ln_fwd_kernels.cuh 12.5 KB
Newer Older
yongshk's avatar
yongshk committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
#pragma once

// #ifdef OLD_GENERATOR_PATH
// #include <ATen/CUDAGeneratorImpl.h>
// #else
// #include <ATen/cuda/CUDAGeneratorImpl.h>
// #endif

// #include <ATen/cuda/detail/UnpackRaw.cuh>  // For at::cuda::philox::unpack
#include <curand_kernel.h>

#include "ln.h"
#include "ln_utils.cuh"
#include "ln_kernel_traits.h"
#include "static_switch.h"

namespace layer_norm {

template<typename Ktraits, bool Is_dropout, bool Has_colscale, bool Has_subset, bool Is_even_cols>
__global__ __launch_bounds__(Ktraits::THREADS_PER_CTA) 
void ln_fwd_kernel(FwdParams params) {

    enum { ROWS_PER_CTA = Ktraits::ROWS_PER_CTA };
    enum { WARPS_N = Ktraits::WARPS_N };
    enum { WARPS_M = Ktraits::WARPS_M };
    enum { THREADS_PER_ROW = Ktraits::THREADS_PER_ROW };
    enum { VEC_COLS_PER_LDG = Ktraits::VEC_COLS_PER_LDG };
    enum { BYTES_PER_ROW = Ktraits::BYTES_PER_ROW };
    enum { LDGS = Ktraits::LDGS };
    enum { NUM_ELTS = Ktraits::NUM_ELTS };
    enum { CTAS_PER_ROW = Ktraits::CTAS_PER_ROW };

    using input_t = typename Ktraits::input_t;
    using residual_t = typename Ktraits::residual_t;
    using output_t = typename Ktraits::output_t;
    using index_t = typename Ktraits::index_t;
    using compute_t = typename Ktraits::compute_t;
    using mask_t = typename Ktraits::mask_t;
    using Ivec = typename Ktraits::Ivec;
    using Rvec = typename Ktraits::Rvec;
    using Ovec = typename Ktraits::Ovec;
    using Wvec = typename Ktraits::Wvec;
    using Cvec = typename Ktraits::Cvec;
    using Mvec = typename Ktraits::Mvec;

    using Stats = typename Ktraits::Stats;
    using stats_t = typename Stats::stats_t;

    const bool has_residual = params.residual != nullptr;
    const bool save_x = has_residual || Is_dropout || Has_colscale || (params.rowscale != nullptr) || Has_subset || !(std::is_same<input_t, residual_t>::value);

    extern __shared__ char smem_[];

    const index_t tidx = threadIdx.x;
    const index_t bidn = blockIdx.x % CTAS_PER_ROW;
    const index_t bidm = blockIdx.x / CTAS_PER_ROW;
    const index_t lane = tidx % THREADS_PER_WARP;
    const index_t warp = tidx / THREADS_PER_WARP;
    const index_t warp_m = warp / WARPS_N;
    const index_t warp_n = warp % WARPS_N;

    const index_t r = bidm * ROWS_PER_CTA + warp_m;
    const index_t c = bidn * THREADS_PER_ROW + warp_n * THREADS_PER_WARP + lane;

    Stats stats(params, bidm, bidn, warp_m, warp_n, lane, smem_);

    compute_t *mu_ptr = static_cast<compute_t *>(params.mu);
    compute_t *rs_ptr = static_cast<compute_t *>(params.rs);

    const input_t *rowscale = static_cast<input_t *>(params.rowscale);
    const index_t *x0_subset = static_cast<index_t *>(params.x0_subset);
    const index_t *z_subset = static_cast<index_t *>(params.z_subset);

    // https://github.com/pytorch/pytorch/blob/master/aten/src/ATen/native/cuda/Dropout.cu
    // curandStatePhilox4_32_10_t state;
    // if (Is_dropout) {
    //    auto seeds = at::cuda::philox::unpack(params.philox_args);
    //    const index_t tidx_global = blockIdx.x * blockDim.x + threadIdx.x;
    //    curand_init(std::get<0>(seeds), tidx_global, std::get<1>(seeds), &state);
    //}

    const index_t num_valid_ldgs = ((params.cols / Ktraits::ELTS_PER_LDG) - 1 - c + VEC_COLS_PER_LDG) / VEC_COLS_PER_LDG;

    Wvec gamma[LDGS];
    Wvec beta[LDGS];
    Wvec colscale[LDGS];
    index_t idx = c;
    #pragma unroll
    for( int it = 0; it < LDGS; it++ ) {
        if (Is_even_cols || (it < num_valid_ldgs)) {
            gamma[it].load_from(params.gamma, idx);
            if (params.beta != nullptr) {
                beta[it].load_from(params.beta, idx);
            } else {
                beta[it].zero_();
            }
            if (Has_colscale) { colscale[it].load_from(params.colscale, idx); }
            idx += VEC_COLS_PER_LDG;
        }
    }

    for( int row = r; row < params.rows; row += params.ctas_per_col * ROWS_PER_CTA ) {
        const compute_t rowscale_val = !Has_subset ? (params.rowscale == nullptr ? 1.0f : compute_t(rowscale[row])) : params.rowscale_const;
        const int row_x0 = !Has_subset ? row + 1 : x0_subset[row];
        const int row_z = !Has_subset ? row + 1 : z_subset[row];
        const bool load_x0 = !Has_subset || row_x0 > 0;
        index_t idx_x = row * params.cols / Ktraits::ELTS_PER_LDG + c;
        index_t idx_x0 = !Has_subset ? idx_x : (load_x0 ? (row_x0 - 1) * params.cols / Ktraits::ELTS_PER_LDG + c : 0);
        compute_t xf[LDGS * NUM_ELTS];
        #pragma unroll
        for( int it = 0; it < LDGS; it++ ) {
            if (Is_even_cols || (it < num_valid_ldgs)) {
                Ivec x0;
                Rvec residual;
                Rvec x;
                Mvec dmask;
                if (load_x0) { x0.load_from(params.x0, !Has_subset ? idx_x : idx_x0); }
                if (has_residual) { residual.load_from(params.residual, idx_x); }
                #pragma unroll
                for( int jt = 0; jt < NUM_ELTS; jt++ ) {
                    // TD [2022-04-22]: We're memory bound, not compute bound, so we don't need to use
                    // the more efficient curand_uniform4.
                    compute_t x_ij;
                    if (load_x0) {
                        //mask_t keep = !Is_dropout ? true : curand_uniform(&state) <= params.dropout_keep_p;
                        mask_t keep = false;
                        // if (Is_dropout) { dmask.data.elt[jt] = keep; }
                        compute_t x0_ij = compute_t(x0.data.elt[jt]) * rowscale_val;
                        // x0_ij = keep ? (Is_dropout ? x0_ij * params.dropout_scale : x0_ij) : 0.0f;
                        if (Has_colscale) { x0_ij *= compute_t(colscale[it].data.elt[jt]); }
                        x_ij = has_residual ? x0_ij + compute_t(residual.data.elt[jt]) : x0_ij;
                    } else {
                        x_ij = has_residual ? compute_t(residual.data.elt[jt]) : 0.f;
                    }
                    if (save_x) { x.data.elt[jt] = x_ij; }
                    xf[it * NUM_ELTS + jt] = x_ij;
                }
                if (save_x) { x.store_to(params.x, idx_x); }
                // if (Is_dropout && load_x0) { dmask.store_to(params.dmask, !Has_subset ? idx_x : idx_x0); }
                idx_x += VEC_COLS_PER_LDG;
                idx_x0 += VEC_COLS_PER_LDG;
            }
        }

        static_assert(CTAS_PER_ROW == 1, "Don't support multiple CTAs per row for now");
        const index_t num_vecs = params.cols / Ktraits::ELTS_PER_LDG;
        const index_t num_full_ldgs = num_vecs / Ktraits::VEC_COLS_PER_LDG;
        const index_t remaining_vecs = num_vecs % Ktraits::VEC_COLS_PER_LDG;
        auto valid_elts_in_warp_fn = [num_full_ldgs, remaining_vecs] (int warp_n) -> int {
            // Need to convert to int, otherwise the subtraction will wrap around.
            const index_t valid_partial_vecs_in_warp =
                std::min(std::max(int(remaining_vecs) - int(warp_n * THREADS_PER_WARP), int(0)),
                        int(THREADS_PER_WARP));
            return (num_full_ldgs * THREADS_PER_WARP + valid_partial_vecs_in_warp) * NUM_ELTS;
        };
        stats_t s = stats.template compute<Is_even_cols>(
            xf, params.inverse_cols, valid_elts_in_warp_fn, num_valid_ldgs * NUM_ELTS
        );

        compute_t mu = layer_norm::Get<0>::of<stats_t, compute_t>(s);
        compute_t m2 = layer_norm::Get<1>::of<stats_t, compute_t>(s);

        if( bidn == 0 && warp_n == 0 && lane == 0 ) {
            mu_ptr[row] = mu;
        }

        compute_t rs = rsqrtf(m2 * params.inverse_cols + params.epsilon + (!params.is_rms_norm ? 0.f : mu * mu));

        if( bidn == 0 && warp_n == 0 && lane == 0 ) {
            rs_ptr[row] = rs;
        }

        const bool save_z = !Has_subset || row_z > 0;
        if (save_z) {
            index_t idx_z = (!Has_subset ? row : (row_z - 1)) * params.cols / Ktraits::ELTS_PER_LDG + c;
            #pragma unroll
            for( int it = 0; it < LDGS; it++ ) {
                if (Is_even_cols || (it < num_valid_ldgs)) {
                    Ovec z;
                    #pragma unroll
                    for( int jt = 0; jt < NUM_ELTS; jt++ ) {
                        compute_t y_ij = compute_t(rs * (xf[it * NUM_ELTS + jt] - (!params.is_rms_norm ? mu : 0.f)));
                        compute_t g_ij = gamma[it].data.elt[jt];
                        compute_t b_ij = beta[it].data.elt[jt];
                        z.data.elt[jt] = output_t(g_ij * y_ij + b_ij);
                    }
                    z.store_to(params.z, idx_z);
                    idx_z += VEC_COLS_PER_LDG;
                }
            }
        }

    }
}

}  // namespace layer_norm

using namespace layer_norm;

template<
    typename weight_t,
    typename input_t,
    typename residual_t,
    typename output_t,
    typename compute_t,
    typename index_t,
    int HIDDEN_SIZE,
    int CTAS_PER_ROW,
    int WARPS_M,
    int WARPS_N,
    int BYTES_PER_LDG
>
void launch_(LaunchParams<FwdParams> &launch_params, const bool configure_params){

    using Kernel_traits = Kernel_traits<weight_t,
                                        input_t,
                                        residual_t,
                                        output_t,
                                        compute_t,
                                        index_t,
                                        HIDDEN_SIZE,
                                        CTAS_PER_ROW,
                                        WARPS_M,
                                        WARPS_N,
                                        BYTES_PER_LDG
                                        >;
    bool has_colscale = launch_params.params.colscale != nullptr;
    bool has_subset = launch_params.params.x0_subset != nullptr;
    bool is_even_cols = launch_params.params.cols == HIDDEN_SIZE;
    BOOL_SWITCH(launch_params.params.dropout_keep_p < 1.f, IsDropoutConst, [&] {
        BOOL_SWITCH(has_colscale, HasColscaleConst, [&] {
            BOOL_SWITCH(has_subset, HasSubsetConst, [&] {
                    BOOL_SWITCH(is_even_cols, IsEvenColsConst, [&] {
                        auto kernel = &ln_fwd_kernel<Kernel_traits, IsDropoutConst, HasColscaleConst, HasSubsetConst, IsEvenColsConst>;
                    if( configure_params ) {
                        int ctas_per_sm;
                        CHECK_CUDA(cudaOccupancyMaxActiveBlocksPerMultiprocessor(
                            &ctas_per_sm, kernel, Kernel_traits::THREADS_PER_CTA, Kernel_traits::SMEM_BYTES_FWD));
                        launch_params.params.ctas_per_col = launch_params.multi_processor_count * ctas_per_sm / Kernel_traits::CTAS_PER_ROW;
                        const size_t rows_per_loop = launch_params.params.ctas_per_col * Kernel_traits::ROWS_PER_CTA;
                        launch_params.elts_per_thread = (launch_params.params.rows + rows_per_loop - 1) / rows_per_loop * Kernel_traits::LDGS * Kernel_traits::NUM_ELTS;
                        launch_params.barrier_size = 0;
                        launch_params.workspace_bytes = 0;
                        if(Kernel_traits::CTAS_PER_ROW > 1) {
                            launch_params.barrier_size = 2 * launch_params.params.ctas_per_col;
                            launch_params.workspace_bytes = launch_params.params.ctas_per_col
                                                          * Kernel_traits::WARPS_M
                                                          * Kernel_traits::CTAS_PER_ROW
                                                          * sizeof(typename Kernel_traits::Stats::stats_t)
                                                          * 2;
                        }
                        return;
                    }

                    if( Kernel_traits::SMEM_BYTES_FWD >= 48 * 1024 ) {
                        CHECK_CUDA(cudaFuncSetAttribute(kernel, cudaFuncAttributeMaxDynamicSharedMemorySize, Kernel_traits::SMEM_BYTES_FWD));
                    }
                    auto stream = launch_params.stream;
                    auto ctas_per_col = launch_params.params.ctas_per_col;

                    if( Kernel_traits::CTAS_PER_ROW == 1 ) {
                        kernel<<<ctas_per_col, Kernel_traits::THREADS_PER_CTA, Kernel_traits::SMEM_BYTES_FWD, stream>>>(launch_params.params);
                    } else {
                        dim3 grid(Kernel_traits::CTAS_PER_ROW * ctas_per_col);
                        dim3 block(Kernel_traits::THREADS_PER_CTA);
                        void *params_ = (void *)&launch_params.params;
                        cudaLaunchCooperativeKernel((void *)kernel, grid, block, (void **)&params_, Kernel_traits::SMEM_BYTES_FWD, stream);
                    }
                });
            });
        });
    });
}