"src/targets/gpu/vscode:/vscode.git/clone" did not exist on "6a42a385ac8db0e329ed9361d00e0b44e81b7712"
YOLOX.cpp 19.5 KB
Newer Older
yaoht's avatar
yaoht committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
#include <YOLOX.h>
#include <migraphx/onnx.hpp>
#include <migraphx/gpu/target.hpp>
#include <migraphx/quantization.hpp>
#include <Filesystem.h>
#include <SimpleLog.h>

#define INPUT_W (640)
#define INPUT_H (640)

namespace migraphxSamples
{

DetectorYOLOX::DetectorYOLOX()
{

}

DetectorYOLOX::~DetectorYOLOX()
{

    configurationFile.release();
    
}

ErrorCode DetectorYOLOX::Initialize(InitializationParameterOfDetector initializationParameterOfDetector, bool dynamic)
{
    // 读取配置文件
    std::string configFilePath=initializationParameterOfDetector.configFilePath;
    if(Exists(configFilePath)==false)
    {
        LOG_ERROR(stdout, "no configuration file!\n");
        return CONFIG_FILE_NOT_EXIST;
    }
    if(!configurationFile.open(configFilePath, cv::FileStorage::READ))
    {
       LOG_ERROR(stdout, "fail to open configuration file\n");
       return FAIL_TO_OPEN_CONFIG_FILE;
    }
    LOG_INFO(stdout, "succeed to open configuration file\n");
    
    // 获取配置文件参数
    cv::FileNode netNode = configurationFile["DetectorYOLOX"];
    if(dynamic)
    {
        modelPath=(std::string)netNode["ModelPathDynamic"];
    }
    else
    {
        modelPath=(std::string)netNode["ModelPathStatic"];
    }
    std::string pathOfClassNameFile=(std::string)netNode["ClassNameFile"];
    yoloxParameter.confidenceThreshold = (float)netNode["ConfidenceThreshold"];
    yoloxParameter.nmsThreshold = (float)netNode["NMSThreshold"];
    yoloxParameter.objectThreshold = (float)netNode["ObjectThreshold"];
    yoloxParameter.numberOfClasses=(int)netNode["NumberOfClasses"];
    useFP16=(bool)(int)netNode["UseFP16"];

    if(dynamic)
    {
        // 加载模型
        if(Exists(modelPath)==false)
        {
            LOG_ERROR(stdout,"%s not exist!\n",modelPath.c_str());
            return MODEL_NOT_EXIST;
        }
        
        migraphx::onnx_options onnx_options;
        onnx_options.map_input_dims["images"]={1,3,800,800};
        net = migraphx::parse_onnx(modelPath, onnx_options);
        LOG_INFO(stdout,"succeed to load model: %s\n",GetFileName(modelPath).c_str());

        // 获取模型输入/输出节点信息
        std::cout<<"inputs:"<<std::endl;
        std::unordered_map<std::string, migraphx::shape> inputs=net.get_inputs();
        for(auto i:inputs)
        {
            std::cout<<i.first<<":"<<i.second<<std::endl;
        }
        std::cout<<"outputs:"<<std::endl;
        std::unordered_map<std::string, migraphx::shape> outputs=net.get_outputs();
        for(auto i:outputs)
        {
            std::cout<<i.first<<":"<<i.second<<std::endl;
        }
        inputName=inputs.begin()->first;
        inputShape=inputs.begin()->second;
        int N=inputShape.lens()[0];
        int C=inputShape.lens()[1];
        int H=inputShape.lens()[2];
        int W=inputShape.lens()[3];
        inputSize=cv::Size(W,H);

        // log
        LOG_INFO(stdout,"InputMaxSize:%dx%d\n",inputSize.width,inputSize.height);
    }
    else
    {
        // 加载模型
        if(Exists(modelPath)==false)
        {
            LOG_ERROR(stdout,"%s not exist!\n",modelPath.c_str());
            return MODEL_NOT_EXIST;
        }
        net = migraphx::parse_onnx(modelPath);
        LOG_INFO(stdout,"succeed to load model: %s\n",GetFileName(modelPath).c_str());

        // 获取模型输入/输出节点信息
        std::cout<<"inputs:"<<std::endl;
        std::unordered_map<std::string, migraphx::shape> inputs=net.get_inputs();
        for(auto i:inputs)
        {
            std::cout<<i.first<<":"<<i.second<<std::endl;
        }
        std::cout<<"outputs:"<<std::endl;
        std::unordered_map<std::string, migraphx::shape> outputs=net.get_outputs();
        for(auto i:outputs)
        {
            std::cout<<i.first<<":"<<i.second<<std::endl;
        }
        inputName=inputs.begin()->first;
        inputShape=inputs.begin()->second;
        int N=inputShape.lens()[0];
        int C=inputShape.lens()[1];
        int H=inputShape.lens()[2];
        int W=inputShape.lens()[3];
        inputSize=cv::Size(W,H);

        // log
        LOG_INFO(stdout,"InputSize:%dx%d\n",inputSize.width,inputSize.height);
    }

    LOG_INFO(stdout,"InputName:%s\n",inputName.c_str());
    LOG_INFO(stdout,"ConfidenceThreshold:%f\n",yoloxParameter.confidenceThreshold);
    LOG_INFO(stdout,"NMSThreshold:%f\n",yoloxParameter.nmsThreshold);
    LOG_INFO(stdout,"objectThreshold:%f\n",yoloxParameter.objectThreshold);
    LOG_INFO(stdout,"NumberOfClasses:%d\n",yoloxParameter.numberOfClasses);

    // 设置模型为GPU模式
    migraphx::target gpuTarget = migraphx::gpu::target{};

    // 量化    
    if(useFP16)
    {
        migraphx::quantize_fp16(net);
    }

    // 编译模型
    migraphx::compile_options options;
    options.device_id=0; 
    options.offload_copy=true;
    net.compile(gpuTarget,options);
    LOG_INFO(stdout,"succeed to compile model: %s\n",GetFileName(modelPath).c_str());

    // warm up
    std::unordered_map<std::string, migraphx::argument> inputData;
    inputData[inputName]=migraphx::argument{inputShape};
    net.eval(inputData);

    // 读取类别名
    if(!pathOfClassNameFile.empty())
    {
        std::ifstream classNameFile(pathOfClassNameFile);
        std::string line;
        while (getline(classNameFile, line))
        {
            classNames.push_back(line);
        }
    }
    else
    {
        classNames.resize(yoloxParameter.numberOfClasses);
    }


    return SUCCESS;

}

void DetectorYOLOX::generate_grids_and_stride(std::vector<int>& strides, std::vector<GridAndStride>& grid_strides)
{
    for (auto stride : strides)
    {
        int num_grid_y = INPUT_H / stride;
        int num_grid_x = INPUT_W / stride;
        for (int g1 = 0; g1 < num_grid_y; g1++)
        {
            for (int g0 = 0; g0 < num_grid_x; g0++)
            {
                grid_strides.push_back((GridAndStride){g0, g1, stride});
            }
        }
    }
}

void DetectorYOLOX::generate_yolox_proposals(std::vector<GridAndStride> grid_strides, float* feat_blob, float prob_threshold, std::vector<Object>& objects)
{

    const int num_anchors = grid_strides.size();
    float max_box_objectness =0;
    for (int anchor_idx = 0; anchor_idx < num_anchors; anchor_idx++)
    {
        const int grid0 = grid_strides[anchor_idx].grid0;
        const int grid1 = grid_strides[anchor_idx].grid1;
        const int stride = grid_strides[anchor_idx].stride;

        const int basic_pos = anchor_idx * (yoloxParameter.numberOfClasses + 5);

        // yolox/models/yolo_head.py decode logic
        float x_center = (feat_blob[basic_pos+0] + grid0) * stride;
        float y_center = (feat_blob[basic_pos+1] + grid1) * stride;
        float w = exp(feat_blob[basic_pos+2]) * stride;
        float h = exp(feat_blob[basic_pos+3]) * stride;
        float x0 = x_center - w * 0.5f;
        float y0 = y_center - h * 0.5f;

        float box_objectness = feat_blob[basic_pos+4];
        max_box_objectness = box_objectness > max_box_objectness ? box_objectness : max_box_objectness;
        float max_box_cls_score = 0;
        int max_score_class_idx = 0;
        for (int class_idx = 0; class_idx < yoloxParameter.numberOfClasses; class_idx++)
        {
            float box_cls_score = feat_blob[basic_pos + 5 + class_idx];
            if(box_cls_score > max_box_cls_score)
            {
                max_box_cls_score = box_cls_score;
                max_score_class_idx = class_idx;
            }

        } // class loop
        float box_prob = box_objectness * max_box_cls_score;
        if(box_objectness > yoloxParameter.objectThreshold && box_prob > yoloxParameter.confidenceThreshold)
        {
                Object obj;
                obj.rect.x = x0;
                obj.rect.y = y0;
                obj.rect.width = w;
                obj.rect.height = h;
                obj.label = max_score_class_idx;
                obj.prob = box_prob;
                objects.push_back(obj);
        }
    } // point anchor loop
}

void DetectorYOLOX::qsort_descent_inplace(std::vector<Object>& faceobjects, int left, int right)
{
    int i = left;
    int j = right;
    float p = faceobjects[(left + right) / 2].prob;

    while (i <= j)
    {
        while (faceobjects[i].prob > p)
            i++;

        while (faceobjects[j].prob < p)
            j--;

        if (i <= j)
        {
            // swap
            std::swap(faceobjects[i], faceobjects[j]);

            i++;
            j--;
        }
    }

    #pragma omp parallel sections
    {
        #pragma omp section
        {
            if (left < j) qsort_descent_inplace(faceobjects, left, j);
        }
        #pragma omp section
        {
            if (i < right) qsort_descent_inplace(faceobjects, i, right);
        }
    }
}

void DetectorYOLOX::qsort_descent_inplace(std::vector<Object>& objects)
{
    if (objects.empty())
        return;

    qsort_descent_inplace(objects, 0, objects.size() - 1);
}

inline float DetectorYOLOX::intersection_area(const Object& a, const Object& b)
{
    cv::Rect_<float> inter = a.rect & b.rect;
    return inter.area();
}

void DetectorYOLOX::nms_sorted_bboxes(const std::vector<Object>& faceobjects, std::vector<int>& picked, float nms_threshold)
{
    picked.clear();

    const int n = faceobjects.size();

    std::vector<float> areas(n);
    for (int i = 0; i < n; i++)
    {
        areas[i] = faceobjects[i].rect.area();
    }

    for (int i = 0; i < n; i++)
    {
        const Object& a = faceobjects[i];

        int keep = 1;
        for (int j = 0; j < (int)picked.size(); j++)
        {
            const Object& b = faceobjects[picked[j]];

            // intersection over union
            float inter_area = intersection_area(a, b);
            float union_area = areas[i] + areas[picked[j]] - inter_area;
            // float IoU = inter_area / union_area
            if (inter_area / union_area > nms_threshold)
                keep = 0;
        }

        if (keep)
            picked.push_back(i);
    }
}

void DetectorYOLOX::decode_outputs(float* prob, std::vector<Object>& objects, float scalew, float scaleh, const int img_w, const int img_h) {
        std::vector<Object> proposals;
        std::vector<int> strides = {8, 16, 32};
        std::vector<GridAndStride> grid_strides;
        generate_grids_and_stride(strides, grid_strides);
        generate_yolox_proposals(grid_strides, prob,  yoloxParameter.confidenceThreshold, proposals);
        std::cout << "num of boxes before nms: " << proposals.size() << std::endl;

        qsort_descent_inplace(proposals);

        std::vector<int> picked;
        nms_sorted_bboxes(proposals, picked, yoloxParameter.nmsThreshold);


        int count = picked.size();

        std::cout << "num of boxes: " << count << std::endl;

        objects.resize(count);
        for (int i = 0; i < count; i++)
        {
            objects[i] = proposals[picked[i]];

            // adjust offset to original unpadded
            float x0 = (objects[i].rect.x) / scalew;
            float y0 = (objects[i].rect.y) / scaleh;
            float x1 = (objects[i].rect.x + objects[i].rect.width) / scalew;
            float y1 = (objects[i].rect.y + objects[i].rect.height) / scaleh;

            // clip
            x0 = std::max(std::min(x0, (float)(img_w - 1)), 0.f);
            y0 = std::max(std::min(y0, (float)(img_h - 1)), 0.f);
            x1 = std::max(std::min(x1, (float)(img_w - 1)), 0.f);
            y1 = std::max(std::min(y1, (float)(img_h - 1)), 0.f);

            objects[i].rect.x = x0;
            objects[i].rect.y = y0;
            objects[i].rect.width = x1 - x0;
            objects[i].rect.height = y1 - y0;
        }
}

void meshgrid(const cv::Range& x_range, const cv::Range& y_range, cv::Mat& xv, cv::Mat& yv) {
    // 初始化矩阵大小
    int rows = y_range.end - y_range.start + 1;
    int cols = x_range.end - x_range.start + 1;

    // 创建 xv 和 yv 矩阵
    xv = cv::Mat(rows, cols, CV_32F);
    yv = cv::Mat(rows, cols, CV_32F);

    // 逐行逐列赋值
    for (int i = 0; i < rows; ++i) {
        for (int j = 0; j < cols; ++j) {
            xv.at<float>(i, j) = static_cast<float>(j + x_range.start);
            yv.at<float>(i, j) = static_cast<float>(i + y_range.start);
        }
    }
}

cv::Mat demo_postprocess(cv::Mat outputs, cv::Size img_size, bool p6 = false) {
    std::vector<cv::Mat> grids;
    std::vector<cv::Mat> expanded_strides;
    std::vector<int> strides = p6 ? std::vector<int>{8, 16, 32, 64} : std::vector<int>{8, 16, 32};

    std::vector<int> hsizes, wsizes;
    for (int stride : strides) {
        hsizes.push_back(img_size.height / stride);
        wsizes.push_back(img_size.width / stride);
    }

    for (size_t i = 0; i < strides.size(); ++i) {
        cv::Mat xv, yv;
        meshgrid(cv::Range(0, wsizes[i]), cv::Range(0, hsizes[i]), xv, yv);
        cv::Mat grid = cv::Mat::zeros(hsizes[i] * wsizes[i], 2, CV_32F);
        for (int j = 0; j < hsizes[i] * wsizes[i]; ++j) {
            grid.at<float>(j, 0) = xv.at<float>(j);
            grid.at<float>(j, 1) = yv.at<float>(j);
        }
        grids.push_back(grid);

        cv::Mat expanded_stride = cv::Mat::ones(hsizes[i] * wsizes[i], 1, CV_32F) * strides[i];
        expanded_strides.push_back(expanded_stride);
    }

    cv::Mat grids_concatenated, expanded_strides_concatenated;
    cv::vconcat(grids, grids_concatenated);
    cv::vconcat(expanded_strides, expanded_strides_concatenated);

    cv::Mat outputs_clone = outputs.clone();

    for (int i = 0; i < outputs_clone.rows; ++i) {
        outputs_clone.at<float>(i, 0) = (outputs.at<float>(i, 0) + grids_concatenated.at<float>(i, 0)) *
                                       expanded_strides_concatenated.at<float>(i, 0);
        outputs_clone.at<float>(i, 1) = (outputs.at<float>(i, 1) + grids_concatenated.at<float>(i, 1)) *
                                       expanded_strides_concatenated.at<float>(i, 0);
        outputs_clone.at<float>(i, 2) = exp(outputs.at<float>(i, 2)) * expanded_strides_concatenated.at<float>(i, 0);
        outputs_clone.at<float>(i, 3) = exp(outputs.at<float>(i, 3)) * expanded_strides_concatenated.at<float>(i, 0);
    }

    return outputs_clone;
}

std::vector<int> nms(cv::Mat boxes, cv::Mat scores, float nms_thr) {
    std::vector<int> keep;
    std::vector<float> areas(boxes.rows);

    // 计算所有框的面积
    for (int i = 0; i < boxes.rows; ++i) {
        float x1 = boxes.at<float>(i, 0);
        float y1 = boxes.at<float>(i, 1);
        float x2 = boxes.at<float>(i, 2);
        float y2 = boxes.at<float>(i, 3);

        areas[i] = (x2 - x1 + 1) * (y2 - y1 + 1);
    }

    // 根据分数排序的索引
    std::vector<int> order(scores.rows);
    std::iota(order.begin(), order.end(), 0);
    std::sort(order.begin(), order.end(), [&scores](int i, int j) { return scores.at<float>(i) > scores.at<float>(j); });

    // 执行 NMS
    while (!order.empty()) {
        int i = order[0];
        keep.push_back(i);

        float xx1 = std::max(boxes.at<float>(i, 0), boxes.at<float>(order[1], 0));
        float yy1 = std::max(boxes.at<float>(i, 1), boxes.at<float>(order[1], 1));
        float xx2 = std::min(boxes.at<float>(i, 2), boxes.at<float>(order[1], 2));
        float yy2 = std::min(boxes.at<float>(i, 3), boxes.at<float>(order[1], 3));

        float w = std::max(0.0f, xx2 - xx1 + 1);
        float h = std::max(0.0f, yy2 - yy1 + 1);
        float inter = w * h;
        float ovr = inter / (areas[i] + areas[order[1]] - inter);

        std::vector<int> inds;
        for (size_t j = 1; j < order.size(); ++j) {
            if (ovr <= nms_thr) {
                inds.push_back(order[j]);
            }
        }

        order = inds;
    }

    return keep;
}

cv::Mat multiclass_nms_class_agnostic(cv::Mat boxes, cv::Mat scores, float nms_thr, float score_thr) {
    // 获取每个框的最高分数的索引和分数
    cv::Mat cls_inds;
    cv::Mat cls_scores = cv::Mat::zeros(scores.rows, 1, CV_32F);
    for (int i = 0; i < scores.rows; ++i) {
        int max_idx;
        // cv::minMaxIdx(scores.row(i), nullptr, &cls_scores.at<float>(i), nullptr, &max_idx);
        double cls_score;
        cv::minMaxIdx(scores.row(i), nullptr, &cls_score, nullptr, &max_idx);
        cls_scores.at<float>(i) = static_cast<float>(cls_score);

        cls_inds.push_back(max_idx);
    }

    // 过滤掉低于阈值的分数
    cv::Mat valid_score_mask = cls_scores > score_thr;
    if (cv::countNonZero(valid_score_mask) == 0) {
        return cv::Mat();  // 如果没有有效的分数,返回空矩阵
    }

    // 保留有效分数对应的框和类别索引
    cv::Mat valid_scores = cls_scores(valid_score_mask);
    cv::Mat valid_boxes = boxes.rowRange(0, boxes.rows).clone();  // 复制框数据以便后续修改
    cv::Mat valid_cls_inds = cls_inds(valid_score_mask);

    // 应用 NMS 算法
    std::vector<int> keep = nms(valid_boxes, valid_scores, nms_thr);
    if (keep.empty()) {
        return cv::Mat();  // 如果没有保留的框,返回空矩阵
    }

    // 按行组合保留的框、分数和类别索引
    cv::Mat dets(keep.size(), 6, CV_32F);
    for (size_t i = 0; i < keep.size(); ++i) {
        int idx = keep[i];
        valid_boxes.row(idx).copyTo(dets.row(i).colRange(0, 4));
        dets.at<float>(i, 4) = valid_scores.at<float>(idx);
        dets.at<float>(i, 5) = valid_cls_inds.at<float>(idx);
    }

    return dets;
}


ErrorCode DetectorYOLOX::Detect(const cv::Mat &srcImage, std::vector<std::size_t> &relInputShape, std::vector<ResultOfDetection> &resultsOfDetection, bool dynamic)
{
    if(srcImage.empty()||srcImage.type()!=CV_8UC3)
    {
        LOG_ERROR(stdout, "image error!\n");
        return IMAGE_ERROR;
    }

    // 数据预处理并转换为NCHW格式
    inputSize = cv::Size(relInputShape[3], relInputShape[2]);
    cv::Mat inputBlob;
    cv::dnn::blobFromImage(srcImage,
                    inputBlob,
                    // 1 / 255.0,
                    1,
                    inputSize,
                    cv::Scalar(0, 0, 0),
                    true,
                    false);
    float ratio = std::min(inputSize.width / srcImage.rows, inputSize.height / srcImage.cols);
    // 创建输入数据
    migraphx::parameter_map inputData;
    if(dynamic)
    {
        inputData[inputName]= migraphx::argument{migraphx::shape(inputShape.type(), relInputShape), (float*)inputBlob.data};
    }
    else
    {
        inputData[inputName]= migraphx::argument{inputShape, (float*)inputBlob.data};
    }

    // 推理
    std::vector<migraphx::argument> inferenceResults = net.eval(inputData);

    // 获取推理结果
    std::vector<cv::Mat> outs;
    migraphx::argument result = inferenceResults[0]; 

    // 转换为cv::Mat
    migraphx::shape outputShape = result.get_shape();
    std::cout << outputShape.lens()[2] << std::endl;
    int shape[]={outputShape.lens()[0],outputShape.lens()[1],outputShape.lens()[2]};
    cv::Mat out(3,shape,CV_32F);
    memcpy(out.data,result.data(),sizeof(float)*outputShape.elements());
    outs.push_back(out);

    //获取先验框的个数
    int numProposal = outs[0].size[1];
    int numOut = outs[0].size[2];
    
    //变换输出的维度
    outs[0] = outs[0].reshape(0, numProposal);
    float* prob = (float*)outs[0].data;

    std::vector<Object> objects;
    float scalew = inputSize.width / (srcImage.cols*1.0);
    float scaleh = inputSize.height / (srcImage.rows*1.0);
    decode_outputs(prob, objects, scalew, scaleh, srcImage.cols, srcImage.rows);

    for (size_t i = 0; i < objects.size(); ++i)
    {
        ResultOfDetection result;
        result.boundingBox=objects[i].rect;
        result.confidence=objects[i].prob;// confidence
        result.classID=objects[i].label; // label
        result.className=classNames[objects[i].label];
        resultsOfDetection.push_back(result);
    }

    return SUCCESS;
}

}