cifar.rs 4.54 KB
Newer Older
yongshk's avatar
yongshk committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
//! The CIFAR-10 dataset.
//!
//! The files can be downloaded from the following page:
//! <https://www.cs.toronto.edu/~kriz/cifar.html>
//! The binary version of the dataset is used.
use crate::vision::Dataset;
use candle::{DType, Device, Error, Result, Tensor};
use hf_hub::{api::sync::Api, Repo, RepoType};
use parquet::file::reader::{FileReader, SerializedFileReader};
use std::fs::File;
use std::io::{BufReader, Read};

const W: usize = 32;
const H: usize = 32;
const C: usize = 3;
const BYTES_PER_IMAGE: usize = W * H * C + 1;
const SAMPLES_PER_FILE: usize = 10000;

fn read_file(filename: &std::path::Path) -> Result<(Tensor, Tensor)> {
    let mut buf_reader = BufReader::new(File::open(filename)?);
    let mut data = vec![0u8; SAMPLES_PER_FILE * BYTES_PER_IMAGE];
    buf_reader.read_exact(&mut data)?;
    let mut images = vec![];
    let mut labels = vec![];
    for index in 0..SAMPLES_PER_FILE {
        let content_offset = BYTES_PER_IMAGE * index;
        labels.push(data[content_offset]);
        images.push(&data[1 + content_offset..content_offset + BYTES_PER_IMAGE]);
    }
    let images: Vec<u8> = images
        .iter()
        .copied()
        .flatten()
        .copied()
        .collect::<Vec<_>>();
    let labels = Tensor::from_vec(labels, SAMPLES_PER_FILE, &Device::Cpu)?;
    let images = Tensor::from_vec(images, (SAMPLES_PER_FILE, C, H, W), &Device::Cpu)?;
    let images = (images.to_dtype(DType::F32)? / 255.)?;
    Ok((images, labels))
}

pub fn load_dir<T: AsRef<std::path::Path>>(dir: T) -> Result<Dataset> {
    let dir = dir.as_ref();
    let (test_images, test_labels) = read_file(&dir.join("test_batch.bin"))?;
    let train_images_and_labels = [
        "data_batch_1.bin",
        "data_batch_2.bin",
        "data_batch_3.bin",
        "data_batch_4.bin",
        "data_batch_5.bin",
    ]
    .iter()
    .map(|x| read_file(&dir.join(x)))
    .collect::<Result<Vec<_>>>()?;
    let (train_images, train_labels): (Vec<_>, Vec<_>) =
        train_images_and_labels.into_iter().unzip();
    Ok(Dataset {
        train_images: Tensor::cat(&train_images, 0)?,
        train_labels: Tensor::cat(&train_labels, 0)?,
        test_images,
        test_labels,
        labels: 10,
    })
}

fn load_parquet(parquet: SerializedFileReader<std::fs::File>) -> Result<(Tensor, Tensor)> {
    let samples = parquet.metadata().file_metadata().num_rows() as usize;
    let mut buffer_images: Vec<u8> = Vec::with_capacity(samples * 1_024);
    let mut buffer_labels: Vec<u8> = Vec::with_capacity(samples);
    for row in parquet.into_iter().flatten() {
        for (_name, field) in row.get_column_iter() {
            if let parquet::record::Field::Group(subrow) = field {
                for (_name, field) in subrow.get_column_iter() {
                    if let parquet::record::Field::Bytes(value) = field {
                        let image = image::load_from_memory(value.data()).unwrap();
                        buffer_images.extend(image.to_rgb8().as_raw());
                    }
                }
            } else if let parquet::record::Field::Long(label) = field {
                buffer_labels.push(*label as u8);
            }
        }
    }
    let images = (Tensor::from_vec(buffer_images, (samples, 3, 32, 32), &Device::Cpu)?
        .to_dtype(DType::U8)?
        / 255.)?;
    let labels = Tensor::from_vec(buffer_labels, (samples,), &Device::Cpu)?;
    Ok((images, labels))
}

pub fn load() -> Result<Dataset> {
    let api = Api::new().map_err(|e| Error::Msg(format!("Api error: {e}")))?;
    let dataset_id = "cifar10".to_string();
    let repo = Repo::with_revision(
        dataset_id,
        RepoType::Dataset,
        "refs/convert/parquet".to_string(),
    );
    let repo = api.repo(repo);
    let test_parquet_filename = repo
        .get("plain_text/test/0000.parquet")
        .map_err(|e| Error::Msg(format!("Api error: {e}")))?;
    let train_parquet_filename = repo
        .get("plain_text/train/0000.parquet")
        .map_err(|e| Error::Msg(format!("Api error: {e}")))?;
    let test_parquet = SerializedFileReader::new(std::fs::File::open(test_parquet_filename)?)
        .map_err(|e| Error::Msg(format!("Parquet error: {e}")))?;
    let train_parquet = SerializedFileReader::new(std::fs::File::open(train_parquet_filename)?)
        .map_err(|e| Error::Msg(format!("Parquet error: {e}")))?;
    let (test_images, test_labels) = load_parquet(test_parquet)?;
    let (train_images, train_labels) = load_parquet(train_parquet)?;
    Ok(crate::vision::Dataset {
        train_images,
        train_labels,
        test_images,
        test_labels,
        labels: 10,
    })
}