m.rs 9.63 KB
Newer Older
yongshk's avatar
yongshk committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
use candle::{DType, Device, Tensor};
use candle_nn::VarBuilder;
use candle_transformers::{
    generation::LogitsProcessor,
    models::{moondream, quantized_moondream},
};
use candle_wasm_example_moondream::console_log;
use js_sys::Date;
use serde::{Deserialize, Serialize};
use tokenizers::Tokenizer;
use wasm_bindgen::prelude::*;

enum SelectedModel {
    Moondream(moondream::Model),
    Quantized(quantized_moondream::Model),
}

#[wasm_bindgen]
pub struct Model {
    model: SelectedModel,
    tokenizer: Tokenizer,
    logits_processor: LogitsProcessor,
    tokens: Vec<u32>,
    repeat_penalty: f32,
    repeat_last_n: usize,
    index: usize,
    bos_token: Option<Tensor>,
    image_embeddings: Option<Tensor>,
}

#[derive(Serialize, Deserialize)]
struct Output {
    token: String,
    token_id: u32,
}
#[derive(Serialize, Deserialize)]
struct InitInput {
    prompt: String,
    seed: u64,
    temp: f64,
    top_p: f64,
    repeat_penalty: f32,
    repeat_last_n: usize,
    verbose_prompt: bool,
}

#[wasm_bindgen]
impl Model {
    #[wasm_bindgen(constructor)]
    pub fn load(weights: Vec<u8>, tokenizer: Vec<u8>, quantized: bool) -> Result<Model, JsError> {
        console_error_panic_hook::set_once();
        console_log!("loading model");
        let device = Device::Cpu;
        let config = moondream::Config::v2();

        console_log!("config loaded in {:?}", Date::now());
        let tokenizer =
            Tokenizer::from_bytes(&tokenizer).map_err(|m| JsError::new(&m.to_string()))?;
        let start = Date::now();
        console_log!("weights len: {:?}", weights.len());
        let model = if quantized {
            let vb = candle_transformers::quantized_var_builder::VarBuilder::from_gguf_buffer(
                &weights, &device,
            )?;
            console_log!("weights loaded");
            let model = quantized_moondream::Model::new(&config, vb)?;
            SelectedModel::Quantized(model)
        } else {
            let device = &Device::Cpu;
            let vb = VarBuilder::from_buffered_safetensors(weights, DType::F32, device)?;
            let model = moondream::Model::new(&config, vb)?;
            SelectedModel::Moondream(model)
        };
        console_log!("model loaded in {:?}s", (Date::now() - start) / 1000.);
        let logits_processor = LogitsProcessor::new(299792458, None, None);
        Ok(Self {
            model,
            tokenizer,
            tokens: vec![],
            logits_processor,
            repeat_penalty: 1.,
            repeat_last_n: 64,
            bos_token: None,
            image_embeddings: None,
            index: 0,
        })
    }

    pub fn set_image_embeddings(&mut self, image: Vec<u8>) -> Result<(), JsError> {
        let device = Device::Cpu;

        console_log!("loading image as tensor");
        let start = Date::now();
        let image: Tensor = self.load_image(image)?.to_device(&device)?;
        console_log!("image loaded in {:?}s", (Date::now() - start) / 1000.);
        let start = Date::now();
        let image_embeds = &image.unsqueeze(0)?;
        let image_embeds = match &self.model {
            SelectedModel::Moondream(ref m) => image_embeds.apply(m.vision_encoder())?,
            SelectedModel::Quantized(ref m) => image_embeds.apply(m.vision_encoder())?,
        };
        console_log!(
            "loaded and encoded the image {image:?} in {:?}",
            (Date::now() - start) / 1000.
        );
        self.image_embeddings = Some(image_embeds);
        Ok(())
    }

    #[wasm_bindgen]
    pub fn init_with_image_prompt(&mut self, input: JsValue) -> Result<JsValue, JsError> {
        let InitInput {
            prompt,
            seed,
            temp,
            top_p,
            repeat_penalty,
            repeat_last_n,
            verbose_prompt,
        } = serde_wasm_bindgen::from_value(input).map_err(|m| JsError::new(&m.to_string()))?;

        let device = Device::Cpu;
        let prompt = format!("\n\nQuestion: {0}\n\nAnswer:", prompt);
        match &mut self.model {
            SelectedModel::Moondream(m) => m.text_model.clear_kv_cache(),
            SelectedModel::Quantized(m) => m.text_model.clear_kv_cache(),
        };

        let temp = if temp <= 0. { None } else { Some(temp) };
        let top_p = if top_p <= 0. || top_p >= 1. {
            None
        } else {
            Some(top_p)
        };
        self.logits_processor = LogitsProcessor::new(seed, temp, top_p);
        self.repeat_penalty = repeat_penalty;
        self.repeat_last_n = repeat_last_n;
        self.tokens.clear();
        self.index = 0;

        // Moondream tokenizer bos_token is "<|endoftext|>"
        // https://huggingface.co/vikhyatk/moondream2/blob/main/special_tokens_map.json
        let special_token = match self.tokenizer.get_vocab(true).get("<|endoftext|>") {
            Some(token) => *token,
            None => return Err(JsError::new("BOS token not found in the tokenizer.")),
        };

        self.bos_token = Some(Tensor::new(&[special_token], &device)?.unsqueeze(0)?);

        let tokens = self
            .tokenizer
            .encode(prompt, true)
            .map_err(|m| JsError::new(&m.to_string()))?;

        if tokens.is_empty() {
            return Err(JsError::new(
                "Empty prompts are not supported in the Moondream model.",
            ));
        }

        if verbose_prompt {
            for (token, id) in tokens.get_tokens().iter().zip(tokens.get_ids().iter()) {
                let token = token.replace('▁', " ").replace("<0x0A>", "\n");
                println!("{id:7} -> '{token}'");
            }
        }
        let tokens = tokens.get_ids().to_vec();
        let text = match self.process(&tokens) {
            Ok(text) => text,
            Err(_e) => {
                console_log!("error decoding token");
                Output {
                    token: "".to_string(),
                    token_id: 0,
                }
            }
        };
        Ok(serde_wasm_bindgen::to_value(&text)?)
    }
    #[wasm_bindgen]
    pub fn next_token(&mut self) -> Result<JsValue, JsError> {
        let last_token = *self.tokens.last().unwrap();
        let text = match self.process(&[last_token]) {
            Ok(text) => text,
            Err(_e) => {
                console_log!("error decoding token");
                Output {
                    token: "".to_string(),
                    token_id: 0,
                }
            }
        };
        Ok(serde_wasm_bindgen::to_value(&text)?)
    }
}
impl Model {
    fn load_image(&self, image: Vec<u8>) -> Result<Tensor, JsError> {
        let img = image::io::Reader::new(std::io::Cursor::new(image))
            .with_guessed_format()?
            .decode()
            .map_err(|e| JsError::new(&e.to_string()))?
            .resize_to_fill(378, 378, image::imageops::FilterType::Triangle); // Adjusted to 378x378
        let img = img.to_rgb8();
        let data = img.into_raw();
        let data = Tensor::from_vec(data, (378, 378, 3), &Device::Cpu)?.permute((2, 0, 1))?;
        let mean = Tensor::new(&[0.5f32, 0.5, 0.5], &Device::Cpu)?.reshape((3, 1, 1))?;
        let std = Tensor::new(&[0.5f32, 0.5, 0.5], &Device::Cpu)?.reshape((3, 1, 1))?;
        (data.to_dtype(candle::DType::F32)? / 255.)?
            .broadcast_sub(&mean)?
            .broadcast_div(&std)
            .map_err(|e| JsError::new(&e.to_string()))
    }
}

impl Model {
    fn process(&mut self, tokens: &[u32]) -> Result<Output, JsError> {
        let image_embeddings = match &self.image_embeddings {
            Some(embeddings) => embeddings,
            None => return Err(JsError::new("Image embeddings are not set.")),
        };
        let bos_token = match &self.bos_token {
            Some(token) => token,
            None => return Err(JsError::new("BOS token is not set.")),
        };
        let device = Device::Cpu;
        let context_size = if self.index > 0 { 1 } else { tokens.len() };
        let ctxt = &tokens[tokens.len().saturating_sub(context_size)..];
        let input = Tensor::new(ctxt, &device)?.unsqueeze(0)?;
        let logits = if self.index > 0 {
            match self.model {
                SelectedModel::Moondream(ref mut model) => model.text_model.forward(&input)?,
                SelectedModel::Quantized(ref mut model) => model.text_model.forward(&input)?,
            }
        } else {
            match self.model {
                SelectedModel::Moondream(ref mut model) => {
                    model
                        .text_model
                        .forward_with_img(bos_token, &input, image_embeddings)?
                }
                SelectedModel::Quantized(ref mut model) => {
                    model
                        .text_model
                        .forward_with_img(bos_token, &input, image_embeddings)?
                }
            }
        };

        let logits = logits.squeeze(0)?.to_dtype(DType::F32)?;
        let logits = if self.repeat_penalty == 1. {
            logits
        } else {
            let start_at = tokens.len().saturating_sub(self.repeat_last_n);
            candle_transformers::utils::apply_repeat_penalty(
                &logits,
                self.repeat_penalty,
                &tokens[start_at..],
            )?
        };
        let next_token = self.logits_processor.sample(&logits)?;
        self.tokens.push(next_token);
        let token = match self.tokenizer.decode(&[next_token], true) {
            Ok(token) => token,
            Err(e) => {
                console_log!("error decoding token: {:?}", e);
                "".to_string()
            }
        };
        self.index += 1;
        Ok(Output {
            token,
            token_id: next_token,
        })
    }
}

fn main() {
    console_error_panic_hook::set_once();
}