to 16.
    // NOTE(woosuk): The original implementation uses CUTLASS aligned array here.
    // We defined our own aligned array and use it here to avoid the dependency on CUTLASS.
    using AccessType = AlignedArray<float, ELTS_PER_LDG>;

    // Finally, we pull in the data from global mem
    float row_chunk[VPT];
    AccessType* row_chunk_vec_ptr = reinterpret_cast<AccessType*>(&row_chunk);
    const AccessType* vec_thread_read_ptr = reinterpret_cast<const AccessType*>(thread_read_ptr);
#pragma unroll
    for (int ii = 0; ii < LDG_PER_THREAD; ++ii)
    {
        row_chunk_vec_ptr[ii] = vec_thread_read_ptr[ii * THREADS_PER_ROW];
    }

    // First, we perform a max reduce within the thread. We can do the max in fp16 safely (I think) and just
    // convert to float afterwards for the exp + sum reduction.
    float thread_max = row_chunk[0];
#pragma unroll
    for (int ii = 1; ii < VPT; ++ii)
    {
        thread_max = max(thread_max, row_chunk[ii]);
    }

// Now, we find the max within the thread group and distribute among the threads. We use a butterfly reduce.
#pragma unroll
    for (int mask = THREADS_PER_ROW / 2; mask > 0; mask /= 2)
    {
        thread_max = max(thread_max, __shfl_xor_sync(0xFFFFFFFF, thread_max, mask, THREADS_PER_ROW));
    }

    // From this point, thread max in all the threads have the max within the row.
    // Now, we subtract the max from each element in the thread and take the exp. We also compute the thread local sum.
    float row_sum = 0;
#pragma unroll
    for (int ii = 0; ii < VPT; ++ii)
    {
        row_chunk[ii] = expf(row_chunk[ii] - thread_max);
        row_sum += row_chunk[ii];
    }

// Now, we perform the sum reduce within each thread group. Similar to the max reduce, we use a bufferfly pattern.
#pragma unroll
    for (int mask = THREADS_PER_ROW / 2; mask > 0; mask /= 2)
    {
        row_sum += __shfl_xor_sync(0xFFFFFFFF, row_sum, mask, THREADS_PER_ROW);
    }

    // From this point, all threads have the max and the sum for their rows in the thread_max and thread_sum variables
    // respectively. Finally, we can scale the rows for the softmax. Technically, for top-k gating we don't need to
    // compute the entire softmax row. We can likely look at the maxes and only compute for the top-k values in the row.
    // However, this kernel will likely not be a bottle neck and it seems better to closer match torch and find the
    // argmax after computing the softmax.
    const float reciprocal_row_sum = 1.f / row_sum;

#pragma unroll
    for (int ii = 0; ii < VPT; ++ii)
    {
        row_chunk[ii] = row_chunk[ii] * reciprocal_row_sum;
    }

    // Now, softmax_res contains the softmax of the row chunk. Now, I want to find the topk elements in each row, along
    // with the max index.
    int start_col = first_elt_read_by_thread;
    static constexpr int COLS_PER_GROUP_LDG = ELTS_PER_LDG * THREADS_PER_ROW;

    for (int k_idx = 0; k_idx < k; ++k_idx)
    {
        // First, each thread does the local argmax
        float max_val = row_chunk[0];
        int expert = start_col;
#pragma unroll
        for (int ldg = 0, col = start_col; ldg < LDG_PER_THREAD; ++ldg, col += COLS_PER_GROUP_LDG)
        {
#pragma unroll
            for (int ii = 0; ii < ELTS_PER_LDG; ++ii)
            {
                float val = row_chunk[ldg * ELTS_PER_LDG + ii];

                // No check on the experts here since columns with the smallest index are processed first and only
                // updated if > (not >=)
                if (val > max_val)
                {
                    max_val = val;
                    expert = col + ii;
                }
            }
        }

// Now, we perform the argmax reduce. We use the butterfly pattern so threads reach consensus about the max.
// This will be useful for K > 1 so that the threads can agree on "who" had the max value. That thread can
// then blank out their max with -inf and the warp can run more iterations...
#pragma unroll
        for (int mask = THREADS_PER_ROW / 2; mask > 0; mask /= 2)
        {
            float other_max = __shfl_xor_sync(0xFFFFFFFF, max_val, mask, THREADS_PER_ROW);
            int other_expert = __shfl_xor_sync(0xFFFFFFFF, expert, mask, THREADS_PER_ROW);

            // We want lower indices to "win" in every thread so we break ties this way
            if (other_max > max_val || (other_max == max_val && other_expert < expert))
            {
                max_val = other_max;
                expert = other_expert;
            }
        }

        // Write the max for this k iteration to global memory.
        if (thread_group_idx == 0)
        {
            // Add a guard to ignore experts not included by this node
            const bool node_uses_expert = expert >= start_expert && expert < end_expert;
            const bool should_process_row = row_is_active && node_uses_expert;

            // The lead thread from each sub-group will write out the final results to global memory. (This will be a
            // single) thread per row of the input/output matrices.
            const int idx = k * thread_row + k_idx;
            output[idx] = max_val;
            indices[idx] = should_process_row ? (expert - start_expert) : NUM_EXPERTS;
            source_rows[idx] = k_idx * num_rows + thread_row;
        }

        // Finally, we clear the value in the thread with the current max if there is another iteration to run.
        if (k_idx + 1 < k)
        {
            const int ldg_group_for_expert = expert / COLS_PER_GROUP_LDG;
            const int thread_to_clear_in_group = (expert / ELTS_PER_LDG) % THREADS_PER_ROW;

            // Only the thread in the group which produced the max will reset the "winning" value to -inf.
            if (thread_group_idx == thread_to_clear_in_group)
            {
                const int offset_for_expert = expert % ELTS_PER_LDG;
                // Safe to set to any negative value since row_chunk values must be between 0 and 1.
                row_chunk[ldg_group_for_expert * ELTS_PER_LDG + offset_for_expert] = -10000.f;
            }
        }
    }
}

namespace detail
{
// Constructs some constants needed to partition the work across threads at compile time.
template <int EXPERTS, int BYTES_PER_LDG>
struct TopkConstants
{
    static constexpr int ELTS_PER_LDG = BYTES_PER_LDG / sizeof(float);
    static_assert(EXPERTS / (ELTS_PER_LDG * WARP_SIZE) == 0 || EXPERTS % (ELTS_PER_LDG * WARP_SIZE) == 0, "");
    static constexpr int VECs_PER_THREAD = std::max(1, EXPERTS / (ELTS_PER_LDG * WARP_SIZE));
    static constexpr int VPT = VECs_PER_THREAD * ELTS_PER_LDG;
    static constexpr int THREADS_PER_ROW = EXPERTS / VPT;
    static constexpr int ROWS_PER_WARP = WARP_SIZE / THREADS_PER_ROW;
};
} // namespace detail

template <int EXPERTS, int WARPS_PER_TB>
void topkGatingSoftmaxLauncherHelper(const float* input, const bool* finished, float* output, int* indices,
    int* source_row, const int num_rows, const int k, const int start_expert, const int end_expert, cudaStream_t stream)
{
    static constexpr std::size_t MAX_BYTES_PER_LDG = 16;

    static constexpr int BYTES_PER_LDG = std::min(MAX_BYTES_PER_LDG, sizeof(float) * EXPERTS);
    using Constants = detail::TopkConstants<EXPERTS, BYTES_PER_LDG>;
    static constexpr int VPT = Constants::VPT;
    static constexpr int ROWS_PER_WARP = Constants::ROWS_PER_WARP;
    const int num_warps = (num_rows + ROWS_PER_WARP - 1) / ROWS_PER_WARP;
    const int num_blocks = (num_warps + WARPS_PER_TB - 1) / WARPS_PER_TB;

    dim3 block_dim(WARP_SIZE, WARPS_PER_TB);
    topkGatingSoftmax<VPT, EXPERTS, WARPS_PER_TB, BYTES_PER_LDG><<<num_blocks, block_dim, 0, stream>>>(
        input, finished, output, num_rows, indices, source_row, k, start_expert, end_expert);
}

#define LAUNCH_SOFTMAX(NUM_EXPERTS, WARPS_PER_TB)                       \
    topkGatingSoftmaxLauncherHelper<NUM_EXPERTS, WARPS_PER_TB>(         \
        gating_output, nullptr, topk_weights, topk_indicies,            \
        token_expert_indices, num_tokens, topk, 0, num_experts,         \
        stream);

void topkGatingSoftmaxKernelLauncher(
    const float* gating_output,
    float* topk_weights,
    int* topk_indicies,
    int* token_expert_indices,
    float* softmax_workspace,
    const int num_tokens,
    const int num_experts,
    const int topk,
    cudaStream_t stream) {
    static constexpr int WARPS_PER_TB = 4;
    switch (num_experts) {
        case 1:
            LAUNCH_SOFTMAX(1, WARPS_PER_TB);
            break;
        case 2:
            LAUNCH_SOFTMAX(2, WARPS_PER_TB);
            break;
        case 4:
            LAUNCH_SOFTMAX(4, WARPS_PER_TB);
            break;
        case 8:
            LAUNCH_SOFTMAX(8, WARPS_PER_TB);
            break;
        case 16:
            LAUNCH_SOFTMAX(16, WARPS_PER_TB);
            break;
        case 32:
            LAUNCH_SOFTMAX(32, WARPS_PER_TB);
            break;
        case 64:
            LAUNCH_SOFTMAX(64, WARPS_PER_TB);
            break;
        case 128:
            LAUNCH_SOFTMAX(128, WARPS_PER_TB);
            break;
        case 256:
            LAUNCH_SOFTMAX(256, WARPS_PER_TB);
            break;
        default: {
            TORCH_CHECK(softmax_workspace != nullptr,
                "softmax_workspace must be provided for num_experts that are not a power of 2.");
            static constexpr int TPB = 256;
            moeSoftmax<TPB><<<num_tokens, TPB, 0, stream>>>(
                gating_output, nullptr, softmax_workspace, num_experts);
            moeTopK<TPB><<<num_tokens, TPB, 0, stream>>>(
                softmax_workspace, nullptr, topk_weights, topk_indicies, token_expert_indices,
                num_experts, topk, 0, num_experts);
        }
    }
}

void topk_softmax(
    torch::Tensor& topk_weights,                // [num_tokens, topk]
    torch::Tensor& topk_indices,                // [num_tokens, topk]
    torch::Tensor& token_expert_indices,        // [num_tokens, topk]
    torch::Tensor& gating_output)               // [num_tokens, num_experts]
{
    const int num_experts = gating_output.size(-1);
    const int num_tokens = gating_output.numel() / num_experts;
    const int topk = topk_weights.size(-1);

    const bool is_pow_2 = (num_experts != 0) && ((num_experts & (num_experts - 1)) == 0);
    const bool needs_workspace = !is_pow_2 || num_experts > 256;
    const int64_t workspace_size = needs_workspace ? num_tokens * num_experts : 0;

    const at::cuda::OptionalCUDAGuard device_guard(device_of(gating_output));
    const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
    torch::Tensor softmax_workspace = torch::empty({workspace_size}, gating_output.options());
    topkGatingSoftmaxKernelLauncher(
        gating_output.data_ptr<float>(),
        topk_weights.data_ptr<float>(),
        topk_indices.data_ptr<int>(),
        token_expert_indices.data_ptr<int>(),
        softmax_workspace.data_ptr<float>(),
        num_tokens,
        num_experts,
        topk,
        stream);
}