worker.rs 17.3 KB
Newer Older
yongshk's avatar
yongshk committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
use crate::languages::LANGUAGES;
use anyhow::Error as E;
use candle::{safetensors::Load, DType, Device, IndexOp, Tensor, D};
use candle_nn::{ops::softmax, VarBuilder};
pub use candle_transformers::models::whisper::{self as m, Config};
use rand::{distr::Distribution, rngs::StdRng, SeedableRng};
use serde::{Deserialize, Serialize};
use tokenizers::Tokenizer;
use wasm_bindgen::prelude::*;
use yew_agent::{HandlerId, Public, WorkerLink};

#[wasm_bindgen]
extern "C" {
    // Use `js_namespace` here to bind `console.log(..)` instead of just
    // `log(..)`
    #[wasm_bindgen(js_namespace = console)]
    pub fn log(s: &str);
}

#[macro_export]
macro_rules! console_log {
    // Note that this is using the `log` function imported above during
    // `bare_bones`
    ($($t:tt)*) => ($crate::worker::log(&format_args!($($t)*).to_string()))
}

pub const DTYPE: DType = DType::F32;

pub enum Model {
    Normal(m::model::Whisper),
    Quantized(m::quantized_model::Whisper),
}

// Maybe we should use some traits rather than doing the dispatch for all these.
impl Model {
    pub fn config(&self) -> &Config {
        match self {
            Self::Normal(m) => &m.config,
            Self::Quantized(m) => &m.config,
        }
    }

    pub fn encoder_forward(&mut self, x: &Tensor, flush: bool) -> candle::Result<Tensor> {
        match self {
            Self::Normal(m) => m.encoder.forward(x, flush),
            Self::Quantized(m) => m.encoder.forward(x, flush),
        }
    }

    pub fn decoder_forward(
        &mut self,
        x: &Tensor,
        xa: &Tensor,
        flush: bool,
    ) -> candle::Result<Tensor> {
        match self {
            Self::Normal(m) => m.decoder.forward(x, xa, flush),
            Self::Quantized(m) => m.decoder.forward(x, xa, flush),
        }
    }

    pub fn decoder_final_linear(&self, x: &Tensor) -> candle::Result<Tensor> {
        match self {
            Self::Normal(m) => m.decoder.final_linear(x),
            Self::Quantized(m) => m.decoder.final_linear(x),
        }
    }
}

#[derive(Debug, Clone, Serialize, Deserialize)]
pub struct DecodingResult {
    pub tokens: Vec<u32>,
    pub text: String,
    pub avg_logprob: f64,
    pub no_speech_prob: f64,
    temperature: f64,
    compression_ratio: f64,
}

#[derive(Debug, Clone, Serialize, Deserialize)]
pub struct Segment {
    pub start: f64,
    pub duration: f64,
    pub dr: DecodingResult,
}

pub struct Decoder {
    model: Model,
    rng: rand::rngs::StdRng,
    task: Option<Task>,
    language: Option<String>,
    is_multilingual: bool,
    mel_filters: Vec<f32>,
    timestamps: bool,
    tokenizer: Tokenizer,
    suppress_tokens: Tensor,
    sot_token: u32,
    transcribe_token: u32,
    translate_token: u32,
    eot_token: u32,
    no_speech_token: u32,
    no_timestamps_token: u32,
}

impl Decoder {
    #[allow(clippy::too_many_arguments)]
    fn new(
        model: Model,
        tokenizer: Tokenizer,
        mel_filters: Vec<f32>,
        device: &Device,
        task: Option<Task>,
        language: Option<String>,
        is_multilingual: bool,
        timestamps: bool,
    ) -> anyhow::Result<Self> {
        let suppress_tokens: Vec<f32> = (0..model.config().vocab_size as u32)
            .map(|i| {
                if model.config().suppress_tokens.contains(&i) {
                    f32::NEG_INFINITY
                } else {
                    0f32
                }
            })
            .collect();
        let no_timestamps_token = token_id(&tokenizer, m::NO_TIMESTAMPS_TOKEN)?;
        let suppress_tokens = Tensor::new(suppress_tokens.as_slice(), device)?;
        let sot_token = token_id(&tokenizer, m::SOT_TOKEN)?;
        let transcribe_token = token_id(&tokenizer, m::TRANSCRIBE_TOKEN)?;
        let translate_token = token_id(&tokenizer, m::TRANSLATE_TOKEN)?;
        let eot_token = token_id(&tokenizer, m::EOT_TOKEN)?;
        let no_speech_token = m::NO_SPEECH_TOKENS
            .iter()
            .find_map(|token| token_id(&tokenizer, token).ok());
        let no_speech_token = match no_speech_token {
            None => anyhow::bail!("unable to find any non-speech token"),
            Some(n) => n,
        };
        let seed = 299792458;
        Ok(Self {
            model,
            rng: StdRng::seed_from_u64(seed),
            tokenizer,
            mel_filters,
            task,
            timestamps,
            language,
            is_multilingual,
            suppress_tokens,
            sot_token,
            transcribe_token,
            translate_token,
            eot_token,
            no_speech_token,
            no_timestamps_token,
        })
    }

    fn decode(&mut self, mel: &Tensor, t: f64) -> anyhow::Result<DecodingResult> {
        let model = &mut self.model;
        let language_token = match (self.is_multilingual, &self.language) {
            (true, None) => Some(detect_language(model, &self.tokenizer, mel)?),
            (false, None) => None,
            (true, Some(language)) => {
                match token_id(&self.tokenizer, &format!("<|{:?}|>", self.language)) {
                    Ok(token_id) => Some(token_id),
                    Err(_) => anyhow::bail!("language {language} is not supported"),
                }
            }
            (false, Some(_)) => {
                anyhow::bail!("a language cannot be set for non-multilingual models")
            }
        };

        let audio_features = model.encoder_forward(mel, true)?;
        println!("audio features: {:?}", audio_features.dims());
        let sample_len = model.config().max_target_positions / 2;
        let mut sum_logprob = 0f64;
        let mut no_speech_prob = f64::NAN;
        let mut tokens = vec![self.sot_token];
        if let Some(language_token) = language_token {
            tokens.push(language_token);
        }
        match self.task {
            None | Some(Task::Transcribe) => tokens.push(self.transcribe_token),
            Some(Task::Translate) => tokens.push(self.translate_token),
        }
        if !self.timestamps {
            tokens.push(self.no_timestamps_token);
        }
        for i in 0..sample_len {
            let tokens_t = Tensor::new(tokens.as_slice(), mel.device())?;

            // The model expects a batch dim but this inference loop does not handle
            // it so we add it at this point.
            let tokens_t = tokens_t.unsqueeze(0)?;
            let ys = model.decoder_forward(&tokens_t, &audio_features, i == 0)?;

            // Extract the no speech probability on the first iteration by looking at the first
            // token logits and the probability for the according token.
            if i == 0 {
                let logits = model.decoder_final_linear(&ys.i(..1)?)?.i(0)?.i(0)?;
                no_speech_prob = softmax(&logits, 0)?
                    .i(self.no_speech_token as usize)?
                    .to_scalar::<f32>()? as f64;
            }

            let (_, seq_len, _) = ys.dims3()?;
            let logits = model
                .decoder_final_linear(&ys.i((..1, seq_len - 1..))?)?
                .i(0)?
                .i(0)?;
            // TODO: Besides suppress tokens, we should apply the heuristics from
            // ApplyTimestampRules, i.e.:
            // - Timestamps come in pairs, except before EOT.
            // - Timestamps should be non-decreasing.
            // - If the sum of the probabilities of timestamps is higher than any other tokens,
            //   only consider timestamps when sampling.
            // https://github.com/openai/whisper/blob/e8622f9afc4eba139bf796c210f5c01081000472/whisper/decoding.py#L439
            let logits = logits.broadcast_add(&self.suppress_tokens)?;
            let next_token = if t > 0f64 {
                let prs = softmax(&(&logits / t)?, 0)?;
                let logits_v: Vec<f32> = prs.to_vec1()?;
                let distr = rand::distr::weighted::WeightedIndex::new(&logits_v)?;
                distr.sample(&mut self.rng) as u32
            } else {
                let logits_v: Vec<f32> = logits.to_vec1()?;
                logits_v
                    .iter()
                    .enumerate()
                    .max_by(|(_, u), (_, v)| u.total_cmp(v))
                    .map(|(i, _)| i as u32)
                    .unwrap()
            };
            tokens.push(next_token);
            let prob = softmax(&logits, candle::D::Minus1)?
                .i(next_token as usize)?
                .to_scalar::<f32>()? as f64;
            if next_token == self.eot_token || tokens.len() > model.config().max_target_positions {
                break;
            }
            sum_logprob += prob.ln();
        }
        let text = self.tokenizer.decode(&tokens, true).map_err(E::msg)?;
        let avg_logprob = sum_logprob / tokens.len() as f64;

        Ok(DecodingResult {
            tokens,
            text,
            avg_logprob,
            no_speech_prob,
            temperature: t,
            compression_ratio: f64::NAN,
        })
    }

    fn decode_with_fallback(&mut self, segment: &Tensor) -> anyhow::Result<DecodingResult> {
        for (i, &t) in m::TEMPERATURES.iter().enumerate() {
            let dr: Result<DecodingResult, _> = self.decode(segment, t);
            if i == m::TEMPERATURES.len() - 1 {
                return dr;
            }
            // On errors, we try again with a different temperature.
            match dr {
                Ok(dr) => {
                    let needs_fallback = dr.compression_ratio > m::COMPRESSION_RATIO_THRESHOLD
                        || dr.avg_logprob < m::LOGPROB_THRESHOLD;
                    if !needs_fallback || dr.no_speech_prob > m::NO_SPEECH_THRESHOLD {
                        return Ok(dr);
                    }
                }
                Err(err) => {
                    console_log!("Error running at {t}: {err}")
                }
            }
        }
        unreachable!()
    }

    fn run(&mut self, mel: &Tensor) -> anyhow::Result<Vec<Segment>> {
        let (_, _, content_frames) = mel.dims3()?;
        let mut seek = 0;
        let mut segments = vec![];
        while seek < content_frames {
            let time_offset = (seek * m::HOP_LENGTH) as f64 / m::SAMPLE_RATE as f64;
            let segment_size = usize::min(content_frames - seek, m::N_FRAMES);
            let mel_segment = mel.narrow(2, seek, segment_size)?;
            let segment_duration = (segment_size * m::HOP_LENGTH) as f64 / m::SAMPLE_RATE as f64;
            let dr = self.decode_with_fallback(&mel_segment)?;
            seek += segment_size;
            if dr.no_speech_prob > m::NO_SPEECH_THRESHOLD && dr.avg_logprob < m::LOGPROB_THRESHOLD {
                console_log!("no speech detected, skipping {seek} {dr:?}");
                continue;
            }
            let segment = Segment {
                start: time_offset,
                duration: segment_duration,
                dr,
            };
            console_log!("{seek}: {segment:?}");
            segments.push(segment)
        }
        Ok(segments)
    }

    pub fn load(md: ModelData) -> anyhow::Result<Self> {
        let device = Device::Cpu;
        let tokenizer = Tokenizer::from_bytes(&md.tokenizer).map_err(E::msg)?;

        let mel_filters = safetensors::tensor::SafeTensors::deserialize(&md.mel_filters)?;
        let mel_filters = mel_filters.tensor("mel_80")?.load(&device)?;
        console_log!("loaded mel filters {:?}", mel_filters.shape());
        let mel_filters = mel_filters.flatten_all()?.to_vec1::<f32>()?;
        let config: Config = serde_json::from_slice(&md.config)?;
        let model = if md.quantized {
            let vb = candle_transformers::quantized_var_builder::VarBuilder::from_gguf_buffer(
                &md.weights,
                &device,
            )?;
            Model::Quantized(m::quantized_model::Whisper::load(&vb, config)?)
        } else {
            let vb = VarBuilder::from_buffered_safetensors(md.weights, m::DTYPE, &device)?;
            Model::Normal(m::model::Whisper::load(&vb, config)?)
        };
        console_log!("done loading model");

        let task = match md.task.as_deref() {
            Some("translate") => Some(Task::Translate),
            _ => Some(Task::Transcribe),
        };

        let decoder = Self::new(
            model,
            tokenizer,
            mel_filters,
            &device,
            task,
            md.language,
            md.is_multilingual,
            md.timestamps,
        )?;
        Ok(decoder)
    }

    pub fn convert_and_run(&mut self, wav_input: &[u8]) -> anyhow::Result<Vec<Segment>> {
        let device = Device::Cpu;
        let mut wav_input = std::io::Cursor::new(wav_input);
        let (header, data) = wav::read(&mut wav_input)?;
        console_log!("loaded wav data: {header:?}");
        if header.sampling_rate != m::SAMPLE_RATE as u32 {
            anyhow::bail!("wav file must have a {} sampling rate", m::SAMPLE_RATE);
        }
        let data = data.as_sixteen().expect("expected 16 bit wav file");
        let pcm_data: Vec<_> = data[..data.len() / header.channel_count as usize]
            .iter()
            .map(|v| *v as f32 / 32768.)
            .collect();
        console_log!("pcm data loaded {}", pcm_data.len());
        let mel = crate::audio::pcm_to_mel(self.model.config(), &pcm_data, &self.mel_filters)?;
        let mel_len = mel.len();
        let n_mels = self.model.config().num_mel_bins;
        let mel = Tensor::from_vec(mel, (1, n_mels, mel_len / n_mels), &device)?;
        console_log!("loaded mel: {:?}", mel.dims());
        let segments = self.run(&mel)?;
        Ok(segments)
    }
}

/// Returns the token id for the selected language.
pub fn detect_language(model: &mut Model, tokenizer: &Tokenizer, mel: &Tensor) -> Result<u32, E> {
    console_log!("detecting language");
    let (_bsize, _, seq_len) = mel.dims3()?;
    let mel = mel.narrow(
        2,
        0,
        usize::min(seq_len, model.config().max_source_positions),
    )?;
    let device = mel.device();

    let language_token_ids = LANGUAGES
        .iter()
        .map(|(t, _)| token_id(tokenizer, &format!("<|{t}|>")))
        .map(|e| e.map_err(E::msg))
        .collect::<Result<Vec<_>, E>>()?;

    let sot_token = token_id(tokenizer, m::SOT_TOKEN)?;
    let audio_features = model.encoder_forward(&mel, true)?;
    let tokens = Tensor::new(&[[sot_token]], device)?;
    let language_token_ids = Tensor::new(language_token_ids.as_slice(), device)?;
    let ys = model.decoder_forward(&tokens, &audio_features, true)?;
    let logits = model.decoder_final_linear(&ys.i(..1)?)?.i(0)?.i(0)?;
    let logits = logits.index_select(&language_token_ids, 0)?;
    let probs = candle_nn::ops::softmax(&logits, D::Minus1)?;
    let probs = probs.to_vec1::<f32>()?;
    let mut probs = LANGUAGES.iter().zip(probs.iter()).collect::<Vec<_>>();
    probs.sort_by(|(_, p1), (_, p2)| p2.total_cmp(p1));
    for ((_, language), p) in probs.iter().take(5) {
        println!("{language}: {p}")
    }
    let token = &format!("<|{}|>", probs[0].0 .0);
    let language = token_id(tokenizer, token)?;
    console_log!("detected language: {language} {token}");
    Ok(language)
}
pub fn token_id(tokenizer: &Tokenizer, token: &str) -> candle::Result<u32> {
    match tokenizer.token_to_id(token) {
        None => candle::bail!("no token-id for {token}"),
        Some(id) => Ok(id),
    }
}
#[derive(Serialize, Deserialize, Clone, Copy, Debug)]
pub enum Task {
    Transcribe,
    Translate,
}

// Communication to the worker happens through bincode, the model weights and configs are fetched
// on the main thread and transferred via the following structure.
#[derive(Serialize, Deserialize)]
pub struct ModelData {
    pub weights: Vec<u8>,
    pub tokenizer: Vec<u8>,
    pub mel_filters: Vec<u8>,
    pub config: Vec<u8>,
    pub quantized: bool,
    pub timestamps: bool,
    pub is_multilingual: bool,
    pub language: Option<String>,
    pub task: Option<String>,
}

pub struct Worker {
    link: WorkerLink<Self>,
    decoder: Option<Decoder>,
}

#[derive(Serialize, Deserialize)]
pub enum WorkerInput {
    ModelData(ModelData),
    DecodeTask { wav_bytes: Vec<u8> },
}

#[derive(Serialize, Deserialize)]
pub enum WorkerOutput {
    Decoded(Vec<Segment>),
    WeightsLoaded,
}

impl yew_agent::Worker for Worker {
    type Input = WorkerInput;
    type Message = ();
    type Output = Result<WorkerOutput, String>;
    type Reach = Public<Self>;

    fn create(link: WorkerLink<Self>) -> Self {
        Self {
            link,
            decoder: None,
        }
    }

    fn update(&mut self, _msg: Self::Message) {
        // no messaging
    }

    fn handle_input(&mut self, msg: Self::Input, id: HandlerId) {
        let output = match msg {
            WorkerInput::ModelData(md) => match Decoder::load(md) {
                Ok(decoder) => {
                    self.decoder = Some(decoder);
                    Ok(WorkerOutput::WeightsLoaded)
                }
                Err(err) => Err(format!("model creation error {err:?}")),
            },
            WorkerInput::DecodeTask { wav_bytes } => match &mut self.decoder {
                None => Err("model has not been set".to_string()),
                Some(decoder) => decoder
                    .convert_and_run(&wav_bytes)
                    .map(WorkerOutput::Decoded)
                    .map_err(|e| e.to_string()),
            },
        };
        self.link.respond(id, output);
    }

    fn name_of_resource() -> &'static str {
        "worker.js"
    }

    fn resource_path_is_relative() -> bool {
        true
    }
}