yolox_infer_migraphx.py 21.9 KB
Newer Older
yaoht's avatar
yaoht committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
# -*- coding: utf-8 -*-
import os
import time
import migraphx
import argparse
import cv2
import numpy as np
from coco_classes import COCO_CLASSES

def nms(boxes, scores, nms_thr):
    """Single class NMS implemented in Numpy."""
    x1 = boxes[:, 0]
    y1 = boxes[:, 1]
    x2 = boxes[:, 2]
    y2 = boxes[:, 3]

    areas = (x2 - x1 + 1) * (y2 - y1 + 1)
    order = scores.argsort()[::-1]

    keep = []
    while order.size > 0:
        i = order[0]
        keep.append(i)
        xx1 = np.maximum(x1[i], x1[order[1:]])
        yy1 = np.maximum(y1[i], y1[order[1:]])
        xx2 = np.minimum(x2[i], x2[order[1:]])
        yy2 = np.minimum(y2[i], y2[order[1:]])

        w = np.maximum(0.0, xx2 - xx1 + 1)
        h = np.maximum(0.0, yy2 - yy1 + 1)
        inter = w * h
        ovr = inter / (areas[i] + areas[order[1:]] - inter)

        inds = np.where(ovr <= nms_thr)[0]
        order = order[inds + 1]

    return keep

def multiclass_nms(boxes, scores, nms_thr, score_thr, class_agnostic=True):
        """Multiclass NMS implemented in Numpy"""
        if class_agnostic:
            nms_method = multiclass_nms_class_agnostic
        else:
            nms_method = multiclass_nms_class_aware
        return nms_method(boxes, scores, nms_thr, score_thr)

def multiclass_nms_class_aware(boxes, scores, nms_thr, score_thr):
    """Multiclass NMS implemented in Numpy. Class-aware version."""
    final_dets = []
    num_classes = scores.shape[1]
    for cls_ind in range(num_classes):
        cls_scores = scores[:, cls_ind]
        valid_score_mask = cls_scores > score_thr
        if valid_score_mask.sum() == 0:
            continue
        else:
            valid_scores = cls_scores[valid_score_mask]
            valid_boxes = boxes[valid_score_mask]
            keep = nms(valid_boxes, valid_scores, nms_thr)
            if len(keep) > 0:
                cls_inds = np.ones((len(keep), 1)) * cls_ind
                dets = np.concatenate(
                    [valid_boxes[keep], valid_scores[keep, None], cls_inds], 1
                )
                final_dets.append(dets)
    if len(final_dets) == 0:
        return None
    return np.concatenate(final_dets, 0)

def multiclass_nms_class_agnostic(boxes, scores, nms_thr, score_thr):
    """Multiclass NMS implemented in Numpy. Class-agnostic version."""
    cls_inds = scores.argmax(1)
    cls_scores = scores[np.arange(len(cls_inds)), cls_inds]

    valid_score_mask = cls_scores > score_thr
    if valid_score_mask.sum() == 0:
        return None
    valid_scores = cls_scores[valid_score_mask]
    valid_boxes = boxes[valid_score_mask]
    valid_cls_inds = cls_inds[valid_score_mask]
    keep = nms(valid_boxes, valid_scores, nms_thr)
    if keep:
        dets = np.concatenate(
            [valid_boxes[keep], valid_scores[keep, None], valid_cls_inds[keep, None]], 1
        )
    return dets

_COLORS = np.array(
    [
        0.000, 0.447, 0.741,
        0.850, 0.325, 0.098,
        0.929, 0.694, 0.125,
        0.494, 0.184, 0.556,
        0.466, 0.674, 0.188,
        0.301, 0.745, 0.933,
        0.635, 0.078, 0.184,
        0.300, 0.300, 0.300,
        0.600, 0.600, 0.600,
        1.000, 0.000, 0.000,
        1.000, 0.500, 0.000,
        0.749, 0.749, 0.000,
        0.000, 1.000, 0.000,
        0.000, 0.000, 1.000,
        0.667, 0.000, 1.000,
        0.333, 0.333, 0.000,
        0.333, 0.667, 0.000,
        0.333, 1.000, 0.000,
        0.667, 0.333, 0.000,
        0.667, 0.667, 0.000,
        0.667, 1.000, 0.000,
        1.000, 0.333, 0.000,
        1.000, 0.667, 0.000,
        1.000, 1.000, 0.000,
        0.000, 0.333, 0.500,
        0.000, 0.667, 0.500,
        0.000, 1.000, 0.500,
        0.333, 0.000, 0.500,
        0.333, 0.333, 0.500,
        0.333, 0.667, 0.500,
        0.333, 1.000, 0.500,
        0.667, 0.000, 0.500,
        0.667, 0.333, 0.500,
        0.667, 0.667, 0.500,
        0.667, 1.000, 0.500,
        1.000, 0.000, 0.500,
        1.000, 0.333, 0.500,
        1.000, 0.667, 0.500,
        1.000, 1.000, 0.500,
        0.000, 0.333, 1.000,
        0.000, 0.667, 1.000,
        0.000, 1.000, 1.000,
        0.333, 0.000, 1.000,
        0.333, 0.333, 1.000,
        0.333, 0.667, 1.000,
        0.333, 1.000, 1.000,
        0.667, 0.000, 1.000,
        0.667, 0.333, 1.000,
        0.667, 0.667, 1.000,
        0.667, 1.000, 1.000,
        1.000, 0.000, 1.000,
        1.000, 0.333, 1.000,
        1.000, 0.667, 1.000,
        0.333, 0.000, 0.000,
        0.500, 0.000, 0.000,
        0.667, 0.000, 0.000,
        0.833, 0.000, 0.000,
        1.000, 0.000, 0.000,
        0.000, 0.167, 0.000,
        0.000, 0.333, 0.000,
        0.000, 0.500, 0.000,
        0.000, 0.667, 0.000,
        0.000, 0.833, 0.000,
        0.000, 1.000, 0.000,
        0.000, 0.000, 0.167,
        0.000, 0.000, 0.333,
        0.000, 0.000, 0.500,
        0.000, 0.000, 0.667,
        0.000, 0.000, 0.833,
        0.000, 0.000, 1.000,
        0.000, 0.000, 0.000,
        0.143, 0.143, 0.143,
        0.286, 0.286, 0.286,
        0.429, 0.429, 0.429,
        0.571, 0.571, 0.571,
        0.714, 0.714, 0.714,
        0.857, 0.857, 0.857,
        0.000, 0.447, 0.741,
        0.314, 0.717, 0.741,
        0.50, 0.5, 0
    ]
).astype(np.float32).reshape(-1, 3)

def vis(img, boxes, scores, cls_ids, conf=0.5, class_names=None):
    for i in range(len(boxes)):
        box = boxes[i]
        cls_id = int(cls_ids[i])
        score = scores[i]
        if score < conf:
            continue
        x0 = int(box[0])
        y0 = int(box[1])
        x1 = int(box[2])
        y1 = int(box[3])

        color = (_COLORS[cls_id] * 255).astype(np.uint8).tolist()
        text = '{}:{:.1f}%'.format(class_names[cls_id], score * 100)
        txt_color = (0, 0, 0) if np.mean(_COLORS[cls_id]) > 0.5 else (255, 255, 255)
        font = cv2.FONT_HERSHEY_SIMPLEX

        txt_size = cv2.getTextSize(text, font, 0.4, 1)[0]
        cv2.rectangle(img, (x0, y0), (x1, y1), color, 2)

        txt_bk_color = (_COLORS[cls_id] * 255 * 0.7).astype(np.uint8).tolist()
        cv2.rectangle(
            img,
            (x0, y0 + 1),
            (x0 + txt_size[0] + 1, y0 + int(1.5*txt_size[1])),
            txt_bk_color,
            -1
        )
        cv2.putText(img, text, (x0, y0 + txt_size[1]), font, 0.4, txt_color, thickness=1)

    return img


class YOLOX:
    """YOLOX object detection model class for handling inference and visualization."""

    def __init__(self, model_path, dynamic=False, conf_thres=0.5, iou_thres=0.5):
        """
        Initializes an instance of the YOLOX class.

        Args:
            model_path: Path to the ONNX model.
            dynamic: whether use dynamic inference.
            conf_thres: Confidence threshold for filtering detections.
            iou_thres: IoU (Intersection over Union) threshold for non-maximum suppression.
        """
        self.confThreshold = conf_thres
        self.nmsThreshold = iou_thres
        self.isDynamic = dynamic
        # 获取模型检测的类别信息
        self.classNames = list(map(lambda x: x.strip(), open('/home/yolox_migraphx/Resource/Models/coco.names', 'r').readlines()))

        # 解析推理模型
        if self.isDynamic:
            maxInput={"images":[1,3,1024,1024]}
            self.model = migraphx.parse_onnx(model_path, map_input_dims=maxInput)

            # 获取模型输入/输出节点信息
            print("inputs:")
            inputs = self.model.get_inputs()
            for key,value in inputs.items():
                print("{}:{}".format(key,value))
            
            print("outputs:")
            outputs = self.model.get_outputs()
            for key,value in outputs.items():
                print("{}:{}".format(key,value))

            # 获取模型的输入name
            self.inputName = "images"
            
            # 获取模型的输入尺寸
            inputShape = inputShape=inputs[self.inputName].lens()
            self.inputHeight = int(inputShape[2])
            self.inputWidth = int(inputShape[3])
            print("inputName:{0} \ninputShape:{1}".format(self.inputName, inputShape))
        else:
            self.model = migraphx.parse_onnx(model_path) 
            # 获取模型输入/输出节点信息
            print("inputs:")
            inputs = self.model.get_inputs()
            for key,value in inputs.items():
                print("{}:{}".format(key,value))
            
            print("outputs:")
            outputs = self.model.get_outputs()
            for key,value in outputs.items():
                print("{}:{}".format(key,value))

            # 获取模型的输入name
            self.inputName = "images"

            # 获取模型的输入尺寸
            inputShape = inputShape=inputs[self.inputName].lens()
            self.inputHeight = int(inputShape[2])
            self.inputWidth = int(inputShape[3])
            print("inputName:{0} \ninputShape:{1}".format(self.inputName, inputShape))
        
        # 模型编译
        self.model.compile(t=migraphx.get_target("gpu"), device_id=0)  # device_id: 设置GPU设备,默认为0号设备
        print("Success to compile")

        # Generate a color palette for the classes
        self.color_palette = np.random.uniform(0, 255, size=(len(self.classNames), 3))

    # def draw_detections(self, img, box, score, class_id):
    #     """
    #     Draws bounding boxes and labels on the input image based on the detected objects.

    #     Args:
    #         img: The input image to draw detections on.
    #         box: Detected bounding box.
    #         score: Corresponding detection score.
    #         class_id: Class ID for the detected object.

    #     Returns:
    #         None
    #     """

    #     # Extract the coordinates of the bounding box
    #     x1, y1, w, h = box

    #     # Retrieve the color for the class ID
    #     color = self.color_palette[class_id]

    #     # Draw the bounding box on the image
    #     cv2.rectangle(img, (int(x1), int(y1)), (int(x1 + w), int(y1 + h)), color, 2)

    #     # Create the label text with class name and score
    #     label = f'{self.classNames[class_id]}: {score:.2f}'

    #     # Calculate the dimensions of the label text
    #     (label_width, label_height), _ = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, 0.5, 1)

    #     # Calculate the position of the label text
    #     label_x = x1
    #     label_y = y1 - 10 if y1 - 10 > label_height else y1 + 10

    #     # Draw a filled rectangle as the background for the label text
    #     cv2.rectangle(img, (label_x, label_y - label_height), (label_x + label_width, label_y + label_height), color,
    #                   cv2.FILLED)

    #     # Draw the label text on the image
    #     cv2.putText(img, label, (label_x, label_y), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 0), 1, cv2.LINE_AA)

    # def preprocess(self, image):
    #     """
    #     Preprocesses the input image before performing inference.

    #     Returns:
    #         image_data: Preprocessed image data ready for inference.
    #     """
    #     # Read the input image using OpenCV
    #     # self.img = cv2.imread(self.input_image)
    #     self.img = image

    #     # Get the height and width of the input image
    #     self.img_height, self.img_width = self.img.shape[:2]

    #     # Convert the image color space from BGR to RGB
    #     img = cv2.cvtColor(self.img, cv2.COLOR_BGR2RGB)

    #     # Resize the image to match the input shape
    #     img = cv2.resize(img, (self.inputWidth, self.inputHeight))

    #     # Normalize the image data by dividing it by 255.0
    #     image_data = np.array(img) / 255.0

    #     # Transpose the image to have the channel dimension as the first dimension
    #     image_data = np.transpose(image_data, (2, 0, 1))  # Channel first

    #     # Expand the dimensions of the image data to match the expected input shape
    #     image_data = np.expand_dims(image_data, axis=0).astype(np.float32)

    #     # Make array memery contiguous
    #     image_data = np.ascontiguousarray(image_data)

    #     # Return the preprocessed image data
    #     return image_data

    # def postprocess(self, input_image, output):
    #     """
    #     Performs post-processing on the model's output to extract bounding boxes, scores, and class IDs.

    #     Args:
    #         input_image (numpy.ndarray): The input image.
    #         output (numpy.ndarray): The output of the model.

    #     Returns:
    #         numpy.ndarray: The input image with detections drawn on it.
    #     """

    #     # Transpose and squeeze the output to match the expected shape
    #     outputs = np.transpose(np.squeeze(output[0]))

    #     # Get the number of rows in the outputs array
    #     rows = outputs.shape[0]

    #     # Lists to store the bounding boxes, scores, and class IDs of the detections
    #     boxes = []
    #     scores = []
    #     class_ids = []

    #     # Calculate the scaling factors for the bounding box coordinates
    #     x_factor = self.img_width / self.inputWidth
    #     y_factor = self.img_height / self.inputHeight

    #     # Iterate over each row in the outputs array
    #     for i in range(rows):
    #         # Extract the class scores from the current row
    #         classes_scores = outputs[i][4:]

    #         # Find the maximum score among the class scores
    #         max_score = np.amax(classes_scores)

    #         # If the maximum score is above the confidence threshold
    #         if max_score >= self.confThreshold:
    #             # Get the class ID with the highest score
    #             class_id = np.argmax(classes_scores)

    #             # Extract the bounding box coordinates from the current row
    #             x, y, w, h = outputs[i][0], outputs[i][1], outputs[i][2], outputs[i][3]

    #             # Calculate the scaled coordinates of the bounding box
    #             left = int((x - w / 2) * x_factor)
    #             top = int((y - h / 2) * y_factor)
    #             width = int(w * x_factor)
    #             height = int(h * y_factor)

    #             # Add the class ID, score, and box coordinates to the respective lists
    #             class_ids.append(class_id)
    #             scores.append(max_score)
    #             boxes.append([left, top, width, height])

    #     # Apply non-maximum suppression to filter out overlapping bounding boxes
    #     indices = cv2.dnn.NMSBoxes(boxes, scores, self.confThreshold, self.nmsThreshold)

    #     # Iterate over the selected indices after non-maximum suppression
    #     for i in indices:
    #         # Get the box, score, and class ID corresponding to the index
    #         box = boxes[i]
    #         score = scores[i]
    #         class_id = class_ids[i]

    #         # Draw the detection on the input image
    #         self.draw_detections(input_image, box, score, class_id)

    #     # Return the modified input image
    #     return input_image

    def preproc(self, img, input_size, swap=(2, 0, 1)):
        if len(img.shape) == 3:
            padded_img = np.ones((input_size[0], input_size[1], 3), dtype=np.uint8) * 114
        else:
            padded_img = np.ones(input_size, dtype=np.uint8) * 114

        r = min(input_size[0] / img.shape[0], input_size[1] / img.shape[1])
        resized_img = cv2.resize(
            img,
            (int(img.shape[1] * r), int(img.shape[0] * r)),
            interpolation=cv2.INTER_LINEAR,
        ).astype(np.uint8)
        padded_img[: int(img.shape[0] * r), : int(img.shape[1] * r)] = resized_img

        padded_img = padded_img.transpose(swap)
        padded_img = np.ascontiguousarray(padded_img, dtype=np.float32)
        padded_img = np.expand_dims(padded_img, axis=0)
        return padded_img, r

    def demo_postprocess(self, outputs, img_size, p6=False):
        grids = []
        expanded_strides = []
        strides = [8, 16, 32] if not p6 else [8, 16, 32, 64]

        hsizes = [img_size[0] // stride for stride in strides]
        wsizes = [img_size[1] // stride for stride in strides]

        for hsize, wsize, stride in zip(hsizes, wsizes, strides):
            xv, yv = np.meshgrid(np.arange(wsize), np.arange(hsize))
            grid = np.stack((xv, yv), 2).reshape(1, -1, 2)
            grids.append(grid)
            shape = grid.shape[:2]
            expanded_strides.append(np.full((*shape, 1), stride))

        grids = np.concatenate(grids, 1)
        expanded_strides = np.concatenate(expanded_strides, 1)
        outputs[..., :2] = (outputs[..., :2] + grids) * expanded_strides
        outputs[..., 2:4] = np.exp(outputs[..., 2:4]) * expanded_strides

        return outputs
    
    def detect(self, image, output_dir, image_path, input_shape=None):
        # if(self.isDynamic):
        #     self.inputWidth = input_shape[3]
        #     self.inputHeight = input_shape[2]
        # 输入图片预处理
        # input_img = self.preprocess(image)
        img, ratio = self.preproc(image, input_shape)
        flat_predictions = np.array(img).ravel()
        for i in range(min(100, len(flat_predictions))):
            print(flat_predictions[i])
        # 执行推理
        start = time.time()
        result = self.model.run({self.inputName: img})
        print('net forward time: {:.4f}'.format(time.time() - start))
        # 模型输出结果后处理
        # dstimg = self.postprocess(image, result)
        predictions = self.demo_postprocess(np.array(result[0]), input_shape)[0]
        # flat_predictions = np.array(result[0]).ravel()
        # for i in range(min(100, len(flat_predictions))):
        #     print(flat_predictions[i])

        boxes = predictions[:, :4]
        scores = predictions[:, 4:5] * predictions[:, 5:]
        print("max(predictions[:, 4:5]):{}".format(np.amax(predictions[:, 4:5])))
        print("max(predictions[:, 5:]):{}".format(np.amax(predictions[:, 5:])))
        print("max(scores):{}".format(np.amax(scores)))
        boxes_xyxy = np.ones_like(boxes)
        boxes_xyxy[:, 0] = boxes[:, 0] - boxes[:, 2]/2.
        boxes_xyxy[:, 1] = boxes[:, 1] - boxes[:, 3]/2.
        boxes_xyxy[:, 2] = boxes[:, 0] + boxes[:, 2]/2.
        boxes_xyxy[:, 3] = boxes[:, 1] + boxes[:, 3]/2.
        boxes_xyxy /= ratio
        dets = multiclass_nms(boxes_xyxy, scores, nms_thr=self.nmsThreshold, score_thr=0.1)
        if dets is not None:
            final_boxes, final_scores, final_cls_inds = dets[:, :4], dets[:, 4], dets[:, 5]
            origin_img = vis(image, final_boxes, final_scores, final_cls_inds,
                            conf=self.confThreshold, class_names=COCO_CLASSES)

        if not os.path.exists(output_dir):
            os.makedirs(output_dir)
        output_path = os.path.join(output_dir, os.path.basename(image_path))
        cv2.imwrite(output_path, origin_img)

        return origin_img


def read_images(image_path):
    image_lists = []
    image_name_lists = []
    
    for image_name in os.listdir(image_path):
        image = cv2.imread(image_path +"/" + image_name, 1)
        image_name_lists.append(image_path +"/" + image_name)
        image_lists.append(image)
        
    return image_lists, image_name_lists

def yoloX_Static(imgpath, modelpath, confThreshold, nmsThreshold, output_dir, input_shape):
    yoloX_detector = YOLOX(modelpath, False, conf_thres=confThreshold,
                             iou_thres=nmsThreshold)
    srcimg = cv2.imread(imgpath, 1)

    dstimg = yoloX_detector.detect(srcimg, output_dir, imgpath, input_shape)

    # 保存检测结果
    # cv2.imwrite("./Result.jpg", dstimg)
    print("Success to save result")


def yoloX_dynamic(imgpath, modelpath, confThreshold, nmsThreshold, output_dir, input_shape):
    # # 设置动态输入shape
    # input_shapes = []
    # input_shapes.append([1,3,416,416])
    # input_shapes.append([1,3,608,608])
    
    # 读取测试图像
    image_lists, image_name_lists= read_images(imgpath)
    
    # 推理
    yoloX_detector = YOLOX(modelpath, True, 
                                    conf_thres=confThreshold, iou_thres=nmsThreshold)
    for i, image in enumerate(image_lists):
        print("Start to inference image{}".format(i))
        dstimg = yoloX_detector.detect(image, output_dir, image_name_lists[i], input_shape)
        
        # 保存检测结果
        # result_name = "Result{}.jpg".format(i)
        # cv2.imwrite(result_name, dstimg)
    
    print("Success to save results")

if __name__ == '__main__':
    # Create an argument parser to handle command-line arguments
    parser = argparse.ArgumentParser()
    parser.add_argument('--imgPath', type=str, default='/home/yolox_migraphx/Resource/Images/image_test.jpg', help="image path")
    parser.add_argument('--imgFolderPath', type=str, default='/home/yolox_migraphx/Resource/Images/DynamicPics', help="image folder path")
    parser.add_argument('--staticModelPath', type=str, default='/home/yolox_migraphx/Resource/Models/yolox_s.onnx', help="static onnx filepath")
    parser.add_argument('--dynamicModelPath', type=str, default='/home/yolox_migraphx/Resource/Models/yolox_s_dynamic.onnx', help="dynamic onnx filepath")
    parser.add_argument('--confThreshold', default=0.5, type=float, help='class confidence')
    parser.add_argument('--nmsThreshold', default=0.5, type=float, help='nms iou thresh')
    parser.add_argument("--staticInfer",action="store_true",default=False,help="Performing static inference")
    parser.add_argument("--dynamicInfer",action="store_true",default=False,help="Performing dynamic inference")
    parser.add_argument(
        "-o",
        "--output_dir",
        type=str,
        default='demo_output',
        help="Path to your output directory.",
    )
    parser.add_argument(
        "--input_shape",
        type=str,
        default="640,640",
        help="Specify an input shape for inference.",
    )
    args = parser.parse_args()
    input_shape = [int(dim) for dim in args.input_shape.split(",")]
    
    # 静态推理
    if args.staticInfer:
        yoloX_Static(args.imgPath, args.staticModelPath, args.confThreshold, args.nmsThreshold, args.output_dir, input_shape)
    # 动态推理
    if args.dynamicInfer:
        yoloX_dynamic(args.imgFolderPath, args.dynamicModelPath, args.confThreshold, args.nmsThreshold, args.output_dir, input_shape)