gemm_cuda_gen.cu 66.8 KB
Newer Older
Casper's avatar
Casper committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
/*

@article{lin2023awq,
  title={AWQ: Activation-aware Weight Quantization for LLM Compression and Acceleration},
  author={Lin, Ji and Tang, Jiaming and Tang, Haotian and Yang, Shang and Dang, Xingyu and Han, Song},
  journal={arXiv},
  year={2023}
}

 */

#include <torch/extension.h>
#include <ATen/cuda/CUDAContext.h>
#include "gemm_cuda.h"
#include "dequantize.cuh"
#include <cuda_fp16.h>
#include <c10/cuda/CUDAGuard.h>
Casper's avatar
Casper committed
18
#include <cublas_v2.h>
Casper's avatar
Casper committed
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727


// Pack two half values.
static inline __device__ __host__ unsigned
__pack_half2(const half x, const half y) {
  unsigned v0 = *((unsigned short *)&x);
  unsigned v1 = *((unsigned short *)&y);
  return (v1 << 16) | v0;
}

__device__ __forceinline__ int make_divisible(int c, int divisor){
  return (c + divisor - 1) / divisor;
}

__global__ void __launch_bounds__(64) gemm_forward_4bit_cuda_m16n128k32(int G, int split_k_iters, half* __restrict__ A, int* __restrict__ B, half* __restrict__ scaling_factors, int* __restrict__ zeros, int M, int IC, int OC, half* __restrict__ C) 
{
  static constexpr uint32_t ZERO = 0x0;
  float C_warp[32];
  __shared__ half A_shared[16 * (32 + 8)];
  __shared__ half B_shared[32 * (128 + 8)];

  int j_factors1 = ((OC + 128 - 1) / 128);
  int blockIdx_x = 0;
  int blockIdx_y = blockIdx.x % ((M + 16 - 1) / 16 * j_factors1);
  int blockIdx_z = blockIdx.x / ((M + 16 - 1) / 16 * j_factors1);

  half A_shared_warp[8];
  half B_shared_warp[32];
  for (int j_0_4_init = 0; j_0_4_init < 4; ++j_0_4_init) {
    for (int i = 0; i < 8; ++i) {
      C_warp[(j_0_4_init * 8) + i] = 0.0;
    }
  }

  static constexpr int row_stride_warp = 32 * 8 / 32;
  static constexpr int row_stride = 2 * 32 * 8 / 128;
  bool ld_zero_flag = (threadIdx.y * 32 + threadIdx.x) * 8 < 128;
  // TODO: Haotian: blockIdx_y / j_factors1 in A loading to support bsz > 16
  bool ld_A_flag = (blockIdx_y / j_factors1 * 16 + threadIdx.y * row_stride_warp + threadIdx.x * 8 / 32) < M;     // threadIdx.y is warp_id
  // bool wb_C_flag = (threadIdx.x / 4) < M;

  half* A_ptr = A 
                + (((int)blockIdx_y) / j_factors1 * 16 + (((int)threadIdx.y) * row_stride_warp) + ((int)threadIdx.x) / (32 / 8)) * IC
                + (((int)threadIdx.x) % (32 / 8)) * 8;
  
  int* B_ptr = B
            + ((int)threadIdx.y) * (OC / 8) * 2
            + (((int)threadIdx.x) / (128 / 8)) * (OC / 8)
            + (((int)blockIdx_y) % j_factors1) * (128 / 8)
            + (((int)threadIdx.x) % (128 / 8)) * 1;
// Why * 1 in the above line?
                        
  half* A_shared_ptr = A_shared 
                    + ((int)threadIdx.y) * row_stride_warp * (32 + 8) 
                    + (((int)threadIdx.x) / (32 / 8)) * (32 + 8)
                    + (((int)threadIdx.x) % (32 / 8) ) * 8;

  half* B_shared_ptr = B_shared
                    + ((int)threadIdx.y) * (row_stride / 2) * (128 + 8)
                    + (((int)threadIdx.x) / (128 / 8)) * (128 + 8)
                    + (((int)threadIdx.x) % (128 / 8)) * 8;
  
  int* zeros_ptr = zeros
                + (((int)blockIdx_y) % j_factors1) * (128 / 8)
                + ((int)threadIdx.x) % (128 / 8);
  
  half* scaling_factors_ptr = scaling_factors
                            + (((int)blockIdx_y) % j_factors1) * (128) 
                            + (((int)threadIdx.x) % (128 / 8)) * 8;

  half* C_ptr = C 
              + static_cast<long long>(blockIdx_z) * M * OC        // blockIdz.x -> split_k dim
              + (((int)blockIdx_y) % j_factors1) * 128
              + ((int)threadIdx.y) * 64
              + (((int)threadIdx.x) % 4) * 2;

  // preload s.f. and zeros
  int k_bound = (IC / 32 + split_k_iters - 1) / split_k_iters;
  if ((k_bound - 1) * split_k_iters * 32 + blockIdx_z * 32 >= IC) k_bound -= 1;
  for (int _k_0_0 = 0; _k_0_0 < k_bound; ++_k_0_0) {
    int k_0_0 = _k_0_0 * split_k_iters + blockIdx_z;
    __syncthreads();
    // TODO: Haotian: blockIdx_y / j_factors1 in A loading to support bsz > 16
    if (ld_A_flag)
    {
      *(uint4*)(A_shared_ptr) = *(uint4*)(A_ptr + (k_0_0 * 32));
    }
    else
    {
      *(uint4*)(A_shared_ptr) = make_uint4(0, 0, 0, 0);
    }

    // for (int ax0_ax1_fused_0 = 0; ax0_ax1_fused_0 < 2; ++ax0_ax1_fused_0) {
    uint32_t zeros_loaded = *(uint32_t*)(zeros_ptr + k_0_0 * 32 / G * (OC / 8));
    uint4 B_loaded_zero = dequantize_s4_to_fp16x2(zeros_loaded);
    uint4 B_loaded_scale = *(uint4*)(scaling_factors_ptr + k_0_0 * 32 / G * (OC));
    /*
    if (blockIdx_z == 0 && blockIdx_y == 0 && k_0_0 == 0 && threadIdx.x == 0 && threadIdx.y == 0){
      printf("%x %x %x %x %x %x %x %x\n", B_loaded_scale.x, B_loaded_scale.y, B_loaded_scale.z, B_loaded_scale.w, B_loaded_zero.x, B_loaded_zero.y, B_loaded_zero.z, B_loaded_zero.w);
    }
    */
    // uint4 B_loaded_scale = make_uint4(0, 0, 0, 0);
    int* B_ptr_local = B_ptr + k_0_0 * 32 * (OC / 8);

    for (int ax0_ax1_fused_0 = 0; ax0_ax1_fused_0 < 8; ++ax0_ax1_fused_0) {

      // B: 32 x 136 (128+8) float16
      // each warp: 32 x 4
      // each thr: read 32 bit -> convert to 8xFP16 (a UINT4) -> scale and minus zero -> WB UINT4
      // *(uint4*)(B_shared + ((((ax0_ax1_fused_0 * 544) + (((int)threadIdx.y) * 272)) + ((((int)threadIdx.x) >> 4) * 136)) + ((((int)threadIdx.x) & 15) * 8))) = *(uint4*)(B + ((((((k_0_0 * 163840) + (ax0_ax1_fused_0 * 20480)) + (((int)threadIdx.y) * 10240)) + ((((int)threadIdx.x) >> 4) * 5120)) + (((int)blockIdx_y) * 128)) + ((((int)threadIdx.x) & 15) * 8)));
      // row stride in shared memory: (NWARPS * 32 * 8 / cta_N) 
      uint32_t B_loaded = *(uint32_t*)(B_ptr_local + ax0_ax1_fused_0 * row_stride * (OC / 8));
      uint4 B_loaded_fp16 = dequantize_s4_to_fp16x2(B_loaded);
      //uint4 B_loaded_zero = *(uint4*)(zeros_shared + (threadIdx.x % (cta_N / 8)) * 8);

      // uint4 B_loaded_scale = *(uint4*)(scaling_factors_shared + (threadIdx.x % (cta_N / 8)) * 8);
      // - zero and * scale
      // TODO (Haotian): can save 4 assembly instructions if sormulate as deq = q * scale - zero * scale.
      asm volatile("sub.f16x2 %0, %1, %2;\n" : "=r"(B_loaded_fp16.x) : "r"(B_loaded_fp16.x), "r"(B_loaded_zero.x));
      asm volatile("fma.rn.f16x2 %0, %1, %2, %3;\n" : "=r"(B_loaded_fp16.x) : "r"(B_loaded_fp16.x), "r"(B_loaded_scale.x), "r"(ZERO));
      asm volatile("sub.f16x2 %0, %1, %2;\n" : "=r"(B_loaded_fp16.y) : "r"(B_loaded_fp16.y), "r"(B_loaded_zero.y));
      asm volatile("fma.rn.f16x2 %0, %1, %2, %3;\n" : "=r"(B_loaded_fp16.y) : "r"(B_loaded_fp16.y), "r"(B_loaded_scale.y), "r"(ZERO));
      asm volatile("sub.f16x2 %0, %1, %2;\n" : "=r"(B_loaded_fp16.z) : "r"(B_loaded_fp16.z), "r"(B_loaded_zero.z));
      asm volatile("fma.rn.f16x2 %0, %1, %2, %3;\n" : "=r"(B_loaded_fp16.z) : "r"(B_loaded_fp16.z), "r"(B_loaded_scale.z), "r"(ZERO));
      asm volatile("sub.f16x2 %0, %1, %2;\n" : "=r"(B_loaded_fp16.w) : "r"(B_loaded_fp16.w), "r"(B_loaded_zero.w));
      asm volatile("fma.rn.f16x2 %0, %1, %2, %3;\n" : "=r"(B_loaded_fp16.w) : "r"(B_loaded_fp16.w), "r"(B_loaded_scale.w), "r"(ZERO));
      /*
      if (ax0_ax1_fused_0 == 0 && blockIdx_z == 0 && blockIdx_y == 0 && k_0_0 == 0 && threadIdx.x == 17 && threadIdx.y == 0){
        printf("[x] %X %X %X %X\n", B_loaded_fp16.x, B_loaded_fp16.y, B_loaded_fp16.z, B_loaded_fp16.w);
      }
      */

      // write back
      *(uint4*)(B_shared_ptr + ax0_ax1_fused_0 * row_stride * (128 + 8)) = B_loaded_fp16;
    }
    __syncthreads();

    for (int k_0_1 = 0; k_0_1 < 2; ++k_0_1) {
      {
        unsigned int addr;
        asm volatile(
          "{ .reg .u64 addr; cvta.to.shared.u64 addr, %1; cvt.u32.u64 %0, addr; }\n"
          : "=r"(addr)
          : "l"((void *)((&(A_shared[(k_0_1 * 16)])) + (((((int)threadIdx.x) & 15) * 40) + ((((int)threadIdx.x) >> 4) * 8))))
        );


        asm volatile(
          "ldmatrix.sync.aligned.m8n8.x4.shared.b16"
          "{%0, %1, %2, %3}, [%4];\n"
          : "=r"(((unsigned *)(A_shared_warp + 0))[0]), "=r"(((unsigned *)(A_shared_warp + 0))[1]), "=r"(((unsigned *)(A_shared_warp + 0))[2]), "=r"(((unsigned *)(A_shared_warp + 0))[3])
          : "r"(addr)
        );
      }

      for (int ax1_0 = 0; ax1_0 < 4; ++ax1_0) {
        {
          unsigned int addr;
          asm volatile(
            "{ .reg .u64 addr; cvta.to.shared.u64 addr, %1; cvt.u32.u64 %0, addr; }\n"
            : "=r"(addr)
            : "l"((void *)((&(B_shared[(((k_0_1 * 2176) + (((int)threadIdx.y) * 64)) + (ax1_0 * 16))])) + (((((int)threadIdx.x) & 15) * 136) + ((((int)threadIdx.x) >> 4) * 8))))
          );
          asm volatile(
            "ldmatrix.sync.aligned.m8n8.x4.trans.shared.b16"
            "{%0, %1, %2, %3}, [%4];\n"
            : "=r"(((unsigned *)(B_shared_warp + (ax1_0 * 8)))[0]), "=r"(((unsigned *)(B_shared_warp + (ax1_0 * 8)))[1]), "=r"(((unsigned *)(B_shared_warp + (ax1_0 * 8)))[2]), "=r"(((unsigned *)(B_shared_warp + (ax1_0 * 8)))[3])
            : "r"(addr)
          );
        }
      }
      for (int j_0_4 = 0; j_0_4 < 4; ++j_0_4) {
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ < 800
        {
          asm volatile(
            "mma.sync.aligned.m16n8k8.row.col.f32.f16.f16.f32"
            "{%0, %1, %2, %3}, {%4, %5}, {%6}, {%7, %8, %9, %10};\n"
            :  "=f"(((float *)(C_warp + (j_0_4 * 8)))[0]), "=f"(((float *)(C_warp + (j_0_4 * 8)))[1]), "=f"(((float *)(C_warp + (j_0_4 * 8)))[2]), "=f"(((float *)(C_warp + (j_0_4 * 8)))[3])
            : "r"(((unsigned *)(A_shared_warp + 0))[0]), "r"(((unsigned *)(A_shared_warp + 0))[1]), "r"(((unsigned *)(B_shared_warp + (j_0_4 * 8)))[0]), "f"(((float *)(C_warp + (j_0_4 * 8)))[0]), "f"(((float *)(C_warp + (j_0_4 * 8)))[1]), "f"(((float *)(C_warp + (j_0_4 * 8)))[2]), "f"(((float *)(C_warp + (j_0_4 * 8)))[3]));
        }

        {
          asm volatile(
            "mma.sync.aligned.m16n8k8.row.col.f32.f16.f16.f32"
            "{%0, %1, %2, %3}, {%4, %5}, {%6}, {%7, %8, %9, %10};\n"
            :  "=f"(((float *)(C_warp + ((j_0_4 * 8) + 4)))[0]), "=f"(((float *)(C_warp + ((j_0_4 * 8) + 4)))[1]), "=f"(((float *)(C_warp + ((j_0_4 * 8) + 4)))[2]), "=f"(((float *)(C_warp + ((j_0_4 * 8) + 4)))[3])
            : "r"(((unsigned *)(A_shared_warp + 0))[0]), "r"(((unsigned *)(A_shared_warp + 0))[1]), "r"(((unsigned *)(B_shared_warp + ((j_0_4 * 8) + 4)))[0]), "f"(((float *)(C_warp + ((j_0_4 * 8) + 4)))[0]), "f"(((float *)(C_warp + ((j_0_4 * 8) + 4)))[1]), "f"(((float *)(C_warp + ((j_0_4 * 8) + 4)))[2]), "f"(((float *)(C_warp + ((j_0_4 * 8) + 4)))[3]));
        }

        {
          asm volatile(
            "mma.sync.aligned.m16n8k8.row.col.f32.f16.f16.f32"
            "{%0, %1, %2, %3}, {%4, %5}, {%6}, {%7, %8, %9, %10};\n"
            :  "=f"(((float *)(C_warp + (j_0_4 * 8)))[0]), "=f"(((float *)(C_warp + (j_0_4 * 8)))[1]), "=f"(((float *)(C_warp + (j_0_4 * 8)))[2]), "=f"(((float *)(C_warp + (j_0_4 * 8)))[3])
            : "r"(((unsigned *)(A_shared_warp + 0))[2]), "r"(((unsigned *)(A_shared_warp + 0))[3]), "r"(((unsigned *)(B_shared_warp + (j_0_4 * 8)))[1]), "f"(((float *)(C_warp + (j_0_4 * 8)))[0]), "f"(((float *)(C_warp + (j_0_4 * 8)))[1]), "f"(((float *)(C_warp + (j_0_4 * 8)))[2]), "f"(((float *)(C_warp + (j_0_4 * 8)))[3]));
        }

        {
          asm volatile(
            "mma.sync.aligned.m16n8k8.row.col.f32.f16.f16.f32"
            "{%0, %1, %2, %3}, {%4, %5}, {%6}, {%7, %8, %9, %10};\n"
            :  "=f"(((float *)(C_warp + ((j_0_4 * 8) + 4)))[0]), "=f"(((float *)(C_warp + ((j_0_4 * 8) + 4)))[1]), "=f"(((float *)(C_warp + ((j_0_4 * 8) + 4)))[2]), "=f"(((float *)(C_warp + ((j_0_4 * 8) + 4)))[3])
            : "r"(((unsigned *)(A_shared_warp + 0))[2]), "r"(((unsigned *)(A_shared_warp + 0))[3]), "r"(((unsigned *)(B_shared_warp + ((j_0_4 * 8) + 4)))[1]), "f"(((float *)(C_warp + ((j_0_4 * 8) + 4)))[0]), "f"(((float *)(C_warp + ((j_0_4 * 8) + 4)))[1]), "f"(((float *)(C_warp + ((j_0_4 * 8) + 4)))[2]), "f"(((float *)(C_warp + ((j_0_4 * 8) + 4)))[3]));
        }
#else
        {
          asm volatile(
            "mma.sync.aligned.m16n8k16.row.col.f32.f16.f16.f32"
            "{%0, %1, %2, %3}, {%4, %5, %6, %7}, {%8, %9}, {%10, %11, %12, %13};\n"
            :  "=f"(((float *)(C_warp + (j_0_4 * 8)))[0]), "=f"(((float *)(C_warp + (j_0_4 * 8)))[1]), "=f"(((float *)(C_warp + (j_0_4 * 8)))[2]), "=f"(((float *)(C_warp + (j_0_4 * 8)))[3])
            : "r"(((unsigned *)(A_shared_warp + 0))[0]), "r"(((unsigned *)(A_shared_warp + 0))[1]), "r"(((unsigned *)(A_shared_warp + 0))[2]), "r"(((unsigned *)(A_shared_warp + 0))[3]), "r"(((unsigned *)(B_shared_warp + (j_0_4 * 8)))[0]), "r"(((unsigned *)(B_shared_warp + (j_0_4 * 8)))[1]), "f"(((float *)(C_warp + (j_0_4 * 8)))[0]), "f"(((float *)(C_warp + (j_0_4 * 8)))[1]), "f"(((float *)(C_warp + (j_0_4 * 8)))[2]), "f"(((float *)(C_warp + (j_0_4 * 8)))[3]));
        }

        {
          asm volatile(
            "mma.sync.aligned.m16n8k16.row.col.f32.f16.f16.f32"
            "{%0, %1, %2, %3}, {%4, %5, %6, %7}, {%8, %9}, {%10, %11, %12, %13};\n"
            :  "=f"(((float *)(C_warp + ((j_0_4 * 8) + 4)))[0]), "=f"(((float *)(C_warp + ((j_0_4 * 8) + 4)))[1]), "=f"(((float *)(C_warp + ((j_0_4 * 8) + 4)))[2]), "=f"(((float *)(C_warp + ((j_0_4 * 8) + 4)))[3])
            : "r"(((unsigned *)(A_shared_warp + 0))[0]), "r"(((unsigned *)(A_shared_warp + 0))[1]), "r"(((unsigned *)(A_shared_warp + 0))[2]), "r"(((unsigned *)(A_shared_warp + 0))[3]), "r"(((unsigned *)(B_shared_warp + ((j_0_4 * 8) + 4)))[0]), "r"(((unsigned *)(B_shared_warp + ((j_0_4 * 8) + 4)))[1]), "f"(((float *)(C_warp + ((j_0_4 * 8) + 4)))[0]), "f"(((float *)(C_warp + ((j_0_4 * 8) + 4)))[1]), "f"(((float *)(C_warp + ((j_0_4 * 8) + 4)))[2]), "f"(((float *)(C_warp + ((j_0_4 * 8) + 4)))[3]));
        }
#endif
      }
    }
  }

// TODO: Shang: Hoist loop invariance.
  for (int ax1_0_1 = 0; ax1_0_1 < 4; ++ax1_0_1) {
    for (int local_id = 0; local_id < 8; ++local_id) {
      int row_offset = (((int)blockIdx_y) / j_factors1) * 16 + ((int)threadIdx.x) / 4 + (local_id % 4) / 2 * 8;
      if (row_offset < M)
      {
        *(C_ptr + ax1_0_1 * 16 + row_offset * OC + (local_id / 4) * 8 + local_id % 2) = __float2half(C_warp[(ax1_0_1 * 8) + local_id]);
      }
    }
  }
}


__global__ void __launch_bounds__(64) gemm_forward_4bit_cuda_m16n64k32(int G, int split_k_iters, half* __restrict__ A, int* __restrict__ B, half* __restrict__ scaling_factors, int* __restrict__ zeros, int M, int IC, int OC, half* __restrict__ C) 
{
  static constexpr uint32_t ZERO = 0x0;
  float C_warp[32];
  __shared__ half A_shared[16 * (32 + 8)];
  __shared__ half B_shared[32 * (64 + 8)];
  
  __shared__ half scaling_factors_shared[64];
  __shared__ half zeros_shared[64];

  int j_factors1 = ((OC + 64 - 1) / 64);

  int blockIdx_x = 0;
  int blockIdx_y = blockIdx.x % ((M + 16 - 1) / 16 * j_factors1);
  int blockIdx_z = blockIdx.x / ((M + 16 - 1) / 16 * j_factors1);

  half A_shared_warp[8];
  half B_shared_warp[16];
  for (int j_0_4_init = 0; j_0_4_init < 2; ++j_0_4_init) {
    for (int i = 0; i < 8; ++i) {
      C_warp[(j_0_4_init * 8) + i] = 0.0;
    }
  }

  static constexpr int row_stride_warp = 32 * 8 / 32;
  static constexpr int row_stride = 2 * 32 * 8 / 64;
  bool ld_zero_flag = (threadIdx.y * 32 + threadIdx.x) * 8 < 64;
  // TODO: Haotian: blockIdx_y / j_factors1 in A loading to support bsz > 16
  bool ld_A_flag = (blockIdx_y / j_factors1 * 16 + threadIdx.y * row_stride_warp + threadIdx.x * 8 / 32) < M;     // threadIdx.y is warp_id
  // bool wb_C_flag = (threadIdx.x / 4) < M;

  half* A_ptr = A 
                + (((int)blockIdx_y) / j_factors1 * 16 + (((int)threadIdx.y) * row_stride_warp) + ((int)threadIdx.x) / (32 / 8)) * IC
                + (((int)threadIdx.x) % (32 / 8)) * 8;
  
  int* B_ptr = B
            + ((int)threadIdx.y) * (OC / 8) * 4
            + (((int)threadIdx.x) / (64 / 8)) * (OC / 8)
            + (((int)blockIdx_y) % j_factors1) * (64 / 8)
            + (((int)threadIdx.x) % (64 / 8)) * 1;
// Why * 1 in the above line?
                        
  half* A_shared_ptr = A_shared 
                    + ((int)threadIdx.y) * row_stride_warp * (32 + 8) 
                    + (((int)threadIdx.x) / (32 / 8)) * (32 + 8)
                    + (((int)threadIdx.x) % (32 / 8) ) * 8;

  half* B_shared_ptr = B_shared
                    + ((int)threadIdx.y) * (row_stride / 2) * (64 + 8)
                    + (((int)threadIdx.x) / (64 / 8)) * (64 + 8)
                    + (((int)threadIdx.x) % (64 / 8)) * 8;
  
  int* zeros_ptr = zeros
                + (((int)blockIdx_y) % j_factors1) * (64 / 8)
                + ((int)threadIdx.x) % (64 / 8);
  
  half* scaling_factors_ptr = scaling_factors
                            + (((int)blockIdx_y) % j_factors1) * (64) 
                            + (((int)threadIdx.x) % (64 / 8)) * 8;

  half* C_ptr = C 
              + static_cast<long long>(blockIdx_z) * M * OC        // blockIdz.x -> split_k dim
              + (((int)blockIdx_y) % j_factors1) * 64
              + ((int)threadIdx.y) * 32
              + (((int)threadIdx.x) % 4) * 2;

  // preload s.f. and zeros
  int k_bound = (IC / 32 + split_k_iters - 1) / split_k_iters;
  if ((k_bound - 1) * split_k_iters * 32 + blockIdx_z * 32 >= IC) k_bound -= 1;
  for (int _k_0_0 = 0; _k_0_0 < k_bound; ++_k_0_0) {
    int k_0_0 = _k_0_0 * split_k_iters + blockIdx_z;
    __syncthreads();
    // TODO: Haotian: blockIdx_y / j_factors1 in A loading to support bsz > 16
    if (ld_A_flag)
    {
      *(uint4*)(A_shared_ptr) = *(uint4*)(A_ptr + (k_0_0 * 32));
    }
    else
    {
      *(uint4*)(A_shared_ptr) = make_uint4(0, 0, 0, 0);
    }

    // for (int ax0_ax1_fused_0 = 0; ax0_ax1_fused_0 < 2; ++ax0_ax1_fused_0) {
    uint32_t zeros_loaded = *(uint32_t*)(zeros_ptr + k_0_0 * 32 / G * (OC / 8));
    uint4 B_loaded_zero = dequantize_s4_to_fp16x2(zeros_loaded);
    uint4 B_loaded_scale = *(uint4*)(scaling_factors_ptr + k_0_0 * 32 / G * (OC));
    /*
    if (blockIdx_z == 0 && blockIdx_y == 0 && k_0_0 == 0 && threadIdx.x == 0 && threadIdx.y == 0){
      printf("%x %x %x %x %x %x %x %x\n", B_loaded_scale.x, B_loaded_scale.y, B_loaded_scale.z, B_loaded_scale.w, B_loaded_zero.x, B_loaded_zero.y, B_loaded_zero.z, B_loaded_zero.w);
    }
    */
    // uint4 B_loaded_scale = make_uint4(0, 0, 0, 0);
    int* B_ptr_local = B_ptr + k_0_0 * 32 * (OC / 8);

    for (int ax0_ax1_fused_0 = 0; ax0_ax1_fused_0 < 4; ++ax0_ax1_fused_0) {

      // B: 32 x 136 (128+8) float16
      // each warp: 32 x 4
      // each thr: read 32 bit -> convert to 8xFP16 (a UINT4) -> scale and minus zero -> WB UINT4
      // *(uint4*)(B_shared + ((((ax0_ax1_fused_0 * 544) + (((int)threadIdx.y) * 272)) + ((((int)threadIdx.x) >> 4) * 136)) + ((((int)threadIdx.x) & 15) * 8))) = *(uint4*)(B + ((((((k_0_0 * 163840) + (ax0_ax1_fused_0 * 20480)) + (((int)threadIdx.y) * 10240)) + ((((int)threadIdx.x) >> 4) * 5120)) + (((int)blockIdx_y) * 128)) + ((((int)threadIdx.x) & 15) * 8)));
      // row stride in shared memory: (NWARPS * 32 * 8 / cta_N) 
      uint32_t B_loaded = *(uint32_t*)(B_ptr_local + ax0_ax1_fused_0 * row_stride * (OC / 8));
      uint4 B_loaded_fp16 = dequantize_s4_to_fp16x2(B_loaded);
      //uint4 B_loaded_zero = *(uint4*)(zeros_shared + (threadIdx.x % (cta_N / 8)) * 8);

      // uint4 B_loaded_scale = *(uint4*)(scaling_factors_shared + (threadIdx.x % (cta_N / 8)) * 8);
      // - zero and * scale
      // TODO (Haotian): can save 4 assembly instructions if sormulate as deq = q * scale - zero * scale.
      asm volatile("sub.f16x2 %0, %1, %2;\n" : "=r"(B_loaded_fp16.x) : "r"(B_loaded_fp16.x), "r"(B_loaded_zero.x));
      asm volatile("fma.rn.f16x2 %0, %1, %2, %3;\n" : "=r"(B_loaded_fp16.x) : "r"(B_loaded_fp16.x), "r"(B_loaded_scale.x), "r"(ZERO));
      asm volatile("sub.f16x2 %0, %1, %2;\n" : "=r"(B_loaded_fp16.y) : "r"(B_loaded_fp16.y), "r"(B_loaded_zero.y));
      asm volatile("fma.rn.f16x2 %0, %1, %2, %3;\n" : "=r"(B_loaded_fp16.y) : "r"(B_loaded_fp16.y), "r"(B_loaded_scale.y), "r"(ZERO));
      asm volatile("sub.f16x2 %0, %1, %2;\n" : "=r"(B_loaded_fp16.z) : "r"(B_loaded_fp16.z), "r"(B_loaded_zero.z));
      asm volatile("fma.rn.f16x2 %0, %1, %2, %3;\n" : "=r"(B_loaded_fp16.z) : "r"(B_loaded_fp16.z), "r"(B_loaded_scale.z), "r"(ZERO));
      asm volatile("sub.f16x2 %0, %1, %2;\n" : "=r"(B_loaded_fp16.w) : "r"(B_loaded_fp16.w), "r"(B_loaded_zero.w));
      asm volatile("fma.rn.f16x2 %0, %1, %2, %3;\n" : "=r"(B_loaded_fp16.w) : "r"(B_loaded_fp16.w), "r"(B_loaded_scale.w), "r"(ZERO));
      /*
      if (ax0_ax1_fused_0 == 0 && blockIdx_z == 0 && blockIdx_y == 0 && k_0_0 == 0 && threadIdx.x == 17 && threadIdx.y == 0){
        printf("[x] %X %X %X %X\n", B_loaded_fp16.x, B_loaded_fp16.y, B_loaded_fp16.z, B_loaded_fp16.w);
      }
      */

      // write back
      *(uint4*)(B_shared_ptr + ax0_ax1_fused_0 * row_stride * (64 + 8)) = B_loaded_fp16;
    }
    __syncthreads();

    for (int k_0_1 = 0; k_0_1 < 2; ++k_0_1) 
    {
      {
        unsigned int addr;
        asm volatile(
          "{ .reg .u64 addr; cvta.to.shared.u64 addr, %1; cvt.u32.u64 %0, addr; }\n"
          : "=r"(addr)
          : "l"((void *)((&(A_shared[(k_0_1 * 16)])) + (((((int)threadIdx.x) & 15) * 40) + ((((int)threadIdx.x) >> 4) * 8))))
        );
        asm volatile(
          "ldmatrix.sync.aligned.m8n8.x4.shared.b16"
          "{%0, %1, %2, %3}, [%4];\n"
          : "=r"(((unsigned *)(A_shared_warp + 0))[0]), "=r"(((unsigned *)(A_shared_warp + 0))[1]), "=r"(((unsigned *)(A_shared_warp + 0))[2]), "=r"(((unsigned *)(A_shared_warp + 0))[3])
          : "r"(addr)
        );
      }
        

      for (int ax1_0 = 0; ax1_0 < 2; ++ax1_0) 
      {
        {
          unsigned int addr;
          asm volatile(
            "{ .reg .u64 addr; cvta.to.shared.u64 addr, %1; cvt.u32.u64 %0, addr; }\n"
            : "=r"(addr)
            : "l"((void *)((&(B_shared[(((k_0_1 * 1152) + (((int)threadIdx.y) * 32)) + (ax1_0 * 16))])) + (((((int)threadIdx.x) & 15) * 72) + ((((int)threadIdx.x) >> 4) * 8))))
          );
          asm volatile(
            "ldmatrix.sync.aligned.m8n8.x4.trans.shared.b16"
            "{%0, %1, %2, %3}, [%4];\n"
            : "=r"(((unsigned *)(B_shared_warp + (ax1_0 * 8)))[0]), "=r"(((unsigned *)(B_shared_warp + (ax1_0 * 8)))[1]), "=r"(((unsigned *)(B_shared_warp + (ax1_0 * 8)))[2]), "=r"(((unsigned *)(B_shared_warp + (ax1_0 * 8)))[3])
            : "r"(addr)
          );
        }
      }
      
      for (int j_0_4 = 0; j_0_4 < 2; ++j_0_4) 
      {
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ < 800
        {
          asm volatile(
            "mma.sync.aligned.m16n8k8.row.col.f32.f16.f16.f32"
            "{%0, %1, %2, %3}, {%4, %5}, {%6}, {%7, %8, %9, %10};\n"
            :  "=f"(((float *)(C_warp + (j_0_4 * 8)))[0]), "=f"(((float *)(C_warp + (j_0_4 * 8)))[1]), "=f"(((float *)(C_warp + (j_0_4 * 8)))[2]), "=f"(((float *)(C_warp + (j_0_4 * 8)))[3])
            : "r"(((unsigned *)(A_shared_warp + 0))[0]), "r"(((unsigned *)(A_shared_warp + 0))[1]), "r"(((unsigned *)(B_shared_warp + (j_0_4 * 8)))[0]), "f"(((float *)(C_warp + (j_0_4 * 8)))[0]), "f"(((float *)(C_warp + (j_0_4 * 8)))[1]), "f"(((float *)(C_warp + (j_0_4 * 8)))[2]), "f"(((float *)(C_warp + (j_0_4 * 8)))[3]));
        }

        {
          asm volatile(
            "mma.sync.aligned.m16n8k8.row.col.f32.f16.f16.f32"
            "{%0, %1, %2, %3}, {%4, %5}, {%6}, {%7, %8, %9, %10};\n"
            :  "=f"(((float *)(C_warp + ((j_0_4 * 8) + 4)))[0]), "=f"(((float *)(C_warp + ((j_0_4 * 8) + 4)))[1]), "=f"(((float *)(C_warp + ((j_0_4 * 8) + 4)))[2]), "=f"(((float *)(C_warp + ((j_0_4 * 8) + 4)))[3])
            : "r"(((unsigned *)(A_shared_warp + 0))[0]), "r"(((unsigned *)(A_shared_warp + 0))[1]), "r"(((unsigned *)(B_shared_warp + ((j_0_4 * 8) + 4)))[0]), "f"(((float *)(C_warp + ((j_0_4 * 8) + 4)))[0]), "f"(((float *)(C_warp + ((j_0_4 * 8) + 4)))[1]), "f"(((float *)(C_warp + ((j_0_4 * 8) + 4)))[2]), "f"(((float *)(C_warp + ((j_0_4 * 8) + 4)))[3]));
        }

        {
          asm volatile(
            "mma.sync.aligned.m16n8k8.row.col.f32.f16.f16.f32"
            "{%0, %1, %2, %3}, {%4, %5}, {%6}, {%7, %8, %9, %10};\n"
            :  "=f"(((float *)(C_warp + (j_0_4 * 8)))[0]), "=f"(((float *)(C_warp + (j_0_4 * 8)))[1]), "=f"(((float *)(C_warp + (j_0_4 * 8)))[2]), "=f"(((float *)(C_warp + (j_0_4 * 8)))[3])
            : "r"(((unsigned *)(A_shared_warp + 0))[2]), "r"(((unsigned *)(A_shared_warp + 0))[3]), "r"(((unsigned *)(B_shared_warp + (j_0_4 * 8)))[1]), "f"(((float *)(C_warp + (j_0_4 * 8)))[0]), "f"(((float *)(C_warp + (j_0_4 * 8)))[1]), "f"(((float *)(C_warp + (j_0_4 * 8)))[2]), "f"(((float *)(C_warp + (j_0_4 * 8)))[3]));
        }

        {
          asm volatile(
            "mma.sync.aligned.m16n8k8.row.col.f32.f16.f16.f32"
            "{%0, %1, %2, %3}, {%4, %5}, {%6}, {%7, %8, %9, %10};\n"
            :  "=f"(((float *)(C_warp + ((j_0_4 * 8) + 4)))[0]), "=f"(((float *)(C_warp + ((j_0_4 * 8) + 4)))[1]), "=f"(((float *)(C_warp + ((j_0_4 * 8) + 4)))[2]), "=f"(((float *)(C_warp + ((j_0_4 * 8) + 4)))[3])
            : "r"(((unsigned *)(A_shared_warp + 0))[2]), "r"(((unsigned *)(A_shared_warp + 0))[3]), "r"(((unsigned *)(B_shared_warp + ((j_0_4 * 8) + 4)))[1]), "f"(((float *)(C_warp + ((j_0_4 * 8) + 4)))[0]), "f"(((float *)(C_warp + ((j_0_4 * 8) + 4)))[1]), "f"(((float *)(C_warp + ((j_0_4 * 8) + 4)))[2]), "f"(((float *)(C_warp + ((j_0_4 * 8) + 4)))[3]));
        }
#else
        {
          asm volatile(
            "mma.sync.aligned.m16n8k16.row.col.f32.f16.f16.f32"
            "{%0, %1, %2, %3}, {%4, %5, %6, %7}, {%8, %9}, {%10, %11, %12, %13};\n"
            :  "=f"(((float *)(C_warp + (j_0_4 * 8)))[0]), "=f"(((float *)(C_warp + (j_0_4 * 8)))[1]), "=f"(((float *)(C_warp + (j_0_4 * 8)))[2]), "=f"(((float *)(C_warp + (j_0_4 * 8)))[3])
            : "r"(((unsigned *)(A_shared_warp + 0))[0]), "r"(((unsigned *)(A_shared_warp + 0))[1]), "r"(((unsigned *)(A_shared_warp + 0))[2]), "r"(((unsigned *)(A_shared_warp + 0))[3]), "r"(((unsigned *)(B_shared_warp + (j_0_4 * 8)))[0]), "r"(((unsigned *)(B_shared_warp + (j_0_4 * 8)))[1]), "f"(((float *)(C_warp + (j_0_4 * 8)))[0]), "f"(((float *)(C_warp + (j_0_4 * 8)))[1]), "f"(((float *)(C_warp + (j_0_4 * 8)))[2]), "f"(((float *)(C_warp + (j_0_4 * 8)))[3]));
        }

        {
          asm volatile(
            "mma.sync.aligned.m16n8k16.row.col.f32.f16.f16.f32"
            "{%0, %1, %2, %3}, {%4, %5, %6, %7}, {%8, %9}, {%10, %11, %12, %13};\n"
            :  "=f"(((float *)(C_warp + ((j_0_4 * 8) + 4)))[0]), "=f"(((float *)(C_warp + ((j_0_4 * 8) + 4)))[1]), "=f"(((float *)(C_warp + ((j_0_4 * 8) + 4)))[2]), "=f"(((float *)(C_warp + ((j_0_4 * 8) + 4)))[3])
            : "r"(((unsigned *)(A_shared_warp + 0))[0]), "r"(((unsigned *)(A_shared_warp + 0))[1]), "r"(((unsigned *)(A_shared_warp + 0))[2]), "r"(((unsigned *)(A_shared_warp + 0))[3]), "r"(((unsigned *)(B_shared_warp + ((j_0_4 * 8) + 4)))[0]), "r"(((unsigned *)(B_shared_warp + ((j_0_4 * 8) + 4)))[1]), "f"(((float *)(C_warp + ((j_0_4 * 8) + 4)))[0]), "f"(((float *)(C_warp + ((j_0_4 * 8) + 4)))[1]), "f"(((float *)(C_warp + ((j_0_4 * 8) + 4)))[2]), "f"(((float *)(C_warp + ((j_0_4 * 8) + 4)))[3]));
        }
#endif
      }
    }
  }

// TODO: Shang: Hoist loop invariance.
  for (int ax1_0_1 = 0; ax1_0_1 < 2; ++ax1_0_1) {
    for (int local_id = 0; local_id < 8; ++local_id) {
      int row_offset = (((int)blockIdx_y) / j_factors1) * 16 + ((int)threadIdx.x) / 4 + (local_id % 4) / 2 * 8;
      if (row_offset < M)
      {
        *(C_ptr + ax1_0_1 * 16 + row_offset * OC + (local_id / 4) * 8 + local_id % 2) = __float2half(C_warp[(ax1_0_1 * 8) + local_id]);
      }
    }
  }
}

template <int G>
__global__ void __launch_bounds__(128) gemmv2_forward_4bit_cuda_m128n64k32(int split_k_iters, half* __restrict__ A, int* __restrict__ B, half* __restrict__ scaling_factors, int* zeros, int M, int IC, int OC, half* __restrict__ C) 
{
  static constexpr uint32_t ZERO = 0x0;
  float C_warp[64];
  __shared__ half A_shared[128 * (32 + 8)];
  __shared__ half B_shared[64 * (32 + 8)];
  
  // __shared__ half scaling_factors_shared[64];
  // __shared__ half zeros_shared[64];

  int j_factors1 = ((OC + 64 - 1) / 64);

  int blockIdx_x = 0;
  int blockIdx_y = blockIdx.x % ((M + 128 - 1) / 128 * j_factors1);
  int blockIdx_z = blockIdx.x / ((M + 128 - 1) / 128 * j_factors1);
  
  half A_shared_warp[32];
  half B_shared_warp[16];
  for (int i_0_3_init = 0; i_0_3_init < 4; ++i_0_3_init) {
    for (int j_0_4_init = 0; j_0_4_init < 2; ++j_0_4_init) {
      for (int i = 0; i < 8; ++i) {
        C_warp[((i_0_3_init * 16) + (j_0_4_init * 8)) + i] = 0.0;
      }
    }
  }

  static constexpr int row_stride_warp = 32 * 8 / 32;
  static constexpr int row_stride_A = 4 * 32 * 8 / 32;
  static constexpr int row_stride = 4 * 32 * 8 / 32;
  const int make_divisible_multipler = 128 / G;
  const int zeros_w = make_divisible(make_divisible(IC / G, 8), make_divisible_multipler) * make_divisible_multipler;
  const int sf_w = zeros_w * 8;

  bool ld_zero_flag = (threadIdx.y * 32 + threadIdx.x) * 8 < 64;
  int ld_A_row = (blockIdx_y / j_factors1 * 128 + threadIdx.y * row_stride_warp + threadIdx.x * 8 / 32);     // threadIdx.y is warp_id
  // bool wb_C_flag = (threadIdx.x / 4) < M;

  half* A_ptr = A 
                + (((int)blockIdx_y) / j_factors1 * 128 + (((int)threadIdx.y) * row_stride_warp) + ((int)threadIdx.x) / (32 / 8)) * IC
                + (((int)threadIdx.x) % (32 / 8)) * 8;
  
  int* B_ptr = B
            + ((int)threadIdx.y) * (IC / 8) * 8
            + (((int)threadIdx.x) / (32 / 8)) * (IC / 8)
            + (((int)blockIdx_y) % j_factors1) * 64 * (IC / 8)
            + (((int)threadIdx.x) % (32 / 8)) * 1;
  
// Why * 1 in the above line?
                        
  half* A_shared_ptr = A_shared 
                    + ((int)threadIdx.y) * row_stride_warp * (32 + 8) 
                    + (((int)threadIdx.x) / (32 / 8)) * (32 + 8)
                    + (((int)threadIdx.x) % (32 / 8) ) * 8;

  half* B_shared_ptr = B_shared
                    + ((int)threadIdx.y) * (row_stride / 4) * (32 + 8)
                    + (((int)threadIdx.x) / (32 / 8)) * (32 + 8)
                    + (((int)threadIdx.x) % (32 / 8)) * 8;
  

  int* zeros_ptr = zeros
                + ((int)threadIdx.y) * zeros_w * 8
                + (((int)threadIdx.x) / (32 / 8)) * zeros_w
                + (((int)blockIdx_y) % j_factors1) * 64 * zeros_w
                // this term is zero
                + (((int)threadIdx.x) % (32 / 8)) / G ;
  
  half* scaling_factors_ptr = scaling_factors
                            + ((int)threadIdx.y) * sf_w * 8
                            + (((int)threadIdx.x) / (32 / 8)) * sf_w
                            + (((int)blockIdx_y) % j_factors1) * (64) * sf_w
                            // this term is zero
                            + (((int)threadIdx.x) % (32 / 8)) * 8 / G;


  // Haotian: TBD, check, May 29 11:46 AM PST
  half* C_ptr = C 
              + static_cast<long long>(blockIdx_z) * M * OC        // blockIdx_z -> split_k dim
              + (((int)blockIdx_y) % j_factors1) * 64
              + (((int)threadIdx.y) / 2) * 32
              + (((int)threadIdx.x) % 4) * 2;

  // preload s.f. and zeros
  int k_bound = make_divisible(IC / 32, split_k_iters); // (IC / 32 + split_k_iters - 1) / split_k_iters;
  if ((k_bound - 1) * 32 + blockIdx_z >= IC) k_bound -= 1;
  
  // TODO (Haotian): load scales and zero points to smem

  for (int _k_0_0 = 0; _k_0_0 < k_bound; ++_k_0_0) {
    int k_0_0 = _k_0_0 * split_k_iters + blockIdx_z;
    __syncthreads();
    // TODO: Haotian: Here we assume M % cta_M = 0.
    for (int ax0_ax1_fused_0 = 0; ax0_ax1_fused_0 < 4; ++ax0_ax1_fused_0) 
    {
      if (ld_A_row + ax0_ax1_fused_0 * row_stride_A < M)
      {
        *(uint4*)(A_shared_ptr + ax0_ax1_fused_0 * row_stride_A * 40) = *(uint4*)(A_ptr + (ax0_ax1_fused_0 * row_stride_A * IC) + (k_0_0 * 32));
      }
      else
      {
        *(uint4*)(A_shared_ptr + ax0_ax1_fused_0 * row_stride_A * 40) = make_uint4(0, 0, 0, 0);
      }
    }


    int* zeros_ptr_local = zeros_ptr + k_0_0 * 32 / G / 8;
    half* scaling_factors_ptr_local = scaling_factors_ptr + k_0_0 * 32 / G;

    // uint4 B_loaded_scale = make_uint4(0, 0, 0, 0);
    int* B_ptr_local = B_ptr + k_0_0 * (32 / 8);

    for (int ax0_ax1_fused_0 = 0; ax0_ax1_fused_0 < 2; ++ax0_ax1_fused_0) {

      // B: 32 x 136 (128+8) float16
      // each warp: 32 x 4
      // each thr: read 32 bit -> convert to 8xFP16 (a UINT4) -> scale and minus zero -> WB UINT4
      // row stride in shared memory: (NWARPS * 32 * 8 / cta_N) 
      int B_loaded_current = *(B_ptr_local + ax0_ax1_fused_0 * row_stride * (IC / 8));
      int zeros_loaded = *(zeros_ptr_local + ax0_ax1_fused_0 * row_stride * zeros_w);
      zeros_loaded >>= ((k_0_0 * 32 / G) % 8) * 4;
      float current_zeros = (float)(zeros_loaded & 0xF);
      half scaling_factors_loaded = *(scaling_factors_ptr_local + ax0_ax1_fused_0 * row_stride * sf_w);
      half B_loaded_fp16[8];
      #pragma unroll
      for (int ic_1 = 0; ic_1 < 8; ic_1++){
        float current_single_weight_fp = (float)(B_loaded_current & 0xF);
        half dequantized_weight = __float2half(__half2float(scaling_factors_loaded) * (current_single_weight_fp - current_zeros));
        B_loaded_current = B_loaded_current >> 4;
        B_loaded_fp16[ic_1] = dequantized_weight;  
      }
      // write back
      *(uint4*)(B_shared_ptr + ax0_ax1_fused_0 * row_stride * (32 + 8)) = *reinterpret_cast<uint4*>(B_loaded_fp16);
    }
    __syncthreads();
    for (int k_0_1 = 0; k_0_1 < 2; ++k_0_1) {
      for (int ax0_0 = 0; ax0_0 < 4; ++ax0_0) {
        {
          unsigned int addr;
          asm volatile(
            "{ .reg .u64 addr; cvta.to.shared.u64 addr, %1; cvt.u32.u64 %0, addr; }\n"
            : "=r"(addr)
            : "l"((void *)((&(A_shared[((((((int)threadIdx.y) & 1) * 2560) + (ax0_0 * 640)) + (k_0_1 * 16))])) + (((((int)threadIdx.x) & 15) * 40) + ((((int)threadIdx.x) >> 4) * 8))))
          );
          asm volatile(
            "ldmatrix.sync.aligned.m8n8.x4.shared.b16"
            "{%0, %1, %2, %3}, [%4];\n"
            : "=r"(((unsigned *)(A_shared_warp + (ax0_0 * 8)))[0]), "=r"(((unsigned *)(A_shared_warp + (ax0_0 * 8)))[1]), "=r"(((unsigned *)(A_shared_warp + (ax0_0 * 8)))[2]), "=r"(((unsigned *)(A_shared_warp + (ax0_0 * 8)))[3])
            : "r"(addr)
          );
        }
      }
      
      for (int ax0_0_1 = 0; ax0_0_1 < 2; ++ax0_0_1) {
        {
          unsigned int addr;
          asm volatile(
            "{ .reg .u64 addr; cvta.to.shared.u64 addr, %1; cvt.u32.u64 %0, addr; }\n"
            : "=r"(addr)
            : "l"((void *)((&(B_shared[((((((int)threadIdx.y) >> 1) * 1280) + (ax0_0_1 * 640)) + (k_0_1 * 16))])) + ((((((int)threadIdx.x) >> 4) * 320) + ((((int)threadIdx.x) & 7) * 40)) + (((((int)threadIdx.x) & 15) >> 3) * 8))))
          );
          asm volatile(
            "ldmatrix.sync.aligned.m8n8.x4.shared.b16"
            "{%0, %1, %2, %3}, [%4];\n"
            : "=r"(((unsigned *)(B_shared_warp + (ax0_0_1 * 8)))[0]), "=r"(((unsigned *)(B_shared_warp + (ax0_0_1 * 8)))[1]), "=r"(((unsigned *)(B_shared_warp + (ax0_0_1 * 8)))[2]), "=r"(((unsigned *)(B_shared_warp + (ax0_0_1 * 8)))[3])
            : "r"(addr)
          );
        }
      }
          
      for (int i_0_3 = 0; i_0_3 < 4; ++i_0_3) {
        for (int j_0_4 = 0; j_0_4 < 2; ++j_0_4) {
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ < 800
          {
            asm volatile(
              "mma.sync.aligned.m16n8k8.row.col.f32.f16.f16.f32"
              "{%0, %1, %2, %3}, {%4, %5}, {%6}, {%7, %8, %9, %10};\n"
              :  "=f"(((float *)(C_warp + ((i_0_3 * 16) + (j_0_4 * 8))))[0]), "=f"(((float *)(C_warp + ((i_0_3 * 16) + (j_0_4 * 8))))[1]), "=f"(((float *)(C_warp + ((i_0_3 * 16) + (j_0_4 * 8))))[2]), "=f"(((float *)(C_warp + ((i_0_3 * 16) + (j_0_4 * 8))))[3])
              : "r"(((unsigned *)(A_shared_warp + (i_0_3 * 8)))[0]), "r"(((unsigned *)(A_shared_warp + (i_0_3 * 8)))[1]), "r"(((unsigned *)(B_shared_warp + (j_0_4 * 8)))[0]), "f"(((float *)(C_warp + ((i_0_3 * 16) + (j_0_4 * 8))))[0]), "f"(((float *)(C_warp + ((i_0_3 * 16) + (j_0_4 * 8))))[1]), "f"(((float *)(C_warp + ((i_0_3 * 16) + (j_0_4 * 8))))[2]), "f"(((float *)(C_warp + ((i_0_3 * 16) + (j_0_4 * 8))))[3]));
          }

          {
            asm volatile(
              "mma.sync.aligned.m16n8k8.row.col.f32.f16.f16.f32"
              "{%0, %1, %2, %3}, {%4, %5}, {%6}, {%7, %8, %9, %10};\n"
              :  "=f"(((float *)(C_warp + ((i_0_3 * 16) + (j_0_4 * 8) + 4)))[0]), "=f"(((float *)(C_warp + ((i_0_3 * 16) + (j_0_4 * 8) + 4)))[1]), "=f"(((float *)(C_warp + ((i_0_3 * 16) + (j_0_4 * 8) + 4)))[2]), "=f"(((float *)(C_warp + ((i_0_3 * 16) + (j_0_4 * 8) + 4)))[3])
              : "r"(((unsigned *)(A_shared_warp + (i_0_3 * 8)))[0]), "r"(((unsigned *)(A_shared_warp + (i_0_3 * 8)))[1]), "r"(((unsigned *)(B_shared_warp + (j_0_4 * 8 + 4)))[0]), "f"(((float *)(C_warp + ((i_0_3 * 16) + (j_0_4 * 8) + 4)))[0]), "f"(((float *)(C_warp + ((i_0_3 * 16) + (j_0_4 * 8) + 4)))[1]), "f"(((float *)(C_warp + ((i_0_3 * 16) + (j_0_4 * 8) + 4)))[2]), "f"(((float *)(C_warp + ((i_0_3 * 16) + (j_0_4 * 8) + 4)))[3]));
          }

          {
            asm volatile(
              "mma.sync.aligned.m16n8k8.row.col.f32.f16.f16.f32"
              "{%0, %1, %2, %3}, {%4, %5}, {%6}, {%7, %8, %9, %10};\n"
              :  "=f"(((float *)(C_warp + ((i_0_3 * 16) + (j_0_4 * 8))))[0]), "=f"(((float *)(C_warp + ((i_0_3 * 16) + (j_0_4 * 8))))[1]), "=f"(((float *)(C_warp + ((i_0_3 * 16) + (j_0_4 * 8))))[2]), "=f"(((float *)(C_warp + ((i_0_3 * 16) + (j_0_4 * 8))))[3])
              : "r"(((unsigned *)(A_shared_warp + (i_0_3 * 8)))[2]), "r"(((unsigned *)(A_shared_warp + (i_0_3 * 8)))[3]), "r"(((unsigned *)(B_shared_warp + (j_0_4 * 8)))[1]), "f"(((float *)(C_warp + ((i_0_3 * 16) + (j_0_4 * 8))))[0]), "f"(((float *)(C_warp + ((i_0_3 * 16) + (j_0_4 * 8))))[1]), "f"(((float *)(C_warp + ((i_0_3 * 16) + (j_0_4 * 8))))[2]), "f"(((float *)(C_warp + ((i_0_3 * 16) + (j_0_4 * 8))))[3]));
          }

          {
            asm volatile(
              "mma.sync.aligned.m16n8k8.row.col.f32.f16.f16.f32"
              "{%0, %1, %2, %3}, {%4, %5}, {%6}, {%7, %8, %9, %10};\n"
              :  "=f"(((float *)(C_warp + ((i_0_3 * 16) + (j_0_4 * 8) + 4)))[0]), "=f"(((float *)(C_warp + ((i_0_3 * 16) + (j_0_4 * 8) + 4)))[1]), "=f"(((float *)(C_warp + ((i_0_3 * 16) + (j_0_4 * 8) + 4)))[2]), "=f"(((float *)(C_warp + ((i_0_3 * 16) + (j_0_4 * 8) + 4)))[3])
              : "r"(((unsigned *)(A_shared_warp + (i_0_3 * 8)))[2]), "r"(((unsigned *)(A_shared_warp + (i_0_3 * 8)))[3]), "r"(((unsigned *)(B_shared_warp + (j_0_4 * 8 + 4)))[1]), "f"(((float *)(C_warp + ((i_0_3 * 16) + (j_0_4 * 8) + 4)))[0]), "f"(((float *)(C_warp + ((i_0_3 * 16) + (j_0_4 * 8) + 4)))[1]), "f"(((float *)(C_warp + ((i_0_3 * 16) + (j_0_4 * 8) + 4)))[2]), "f"(((float *)(C_warp + ((i_0_3 * 16) + (j_0_4 * 8) + 4)))[3]));
          }
#else
          {
            asm volatile(
              "mma.sync.aligned.m16n8k16.row.col.f32.f16.f16.f32"
              "{%0, %1, %2, %3}, {%4, %5, %6, %7}, {%8, %9}, {%10, %11, %12, %13};\n"
              :  "=f"(((float *)(C_warp + ((i_0_3 * 16) + (j_0_4 * 8))))[0]), "=f"(((float *)(C_warp + ((i_0_3 * 16) + (j_0_4 * 8))))[1]), "=f"(((float *)(C_warp + ((i_0_3 * 16) + (j_0_4 * 8))))[2]), "=f"(((float *)(C_warp + ((i_0_3 * 16) + (j_0_4 * 8))))[3])
              : "r"(((unsigned *)(A_shared_warp + (i_0_3 * 8)))[0]), "r"(((unsigned *)(A_shared_warp + (i_0_3 * 8)))[1]), "r"(((unsigned *)(A_shared_warp + (i_0_3 * 8)))[2]), "r"(((unsigned *)(A_shared_warp + (i_0_3 * 8)))[3]), "r"(((unsigned *)(B_shared_warp + (j_0_4 * 8)))[0]), "r"(((unsigned *)(B_shared_warp + (j_0_4 * 8)))[1]), "f"(((float *)(C_warp + ((i_0_3 * 16) + (j_0_4 * 8))))[0]), "f"(((float *)(C_warp + ((i_0_3 * 16) + (j_0_4 * 8))))[1]), "f"(((float *)(C_warp + ((i_0_3 * 16) + (j_0_4 * 8))))[2]), "f"(((float *)(C_warp + ((i_0_3 * 16) + (j_0_4 * 8))))[3]));
          }

          {
            asm volatile(
              "mma.sync.aligned.m16n8k16.row.col.f32.f16.f16.f32"
              "{%0, %1, %2, %3}, {%4, %5, %6, %7}, {%8, %9}, {%10, %11, %12, %13};\n"
              :  "=f"(((float *)(C_warp + (((i_0_3 * 16) + (j_0_4 * 8)) + 4)))[0]), "=f"(((float *)(C_warp + (((i_0_3 * 16) + (j_0_4 * 8)) + 4)))[1]), "=f"(((float *)(C_warp + (((i_0_3 * 16) + (j_0_4 * 8)) + 4)))[2]), "=f"(((float *)(C_warp + (((i_0_3 * 16) + (j_0_4 * 8)) + 4)))[3])
              : "r"(((unsigned *)(A_shared_warp + (i_0_3 * 8)))[0]), "r"(((unsigned *)(A_shared_warp + (i_0_3 * 8)))[1]), "r"(((unsigned *)(A_shared_warp + (i_0_3 * 8)))[2]), "r"(((unsigned *)(A_shared_warp + (i_0_3 * 8)))[3]), "r"(((unsigned *)(B_shared_warp + ((j_0_4 * 8) + 4)))[0]), "r"(((unsigned *)(B_shared_warp + ((j_0_4 * 8) + 4)))[1]), "f"(((float *)(C_warp + (((i_0_3 * 16) + (j_0_4 * 8)) + 4)))[0]), "f"(((float *)(C_warp + (((i_0_3 * 16) + (j_0_4 * 8)) + 4)))[1]), "f"(((float *)(C_warp + (((i_0_3 * 16) + (j_0_4 * 8)) + 4)))[2]), "f"(((float *)(C_warp + (((i_0_3 * 16) + (j_0_4 * 8)) + 4)))[3]));
          }
#endif
        }
      }
    }
  }
    
// Haotian: Here (May 29 11:46AM PST)
// TODO: Shang: Hoist loop invariance.
  for (int ax0_0_2 = 0; ax0_0_2 < 4; ++ax0_0_2) {
    for (int ax1_0 = 0; ax1_0 < 2; ++ax1_0) {
      for (int local_id = 0; local_id < 8; ++local_id) {
        int row_offset = (((int)blockIdx_y) / j_factors1) * 128 + (threadIdx.y % 2) * 64 + ax0_0_2 * 16 + (local_id % 4) / 2 * 8 + ((int)threadIdx.x) / 4;
        if (row_offset < M)
        {
          *(C_ptr + ax1_0 * 16 + row_offset * OC + (local_id / 4) * 8 + local_id % 2) = __float2half(C_warp[(ax0_0_2 * 16) + (ax1_0 * 8) + local_id]);
        }
      }
    }
  }
}

Casper's avatar
Casper committed
728
729
730
731
732
733
734
735
// Dequantization to fp16
// kernel
// Source - https://github.com/compressa-ai/AutoAWQ/blob/6673333456b8871522b11a7fb110de612edfdf95/awq_cuda/quantization/gemm_cuda_gen.cu#L32C1-L32C1
__global__ void __launch_bounds__(64) dequantize_weights(int* __restrict__ B, // 4096x64    4096 rows    64 cols
                                                         half* __restrict__ scaling_factors,  // 32x512   32 rows    512 cols
                                                         int* __restrict__ zeros,  // 32x64    32 rows     64 cols
                                                         half* __restrict__ C, // 4096x512    4096 rows    512 cols
                                                         int G,
736
737
                                                         int in_c,
                                                         int out_c)
Casper's avatar
Casper committed
738
{
739
740
741
742
743
744
  if (blockIdx.z > 0) {
    B = B + blockIdx.z * in_c * out_c / 8;
    scaling_factors = scaling_factors + blockIdx.z * in_c * out_c / G;
    zeros = zeros + blockIdx.z * in_c * out_c / G / 8;
    C = C + blockIdx.z * in_c * out_c;
  }
Casper's avatar
Casper committed
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
  int j_factors1 = 4;
  int row_stride2 = 4;
  int split_k_iters = 1;
  static constexpr uint32_t ZERO = 0x0;
  half B_shared[32 * (128 + 8)];

  half* B_shared_ptr2 = B_shared;

  half B_shared_warp[32];
  int OC = 512;

  int N = blockDim.x * gridDim.x;  // 2
  int col = (blockIdx.x * blockDim.x + threadIdx.x);
  int row = blockIdx.y * blockDim.y + threadIdx.y;
  int index1 = 8 * col + 8 * row * N;  // + i (<8)
  half* C_ptr2 = C + index1;

  int index2 = col + row * N;
  int* B_ptr2 = B + index2;

  int index3 = col + (int)(row / G) * N;
  int* zeros_ptr2 = zeros + index3;
  int index4 = 8 * col + (int)(row / G) * N * 8;  // + i (<8)
  half* scaling_factors_ptr2 = scaling_factors + index4;


    uint32_t zeros_loaded = *(uint32_t*)(zeros_ptr2);
    uint4 B_loaded_zero = dequantize_s4_to_fp16x2(zeros_loaded);
    uint4 B_loaded_scale = *(uint4*)(scaling_factors_ptr2);
int j=0;

      uint32_t B_loaded = *(uint32_t*)(B_ptr2 + j);
      uint4 B_loaded_fp16 = dequantize_s4_to_fp16x2(B_loaded);
      asm volatile("sub.f16x2 %0, %1, %2;\n" : "=r"(B_loaded_fp16.x) : "r"(B_loaded_fp16.x), "r"(B_loaded_zero.x));
      asm volatile("fma.rn.f16x2 %0, %1, %2, %3;\n" : "=r"(B_loaded_fp16.x) : "r"(B_loaded_fp16.x), "r"(B_loaded_scale.x), "r"(ZERO));
      asm volatile("sub.f16x2 %0, %1, %2;\n" : "=r"(B_loaded_fp16.y) : "r"(B_loaded_fp16.y), "r"(B_loaded_zero.y));
      asm volatile("fma.rn.f16x2 %0, %1, %2, %3;\n" : "=r"(B_loaded_fp16.y) : "r"(B_loaded_fp16.y), "r"(B_loaded_scale.y), "r"(ZERO));
      asm volatile("sub.f16x2 %0, %1, %2;\n" : "=r"(B_loaded_fp16.z) : "r"(B_loaded_fp16.z), "r"(B_loaded_zero.z));
      asm volatile("fma.rn.f16x2 %0, %1, %2, %3;\n" : "=r"(B_loaded_fp16.z) : "r"(B_loaded_fp16.z), "r"(B_loaded_scale.z), "r"(ZERO));
      asm volatile("sub.f16x2 %0, %1, %2;\n" : "=r"(B_loaded_fp16.w) : "r"(B_loaded_fp16.w), "r"(B_loaded_zero.w));
      asm volatile("fma.rn.f16x2 %0, %1, %2, %3;\n" : "=r"(B_loaded_fp16.w) : "r"(B_loaded_fp16.w), "r"(B_loaded_scale.w), "r"(ZERO));

      *(uint4*)(B_shared_ptr2 + j) = B_loaded_fp16;

789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
  for (int i=0; i<8; ++i) {
    *(C_ptr2 + i) = B_shared[i];
  }
}

template<int N>
__global__ void __launch_bounds__(64) group_gemm_forward_4bit_cuda_m16nXk32(
  int G,
  int split_k_iters,
  half* __restrict__ A,
  int* __restrict__ B,
  half* __restrict__ scaling_factors,
  int* __restrict__ zeros,
  const float* __restrict__ topk_weights,
  const int* __restrict__ sorted_token_ids_ptr,
  const int* __restrict__ expert_ids_ptr,
  const int* __restrict__ num_tokens_post_padded,
  const int num_valid_tokens,
  const int top_k,
  const int expert_num,
  int pad_M,
  int M,
  int IC,
  int OC,
  half* __restrict__ C)
{
  // Only support matrix n = 64 or 128
  assert(N == 64 || N == 128);
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ < 750
  assert(false);
#else
  int num_tokens = *num_tokens_post_padded;
  int j_factors1 = ((OC + N - 1) / N);
  int blockIdx_x = 0;
  int blockIdx_y = blockIdx.x % ((pad_M + 16 - 1) / 16 * j_factors1);
  int blockIdx_z = blockIdx.x / ((pad_M + 16 - 1) / 16 * j_factors1);
  int block = blockIdx_y / j_factors1;
  if (block * 16 >= num_tokens) return;

  static constexpr uint32_t ZERO = 0x0;
  float C_warp[32];
  __shared__ half A_shared[16 * (32 + 8)];
  __shared__ half B_shared[32 * (N + 8)];

  __shared__ half scaling_factors_shared[N];
  __shared__ half zeros_shared[N];

  half A_shared_warp[8];
  half B_shared_warp[N / 4];
  for (int j_0_4_init = 0; j_0_4_init < N / 32; ++j_0_4_init) {
    for (int i = 0; i < 8; ++i) {
      C_warp[(j_0_4_init * 8) + i] = 0.0;
Casper's avatar
Casper committed
841
842
843
    }
  }

844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
  static constexpr int row_stride_warp = 32 * 8 / 32;
  static constexpr int row_stride = 2 * 32 * 8 / N;
  bool ld_zero_flag = (threadIdx.y * 32 + threadIdx.x) * 8 < N;
  // TODO: Haotian: blockIdx_y / j_factors1 in A loading to support bsz > 16

  int row = (block * 16 + threadIdx.y * row_stride_warp + threadIdx.x * 8 / 32);
  int token_id = sorted_token_ids_ptr[row];
  bool ld_A_flag = (token_id < num_valid_tokens);
  half* A_ptr = A + token_id / top_k * IC + (((int)threadIdx.x) % (32 / 8)) * 8;

  int expert_id = expert_ids_ptr[block];
  B = B + OC * IC / 8 * expert_id;
  scaling_factors = scaling_factors + OC * IC / G * expert_id;
  zeros = zeros + OC * IC / G / 8 * expert_id;

  int* B_ptr = B
            + ((int)threadIdx.y) * (OC / 8) * (256 / N)
            + (((int)threadIdx.x) / (N / 8)) * (OC / 8)
            + (((int)blockIdx_y) % j_factors1) * (N / 8)
            + (((int)threadIdx.x) % (N / 8)) * 1;
  // Why * 1 in the above line?

  half* A_shared_ptr = A_shared
                    + ((int)threadIdx.y) * row_stride_warp * (32 + 8)
                    + (((int)threadIdx.x) / (32 / 8)) * (32 + 8)
                    + (((int)threadIdx.x) % (32 / 8) ) * 8;

  half* B_shared_ptr = B_shared
                    + ((int)threadIdx.y) * (row_stride / 2) * (N + 8)
                    + (((int)threadIdx.x) / (N / 8)) * (N + 8)
                    + (((int)threadIdx.x) % (N / 8)) * 8;

  int* zeros_ptr = zeros
                + (((int)blockIdx_y) % j_factors1) * (N / 8)
                + ((int)threadIdx.x) % (N / 8);

  half* scaling_factors_ptr = scaling_factors
                            + (((int)blockIdx_y) % j_factors1) * N
                            + (((int)threadIdx.x) % (N / 8)) * 8;

  half* C_ptr = C
              + static_cast<long long>(blockIdx_z) * M * OC * expert_num  // blockIdz.x -> split_k dim
              + (((int)blockIdx_y) % j_factors1) * N
              + ((int)threadIdx.y) * (N / 2)
              + (((int)threadIdx.x) % 4) * 2;

  // preload s.f. and zeros
  int k_bound = (IC / 32 + split_k_iters - 1) / split_k_iters;
  if ((k_bound - 1) * split_k_iters * 32 + blockIdx_z * 32 >= IC) k_bound -= 1;
  for (int _k_0_0 = 0; _k_0_0 < k_bound; ++_k_0_0) {
    int k_0_0 = _k_0_0 * split_k_iters + blockIdx_z;
    __syncthreads();
    // TODO: Haotian: blockIdx_y / j_factors1 in A loading to support bsz > 16
    if (ld_A_flag)
    {
      *(uint4*)(A_shared_ptr) = *(uint4*)(A_ptr + (k_0_0 * 32));
    }
    else
    {
      *(uint4*)(A_shared_ptr) = make_uint4(0, 0, 0, 0);
    }

    uint32_t zeros_loaded = *(uint32_t*)(zeros_ptr + k_0_0 * 32 / G * (OC / 8));
    uint4 B_loaded_zero = dequantize_s4_to_fp16x2(zeros_loaded);
    uint4 B_loaded_scale = *(uint4*)(scaling_factors_ptr + k_0_0 * 32 / G * (OC));

    int* B_ptr_local = B_ptr + k_0_0 * 32 * (OC / 8);

    for (int ax0_ax1_fused_0 = 0; ax0_ax1_fused_0 < N / 16; ++ax0_ax1_fused_0) {

      uint32_t B_loaded = *(uint32_t*)(B_ptr_local + ax0_ax1_fused_0 * row_stride * (OC / 8));
      uint4 B_loaded_fp16 = dequantize_s4_to_fp16x2(B_loaded);

      // TODO (Haotian): can save 4 assembly instructions if sormulate as deq = q * scale - zero * scale.
      asm volatile("sub.f16x2 %0, %1, %2;\n" : "=r"(B_loaded_fp16.x) : "r"(B_loaded_fp16.x), "r"(B_loaded_zero.x));
      asm volatile("fma.rn.f16x2 %0, %1, %2, %3;\n" : "=r"(B_loaded_fp16.x) : "r"(B_loaded_fp16.x), "r"(B_loaded_scale.x), "r"(ZERO));
      asm volatile("sub.f16x2 %0, %1, %2;\n" : "=r"(B_loaded_fp16.y) : "r"(B_loaded_fp16.y), "r"(B_loaded_zero.y));
      asm volatile("fma.rn.f16x2 %0, %1, %2, %3;\n" : "=r"(B_loaded_fp16.y) : "r"(B_loaded_fp16.y), "r"(B_loaded_scale.y), "r"(ZERO));
      asm volatile("sub.f16x2 %0, %1, %2;\n" : "=r"(B_loaded_fp16.z) : "r"(B_loaded_fp16.z), "r"(B_loaded_zero.z));
      asm volatile("fma.rn.f16x2 %0, %1, %2, %3;\n" : "=r"(B_loaded_fp16.z) : "r"(B_loaded_fp16.z), "r"(B_loaded_scale.z), "r"(ZERO));
      asm volatile("sub.f16x2 %0, %1, %2;\n" : "=r"(B_loaded_fp16.w) : "r"(B_loaded_fp16.w), "r"(B_loaded_zero.w));
      asm volatile("fma.rn.f16x2 %0, %1, %2, %3;\n" : "=r"(B_loaded_fp16.w) : "r"(B_loaded_fp16.w), "r"(B_loaded_scale.w), "r"(ZERO));

      // write back
      *(uint4*)(B_shared_ptr + ax0_ax1_fused_0 * row_stride * (N + 8)) = B_loaded_fp16;
    }
    __syncthreads();

    for (int k_0_1 = 0; k_0_1 < 2; ++k_0_1) {
      {
        unsigned int addr;
Casper's avatar
Casper committed
935
        asm volatile(
936
937
938
939
940
941
          "{ .reg .u64 addr; cvta.to.shared.u64 addr, %1; cvt.u32.u64 %0, addr; }\n"
          : "=r"(addr)
          : "l"((void *)((&(A_shared[(k_0_1 * 16)])) + (((((int)threadIdx.x) & 15) * 40) + ((((int)threadIdx.x) >> 4) * 8))))
        );


Casper's avatar
Casper committed
942
        asm volatile(
943
944
945
946
947
948
949
950
951
952
          "ldmatrix.sync.aligned.m8n8.x4.shared.b16"
          "{%0, %1, %2, %3}, [%4];\n"
          : "=r"(((unsigned *)(A_shared_warp + 0))[0]), "=r"(((unsigned *)(A_shared_warp + 0))[1]), "=r"(((unsigned *)(A_shared_warp + 0))[2]), "=r"(((unsigned *)(A_shared_warp + 0))[3])
          : "r"(addr)
        );
      }

      for (int ax1_0 = 0; ax1_0 < N / 32; ++ax1_0) {
        {
          unsigned int addr;
Casper's avatar
Casper committed
953
          asm volatile(
954
955
956
957
            "{ .reg .u64 addr; cvta.to.shared.u64 addr, %1; cvt.u32.u64 %0, addr; }\n"
            : "=r"(addr)
            : "l"((void *)((&(B_shared[(((k_0_1 * (N * 16 + 128)) + (((int)threadIdx.y) * (N / 2))) + (ax1_0 * 16))])) + (((((int)threadIdx.x) & 15) * (N + 8)) + ((((int)threadIdx.x) >> 4) * 8))))
          );
Casper's avatar
Casper committed
958
          asm volatile(
959
960
961
962
963
964
965
966
967
968
            "ldmatrix.sync.aligned.m8n8.x4.trans.shared.b16"
            "{%0, %1, %2, %3}, [%4];\n"
            : "=r"(((unsigned *)(B_shared_warp + (ax1_0 * 8)))[0]), "=r"(((unsigned *)(B_shared_warp + (ax1_0 * 8)))[1]), "=r"(((unsigned *)(B_shared_warp + (ax1_0 * 8)))[2]), "=r"(((unsigned *)(B_shared_warp + (ax1_0 * 8)))[3])
            : "r"(addr)
          );
        }
      }
      for (int j_0_4 = 0; j_0_4 < N / 32; ++j_0_4) {
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ == 750
        {
Casper's avatar
Casper committed
969
          asm volatile(
970
971
972
973
974
975
976
            "mma.sync.aligned.m16n8k8.row.col.f32.f16.f16.f32"
            "{%0, %1, %2, %3}, {%4, %5}, {%6}, {%7, %8, %9, %10};\n"
            :  "=f"(((float *)(C_warp + (j_0_4 * 8)))[0]), "=f"(((float *)(C_warp + (j_0_4 * 8)))[1]), "=f"(((float *)(C_warp + (j_0_4 * 8)))[2]), "=f"(((float *)(C_warp + (j_0_4 * 8)))[3])
            : "r"(((unsigned *)(A_shared_warp + 0))[0]), "r"(((unsigned *)(A_shared_warp + 0))[1]), "r"(((unsigned *)(B_shared_warp + (j_0_4 * 8)))[0]), "f"(((float *)(C_warp + (j_0_4 * 8)))[0]), "f"(((float *)(C_warp + (j_0_4 * 8)))[1]), "f"(((float *)(C_warp + (j_0_4 * 8)))[2]), "f"(((float *)(C_warp + (j_0_4 * 8)))[3]));
        }

        {
Casper's avatar
Casper committed
977
          asm volatile(
978
979
980
981
982
983
984
            "mma.sync.aligned.m16n8k8.row.col.f32.f16.f16.f32"
            "{%0, %1, %2, %3}, {%4, %5}, {%6}, {%7, %8, %9, %10};\n"
            :  "=f"(((float *)(C_warp + ((j_0_4 * 8) + 4)))[0]), "=f"(((float *)(C_warp + ((j_0_4 * 8) + 4)))[1]), "=f"(((float *)(C_warp + ((j_0_4 * 8) + 4)))[2]), "=f"(((float *)(C_warp + ((j_0_4 * 8) + 4)))[3])
            : "r"(((unsigned *)(A_shared_warp + 0))[0]), "r"(((unsigned *)(A_shared_warp + 0))[1]), "r"(((unsigned *)(B_shared_warp + ((j_0_4 * 8) + 4)))[0]), "f"(((float *)(C_warp + ((j_0_4 * 8) + 4)))[0]), "f"(((float *)(C_warp + ((j_0_4 * 8) + 4)))[1]), "f"(((float *)(C_warp + ((j_0_4 * 8) + 4)))[2]), "f"(((float *)(C_warp + ((j_0_4 * 8) + 4)))[3]));
        }

        {
Casper's avatar
Casper committed
985
          asm volatile(
986
987
988
989
990
991
992
            "mma.sync.aligned.m16n8k8.row.col.f32.f16.f16.f32"
            "{%0, %1, %2, %3}, {%4, %5}, {%6}, {%7, %8, %9, %10};\n"
            :  "=f"(((float *)(C_warp + (j_0_4 * 8)))[0]), "=f"(((float *)(C_warp + (j_0_4 * 8)))[1]), "=f"(((float *)(C_warp + (j_0_4 * 8)))[2]), "=f"(((float *)(C_warp + (j_0_4 * 8)))[3])
            : "r"(((unsigned *)(A_shared_warp + 0))[2]), "r"(((unsigned *)(A_shared_warp + 0))[3]), "r"(((unsigned *)(B_shared_warp + (j_0_4 * 8)))[1]), "f"(((float *)(C_warp + (j_0_4 * 8)))[0]), "f"(((float *)(C_warp + (j_0_4 * 8)))[1]), "f"(((float *)(C_warp + (j_0_4 * 8)))[2]), "f"(((float *)(C_warp + (j_0_4 * 8)))[3]));
        }

        {
Casper's avatar
Casper committed
993
          asm volatile(
994
995
996
997
998
999
1000
            "mma.sync.aligned.m16n8k8.row.col.f32.f16.f16.f32"
            "{%0, %1, %2, %3}, {%4, %5}, {%6}, {%7, %8, %9, %10};\n"
            :  "=f"(((float *)(C_warp + ((j_0_4 * 8) + 4)))[0]), "=f"(((float *)(C_warp + ((j_0_4 * 8) + 4)))[1]), "=f"(((float *)(C_warp + ((j_0_4 * 8) + 4)))[2]), "=f"(((float *)(C_warp + ((j_0_4 * 8) + 4)))[3])
            : "r"(((unsigned *)(A_shared_warp + 0))[2]), "r"(((unsigned *)(A_shared_warp + 0))[3]), "r"(((unsigned *)(B_shared_warp + ((j_0_4 * 8) + 4)))[1]), "f"(((float *)(C_warp + ((j_0_4 * 8) + 4)))[0]), "f"(((float *)(C_warp + ((j_0_4 * 8) + 4)))[1]), "f"(((float *)(C_warp + ((j_0_4 * 8) + 4)))[2]), "f"(((float *)(C_warp + ((j_0_4 * 8) + 4)))[3]));
        }
#else
        {
Casper's avatar
Casper committed
1001
          asm volatile(
1002
1003
1004
1005
1006
1007
1008
            "mma.sync.aligned.m16n8k16.row.col.f32.f16.f16.f32"
            "{%0, %1, %2, %3}, {%4, %5, %6, %7}, {%8, %9}, {%10, %11, %12, %13};\n"
            :  "=f"(((float *)(C_warp + (j_0_4 * 8)))[0]), "=f"(((float *)(C_warp + (j_0_4 * 8)))[1]), "=f"(((float *)(C_warp + (j_0_4 * 8)))[2]), "=f"(((float *)(C_warp + (j_0_4 * 8)))[3])
            : "r"(((unsigned *)(A_shared_warp + 0))[0]), "r"(((unsigned *)(A_shared_warp + 0))[1]), "r"(((unsigned *)(A_shared_warp + 0))[2]), "r"(((unsigned *)(A_shared_warp + 0))[3]), "r"(((unsigned *)(B_shared_warp + (j_0_4 * 8)))[0]), "r"(((unsigned *)(B_shared_warp + (j_0_4 * 8)))[1]), "f"(((float *)(C_warp + (j_0_4 * 8)))[0]), "f"(((float *)(C_warp + (j_0_4 * 8)))[1]), "f"(((float *)(C_warp + (j_0_4 * 8)))[2]), "f"(((float *)(C_warp + (j_0_4 * 8)))[3]));
        }

        {
Casper's avatar
Casper committed
1009
          asm volatile(
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
            "mma.sync.aligned.m16n8k16.row.col.f32.f16.f16.f32"
            "{%0, %1, %2, %3}, {%4, %5, %6, %7}, {%8, %9}, {%10, %11, %12, %13};\n"
            :  "=f"(((float *)(C_warp + ((j_0_4 * 8) + 4)))[0]), "=f"(((float *)(C_warp + ((j_0_4 * 8) + 4)))[1]), "=f"(((float *)(C_warp + ((j_0_4 * 8) + 4)))[2]), "=f"(((float *)(C_warp + ((j_0_4 * 8) + 4)))[3])
            : "r"(((unsigned *)(A_shared_warp + 0))[0]), "r"(((unsigned *)(A_shared_warp + 0))[1]), "r"(((unsigned *)(A_shared_warp + 0))[2]), "r"(((unsigned *)(A_shared_warp + 0))[3]), "r"(((unsigned *)(B_shared_warp + ((j_0_4 * 8) + 4)))[0]), "r"(((unsigned *)(B_shared_warp + ((j_0_4 * 8) + 4)))[1]), "f"(((float *)(C_warp + ((j_0_4 * 8) + 4)))[0]), "f"(((float *)(C_warp + ((j_0_4 * 8) + 4)))[1]), "f"(((float *)(C_warp + ((j_0_4 * 8) + 4)))[2]), "f"(((float *)(C_warp + ((j_0_4 * 8) + 4)))[3]));
        }

#endif
      }
    }
  }

// TODO: Shang: Hoist loop invariance.
  for (int ax1_0_1 = 0; ax1_0_1 < N / 32; ++ax1_0_1) {
    for (int local_id = 0; local_id < 8; ++local_id) {
      int row_offset = block * 16 + ((int)threadIdx.x) / 4 + (local_id % 4) / 2 * 8;
      int token_id = sorted_token_ids_ptr[row_offset];
      if (token_id < num_valid_tokens)
      {
        float value = C_warp[(ax1_0_1 * 8) + local_id];
        if (topk_weights) {
            value = value * topk_weights[token_id];
        }
        *(C_ptr + ax1_0_1 * 16 + token_id * OC + (local_id / 4) * 8 + local_id % 2) = __float2half(value);
      }
    }
Casper's avatar
Casper committed
1035
  }
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
#endif
}


torch::Tensor grouped_gemm_forward(
    torch::Tensor _in_feats,
    torch::Tensor _kernel,
    torch::Tensor _scaling_factors,
    torch::Tensor _zeros,
    torch::Tensor _topk_weights,
    torch::Tensor _sorted_token_ids_ptr,
    torch::Tensor _expert_ids_ptr,
    torch::Tensor _num_tokens_post_padded,
    bool mul_weights,
    int split_k_iters)
{
    int num_in_feats = _in_feats.size(0);
    int pad_num_in_feats = _sorted_token_ids_ptr.size(0);
    int num_in_channels = _in_feats.size(2);
    const at::cuda::OptionalCUDAGuard device_guard(device_of(_in_feats));

    auto options = torch::TensorOptions().dtype(_in_feats.dtype()).device(_in_feats.device());
    int num_experts = _topk_weights.size(1);
    int top_k = num_experts / _in_feats.size(1);
    int group_size = num_in_channels / _scaling_factors.size(1);

    at::Tensor _out_feats = torch::empty({split_k_iters, num_in_feats, _topk_weights.size(1), _kernel.size(2) * 8}, options);
    int num_out_channels = _out_feats.size(-1);

    auto in_feats = reinterpret_cast<half*>(_in_feats.data_ptr<at::Half>());
    auto kernel = reinterpret_cast<int*>(_kernel.data_ptr<int>());
    auto out_feats = reinterpret_cast<half*>(_out_feats.data_ptr<at::Half>());
    auto scaling_factors = reinterpret_cast<half*>(_scaling_factors.data_ptr<at::Half>());
    auto zeros = reinterpret_cast<int*>(_zeros.data_ptr<int>());
    auto topk_weights = mul_weights ? reinterpret_cast<float*>(_topk_weights.data_ptr()) : nullptr;
    auto sorted_token_ids_ptr = reinterpret_cast<int*>(_sorted_token_ids_ptr.data_ptr());
    auto expert_ids_ptr = reinterpret_cast<int*>(_expert_ids_ptr.data_ptr());
    auto num_tokens_post_padded = reinterpret_cast<int*>(_num_tokens_post_padded.data_ptr());

    const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
    if (num_out_channels % 128 == 0)
    {
        int j_factors1 = num_out_channels / 128 / 1;
        dim3 num_blocks((pad_num_in_feats + 16 - 1) / 16 * j_factors1 * split_k_iters);
        // threadIdx.x: 32
        // threadIdx.y: i_factors[2] * j_factors[2]
        dim3 threads_per_block(32, 2);
        group_gemm_forward_4bit_cuda_m16nXk32<128><<<num_blocks, threads_per_block, 0, stream>>>(
            group_size, split_k_iters, in_feats, kernel, scaling_factors, zeros,
            topk_weights, sorted_token_ids_ptr, expert_ids_ptr, num_tokens_post_padded,
            _topk_weights.numel(), top_k, num_experts, pad_num_in_feats,
            num_in_feats, num_in_channels, num_out_channels, out_feats);
    }
    else if (num_out_channels % 64 == 0)
    {
        int j_factors1 = num_out_channels / 64 / 1;
        dim3 num_blocks((pad_num_in_feats + 16 - 1) / 16 * j_factors1 * split_k_iters);

        // threadIdx.x: 32
        // threadIdx.y: i_factors[2] * j_factors[2]
        dim3 threads_per_block(32, 2);
        group_gemm_forward_4bit_cuda_m16nXk32<64><<<num_blocks, threads_per_block, 0, stream>>>(
            group_size, split_k_iters, in_feats, kernel, scaling_factors, zeros,
            topk_weights, sorted_token_ids_ptr, expert_ids_ptr, num_tokens_post_padded,
            _topk_weights.numel(), top_k, num_experts, pad_num_in_feats,
            num_in_feats, num_in_channels, num_out_channels, out_feats);
    }
    return _out_feats.sum(0);
Casper's avatar
Casper committed
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
}

// Dequantization to fp16
// Source - https://github.com/compressa-ai/AutoAWQ/blob/6673333456b8871522b11a7fb110de612edfdf95/awq_cuda/quantization/gemm_cuda_gen.cu#L935C1-L987C2
torch::Tensor dequantize_weights_cuda(
    torch::Tensor _kernel,
    torch::Tensor _scaling_factors,
    torch::Tensor _zeros,
    int split_k_iters,
    int thx,
    int thy,
    bool dbg)
{
1117
1118
1119
    int in_c = _kernel.dim() == 2 ? _kernel.size(0) : _kernel.size(1);
    int qout_c = _kernel.dim() == 2 ? _kernel.size(1) : _kernel.size(2);
    int num_experts = _kernel.dim() == 2 ? 1 : _kernel.size(0);
Casper's avatar
Casper committed
1120
    int out_c = qout_c * 8;
1121
    int G = in_c / (_kernel.dim() == 2 ? _scaling_factors.size(0) : _scaling_factors.size(1));
Casper's avatar
Casper committed
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146

    int x_thread = thx;
    int y_thread = thy;

    int x_blocks = 1;
    int y_blocks = 1;
    if (thx==0) {
      x_thread = qout_c;
    }
    if (thy==0) {
      y_thread = in_c;
    }
    int dbg_ = true;
    if (thx==0 && thy==0) {
      dbg_ = false;
      x_thread = 8;
      y_thread = 8;
      x_blocks = (int)(qout_c / 8);
      y_blocks = (int)(in_c / 8);
    }
    dbg = dbg && dbg_;

    const at::cuda::OptionalCUDAGuard device_guard(device_of(_scaling_factors));

    auto options = torch::TensorOptions().dtype(_scaling_factors.dtype()).device(_scaling_factors.device());
1147
1148
1149
1150
1151
1152
    at::Tensor _de_kernel;
    if (num_experts == 1) {
      _de_kernel = torch::empty({in_c, out_c}, options);
    } else {
      _de_kernel = torch::empty({num_experts, in_c, out_c}, options);
    }
Casper's avatar
Casper committed
1153
1154
1155
1156
1157
1158

    auto kernel = reinterpret_cast<int*>(_kernel.data_ptr<int>());
    auto de_kernel = reinterpret_cast<half*>(_de_kernel.data_ptr<at::Half>());
    auto scaling_factors = reinterpret_cast<half*>(_scaling_factors.data_ptr<at::Half>());
    auto zeros = reinterpret_cast<int*>(_zeros.data_ptr<int>());

1159
    dim3 num_blocks(x_blocks, y_blocks, num_experts);
Casper's avatar
Casper committed
1160
1161
    dim3 threads_per_block(x_thread, y_thread);  //  col, row 64x4096

1162
    dequantize_weights<<<num_blocks, threads_per_block>>>(kernel, scaling_factors, zeros, de_kernel, G, in_c, out_c);
Casper's avatar
Casper committed
1163
1164
1165
1166

    return _de_kernel;
}

Casper's avatar
Casper committed
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
// in_feats: M, IC [float16]
// kernel: IC, OC // 8 [int32] -> cast to IC, OC [uint4b]
// scaling_factors: IC // G, OC [float16]
// zeros: IC // G, OC // 8 [int32] -> cast to IC // G, OC [uint4b]
// assume that batch_size < 16 for now

torch::Tensor gemmv2_forward_cuda(
    torch::Tensor _in_feats,
    torch::Tensor _kernel,
    torch::Tensor _scaling_factors,
    torch::Tensor _zeros,
    int group_size,
    int split_k_iters)
{
    int num_in_feats = _in_feats.size(0);
    int num_in_channels = _in_feats.size(1);
    const at::cuda::OptionalCUDAGuard device_guard(device_of(_in_feats));

    auto options = torch::TensorOptions().dtype(_in_feats.dtype()).device(_in_feats.device());
    // for int4, need _kernel.size(1) * 8
    at::Tensor _out_feats = torch::empty({split_k_iters, num_in_feats, _kernel.size(0)}, options);
    int num_out_feats = _out_feats.size(-2);
    int num_out_channels = _out_feats.size(-1);

    auto in_feats = reinterpret_cast<half*>(_in_feats.data_ptr<at::Half>());
    auto kernel = reinterpret_cast<int*>(_kernel.data_ptr<int>());
    auto out_feats = reinterpret_cast<half*>(_out_feats.data_ptr<at::Half>());
    auto scaling_factors = reinterpret_cast<half*>(_scaling_factors.data_ptr<at::Half>());
    auto zeros = reinterpret_cast<int*>(_zeros.data_ptr<int>());

    // blockIdx_x: i_factors[0] * j_factors[0]
    // blockIdx_y: i_factors[1] * j_factors[1]

    if (num_out_channels % 64 != 0)
        throw std::invalid_argument("OC is not multiple of cta_N = 64");
    if (num_out_channels % 8 != 0)
        throw std::invalid_argument("OC is not multiple of pack_num = 8");
    int j_factors1 = num_out_channels / 64 / 1;
    dim3 num_blocks((num_out_feats + 128 - 1) / 128 * j_factors1 * split_k_iters);
    
    // threadIdx.x: 32
    // threadIdx.y: i_factors[2] * j_factors[2]
    dim3 threads_per_block(32, 4);
    if (group_size == 128)
    {
      gemmv2_forward_4bit_cuda_m128n64k32<128><<<num_blocks, threads_per_block>>>(
        split_k_iters, in_feats, kernel, scaling_factors, zeros, num_in_feats, num_in_channels, num_out_channels, out_feats);
    }
    else if (group_size == 64)
    {
      gemmv2_forward_4bit_cuda_m128n64k32<64><<<num_blocks, threads_per_block>>>(
        split_k_iters, in_feats, kernel, scaling_factors, zeros, num_in_feats, num_in_channels, num_out_channels, out_feats);
    }
    else
    {
      throw std::invalid_argument("Group size temporarily not supported.");
    }
    return _out_feats.sum(0);
}

// in_feats: M, IC [float16]
// kernel: IC, OC // 8 [int32] -> cast to IC, OC [uint4b]
// scaling_factors: IC // G, OC [float16]
// zeros: IC // G, OC // 8 [int32] -> cast to IC // G, OC [uint4b]
// assume that batch_size < 16 for now

torch::Tensor gemm_forward_cuda(
    torch::Tensor _in_feats,
    torch::Tensor _kernel,
    torch::Tensor _scaling_factors,
    torch::Tensor _zeros,
    int split_k_iters)
{
    int num_in_feats = _in_feats.size(0);
    int num_in_channels = _in_feats.size(1);
    const at::cuda::OptionalCUDAGuard device_guard(device_of(_in_feats));

    auto options = torch::TensorOptions().dtype(_in_feats.dtype()).device(_in_feats.device());
    at::Tensor _out_feats = torch::empty({split_k_iters, num_in_feats, _kernel.size(1) * 8}, options);
    int num_out_feats = _out_feats.size(-2);
    int num_out_channels = _out_feats.size(-1);

    auto in_feats = reinterpret_cast<half*>(_in_feats.data_ptr<at::Half>());
    auto kernel = reinterpret_cast<int*>(_kernel.data_ptr<int>());
    auto out_feats = reinterpret_cast<half*>(_out_feats.data_ptr<at::Half>());
    auto scaling_factors = reinterpret_cast<half*>(_scaling_factors.data_ptr<at::Half>());
    auto zeros = reinterpret_cast<int*>(_zeros.data_ptr<int>());
    int group_size = num_in_channels / _scaling_factors.size(0);
    const cudaStream_t stream = at::cuda::getCurrentCUDAStream();

    if (num_out_channels % 64 != 0)
        throw std::invalid_argument("OC is not multiple of cta_N = 64");
    if (num_out_channels % 8 != 0)
        throw std::invalid_argument("OC is not multiple of pack_num = 8");
    if (group_size % 32 != 0)
	      throw std::invalid_argument("Group size should be a multiple of 32");
    if (num_out_channels % group_size != 0)
        throw std::invalid_argument("OC is not multiple of Group size");

    if (num_out_channels % 128 == 0)
    {
        int j_factors1 = num_out_channels / 128 / 1;
        dim3 num_blocks((num_out_feats + 16 - 1) / 16 * j_factors1 * split_k_iters);
        // threadIdx.x: 32
        // threadIdx.y: i_factors[2] * j_factors[2]
        dim3 threads_per_block(32, 2);
        gemm_forward_4bit_cuda_m16n128k32<<<num_blocks, threads_per_block, 0, stream>>>(
            group_size, split_k_iters, in_feats, kernel, scaling_factors, zeros, num_in_feats, num_in_channels, num_out_channels, out_feats);
    }
    else if (num_out_channels % 64 == 0)
    {
	int j_factors1 = num_out_channels / 64 / 1;
        dim3 num_blocks(1 * (num_out_feats + 16 - 1) / 16 * j_factors1 * split_k_iters);
    
        // threadIdx.x: 32
        // threadIdx.y: i_factors[2] * j_factors[2]
        dim3 threads_per_block(32, 2);
        gemm_forward_4bit_cuda_m16n64k32<<<num_blocks, threads_per_block, 0, stream>>>(
            group_size, split_k_iters, in_feats, kernel, scaling_factors, zeros, num_in_feats, num_in_channels, num_out_channels, out_feats);
    }
    return _out_feats.sum(0);
}