main.cpp 5.95 KB
Newer Older
yaoht's avatar
yaoht committed
1
2
3
4
5
6
7
8
9
10
11
12
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <SimpleLog.h>
#include <Filesystem.h>
#include <YOLOX.h>

void MIGraphXSamplesUsage(char* programName)
{
    printf("Usage : %s <index> \n", programName);
    printf("index:\n");
    printf("\t 0) YOLOX sample.\n");
yaoht's avatar
yaoht committed
13
    // printf("\t 1) YOLOX Dynamic sample.\n"); 暂不支持
yaoht's avatar
yaoht committed
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
}

void Sample_YOLOX();
void Sample_YOLOX_Dynamic();

int main(int argc, char *argv[])
{
    if (argc < 2 || argc > 2)
    {
        MIGraphXSamplesUsage(argv[0]);
        return -1;
    }
    if (!strncmp(argv[1], "-h", 2))
    {
        MIGraphXSamplesUsage(argv[0]);
        return 0;
    }
    switch (*argv[1])
    {
        case '0':
            {
                Sample_YOLOX();
                break;
            }
        case '1':
            {
yaoht's avatar
yaoht committed
40
                // Sample_YOLOX_Dynamic(); 暂不支持
yaoht's avatar
yaoht committed
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
                break;
            }
        default :
            {
                MIGraphXSamplesUsage(argv[0]);
                break;
            }
    }
    return 0;
}

void Sample_YOLOX()
{
    // 创建YOLOX检测器
    migraphxSamples::DetectorYOLOX detector;
    migraphxSamples::InitializationParameterOfDetector initParamOfDetectorYOLOX;
    initParamOfDetectorYOLOX.configFilePath = CONFIG_FILE;
    migraphxSamples::ErrorCode errorCode=detector.Initialize(initParamOfDetectorYOLOX, false);
    if(errorCode!=migraphxSamples::SUCCESS)
    {
        LOG_ERROR(stdout, "fail to initialize detector!\n");
        exit(-1);
    }
    LOG_INFO(stdout, "succeed to initialize detector\n");

    // 读取测试图片
    cv::Mat srcImage = cv::imread("../Resource/Images/image_test.jpg",1);

    // 静态推理固定尺寸
    std::vector<std::size_t> inputShape={1,3,640,640};
    
    // 推理
    std::vector<migraphxSamples::ResultOfDetection> predictions;
    double time1 = cv::getTickCount();
    detector.Detect(srcImage,inputShape,predictions,false);
    double time2 = cv::getTickCount();
    double elapsedTime = (time2 - time1)*1000 / cv::getTickFrequency();
    LOG_INFO(stdout, "inference time:%f ms\n", elapsedTime);
    
    // 获取推理结果
    LOG_INFO(stdout,"========== Detection Results ==========\n");
    for(int i=0;i<predictions.size();++i)
    {
        migraphxSamples::ResultOfDetection result=predictions[i];
        cv::rectangle(srcImage,result.boundingBox,cv::Scalar(0,255,255),2);

        std::string label = cv::format("%.2f", result.confidence);
        label = result.className + " " + label;
        int left = predictions[i].boundingBox.x;
        int top = predictions[i].boundingBox.y;
        int baseLine;
        cv::Size labelSize = cv::getTextSize(label, cv::FONT_HERSHEY_SIMPLEX, 0.5, 1, &baseLine);
        top = max(top, labelSize.height);
        cv::putText(srcImage, label, cv::Point(left, top-10), cv::FONT_HERSHEY_SIMPLEX, 1, cv::Scalar(0, 255, 255), 2);

        LOG_INFO(stdout,"box:%d %d %d %d,label:%d,confidence:%f\n",predictions[i].boundingBox.x,
        predictions[i].boundingBox.y,predictions[i].boundingBox.width,predictions[i].boundingBox.height,predictions[i].classID,predictions[i].confidence);
    }
    cv::imwrite("Result.jpg",srcImage);
    LOG_INFO(stdout,"Detection results have been saved to ./Result.jpg\n");

}

void Sample_YOLOX_Dynamic()
{
    // 创建YOLOX检测器
    migraphxSamples::DetectorYOLOX detector;
    migraphxSamples::InitializationParameterOfDetector initParamOfDetectorYOLOX;
    initParamOfDetectorYOLOX.configFilePath = CONFIG_FILE;
    migraphxSamples::ErrorCode errorCode=detector.Initialize(initParamOfDetectorYOLOX, true);
    if(errorCode!=migraphxSamples::SUCCESS)
    {
        LOG_ERROR(stdout, "fail to initialize detector!\n");
        exit(-1);
    }
    LOG_INFO(stdout, "succeed to initialize detector\n");

    // 读取测试图像
    std::vector<cv::Mat> srcImages;
    cv::String folder = "../Resource/Images/DynamicPics";
    std::vector<cv::String> imagePathList;
    cv::glob(folder,imagePathList);
    for (int i = 0; i < imagePathList.size(); ++i)
    {
        cv:: Mat srcImage=cv::imread(imagePathList[i], 1);
        srcImages.push_back(srcImage); 
    }

    // 设置动态推理shape
    std::vector<std::vector<std::size_t>> inputShapes;
    inputShapes.push_back({1,3,416,416});
    inputShapes.push_back({1,3,608,608});

    for (int i = 0; i < srcImages.size(); ++i)
    {
        // 推理
        std::vector<migraphxSamples::ResultOfDetection> predictions;
        double time1 = cv::getTickCount();
        detector.Detect(srcImages[i], inputShapes[i], predictions, true);
        double time2 = cv::getTickCount();
        double elapsedTime = (time2 - time1)*1000 / cv::getTickFrequency();
        LOG_INFO(stdout, "inference image%d time:%f ms\n", i, elapsedTime);

        // 获取推理结果
        LOG_INFO(stdout,"========== Detection Image%d Results ==========\n", i);
        for(int j=0;j<predictions.size();++j)
        {
            migraphxSamples::ResultOfDetection result=predictions[j];
            cv::rectangle(srcImages[i],result.boundingBox,cv::Scalar(0,255,255),2);

            std::string label = cv::format("%.2f", result.confidence);
            label = result.className + " " + label;
            int left = predictions[j].boundingBox.x;
            int top = predictions[j].boundingBox.y;
            int baseLine;
            cv::Size labelSize = cv::getTextSize(label, cv::FONT_HERSHEY_SIMPLEX, 0.5, 1, &baseLine);
            top = max(top, labelSize.height);
            cv::putText(srcImages[i], label, cv::Point(left, top-10), cv::FONT_HERSHEY_SIMPLEX, 1, cv::Scalar(0, 255, 255), 2);

            LOG_INFO(stdout,"box:%d %d %d %d,label:%d,confidence:%f\n",predictions[j].boundingBox.x,
            predictions[j].boundingBox.y,predictions[j].boundingBox.width,predictions[j].boundingBox.height,predictions[j].classID,predictions[j].confidence);
        }
        std::string imgName = cv::format("Result%d.jpg", i);
        cv::imwrite(imgName, srcImages[i]);
        LOG_INFO(stdout,"Detection results have been saved to ./Result%d.jpg\n", i);
    }
}