rotary.cu 4.41 KB
Newer Older
yongshk's avatar
yongshk committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
#include <cuda_fp16.h>
#include <cuda_bf16.h>
#include <stdint.h>

#include "cuda_compat.h"

namespace vllm {

template<typename scalar_t, bool IS_NEOX>
inline __device__ void apply_rotary_embedding(
  scalar_t* __restrict__ arr,
  const scalar_t* __restrict__ cos_ptr,
  const scalar_t* __restrict__ sin_ptr,
  int rot_offset,
  int rot_dim)
{
  int x_index, y_index;
  scalar_t cos, sin;
  if (IS_NEOX) {
    // GPT-NeoX style rotary embedding.
    x_index = rot_offset;
    y_index = rot_dim + rot_offset;
    cos = VLLM_LDG(cos_ptr + x_index);
    sin = VLLM_LDG(sin_ptr + x_index);
  } else {
    // GPT-J style rotary embedding.
    x_index = 2 * rot_offset;
    y_index = 2 * rot_offset + 1;
    cos = VLLM_LDG(cos_ptr + x_index / 2);
    sin = VLLM_LDG(sin_ptr + x_index / 2);
  }

  const scalar_t x = arr[x_index];
  const scalar_t y = arr[y_index];
  arr[x_index] = x * cos - y * sin;
  arr[y_index] = y * cos + x * sin;
}

template<typename scalar_t, bool IS_NEOX>
__global__ void rotary_embedding_kernel(
  scalar_t* __restrict__ query,                    // [num_tokens, num_heads, head_size]
  scalar_t* __restrict__ key,                      // [num_tokens, num_heads, head_size]
  const scalar_t* __restrict__ cos_cache,          // [num_tokens, rot_dim]
  const scalar_t* __restrict__ sin_cache,          // [num_tokens, rot_dim]
  const int rot_dim,
  const int64_t query_stride,
  const int64_t key_stride,
  const int num_heads,
  const int num_kv_heads,
  const int head_size) {
  // Each thread block is responsible for one token.
  const int token_idx = blockIdx.x;

  const scalar_t* cos_ptr = cos_cache + token_idx * rot_dim;
  const scalar_t* sin_ptr = sin_cache + token_idx * rot_dim;

  const int nq = num_heads * rot_dim;
  for (int i = threadIdx.x; i < nq; i += blockDim.x) {
    const int head_idx = i / rot_dim;
    const int64_t token_head = token_idx * query_stride + head_idx * head_size;
    const int rot_offset = i % rot_dim;
    apply_rotary_embedding<scalar_t, IS_NEOX>(query + token_head, cos_ptr,
                                              sin_ptr, rot_offset, rot_dim);
  }

  const int nk = num_kv_heads * rot_dim;
  for (int i = threadIdx.x; i < nk; i += blockDim.x) {
    const int head_idx = i / rot_dim;
    const int64_t token_head = token_idx * key_stride + head_idx * head_size;
    const int rot_offset = i % rot_dim;
    apply_rotary_embedding<scalar_t, IS_NEOX>(key + token_head, cos_ptr,
                                              sin_ptr, rot_offset, rot_dim);
  }
}

} // namespace vllm

#define CALL_ROTARY(T, IS_NEOX)                                               \
  vllm::rotary_embedding_kernel<T, IS_NEOX><<<grid, block, 0, stream>>>(      \
    reinterpret_cast<T*>(query),                                              \
    reinterpret_cast<T*>(key),                                                \
    reinterpret_cast<T*>(cos_cache),                                          \
    reinterpret_cast<T*>(sin_cache),                                          \
    rot_dim,                                                                  \
    query_stride,                                                             \
    key_stride,                                                               \
    num_heads,                                                                \
    num_kv_heads,                                                             \
    head_size);

extern "C" void rotary_embedding(
  void *query,             // [num_tokens, num_heads, head_size]
  void *key,               // [num_tokens, num_kv_heads, head_size]
  void *cos_cache,         // [num_tokens, rot_dim]
  void *sin_cache,         // [num_tokens, rot_dim]
  int32_t is_neox,

  int32_t head_size,
  int64_t num_tokens,
  int32_t rot_dim,
  int32_t num_heads,
  int32_t num_kv_heads,
  int64_t query_stride,
  int64_t key_stride,

  uint32_t dtype // 0 => f16; 1 => bf16; 2 => f32
  ) {

  dim3 grid(num_tokens);
  dim3 block(std::min(num_heads * rot_dim, 512));
  const cudaStream_t stream = 0;
  const bool is_neox_bool = is_neox;

  if (is_neox_bool) {
    if (dtype == 0){
      CALL_ROTARY(half, true);
    } else if (dtype == 1) {
      CALL_ROTARY(__nv_bfloat16, true);
    } else if (dtype == 2) {
      CALL_ROTARY(float, true);
    }
  } else {
    if (dtype == 0){
      CALL_ROTARY(half, false);
    } else if (dtype == 1) {
      CALL_ROTARY(__nv_bfloat16, false);
    } else if (dtype == 2) {
      CALL_ROTARY(float, false);
    }
  }
}