base_functions.py 10.6 KB
Newer Older
bailuo's avatar
init  
bailuo committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
import torch
from torch.utils.data.distributed import DistributedSampler
# datasets related
from lib.train.dataset import Lasot, Got10k, MSCOCOSeq, ImagenetVID, TrackingNet
from lib.train.dataset import Lasot_lmdb, Got10k_lmdb, MSCOCOSeq_lmdb, ImagenetVID_lmdb, TrackingNet_lmdb
from lib.train.data import sampler, opencv_loader, processing, LTRLoader
import lib.train.data.transforms as tfm
from lib.utils.misc import is_main_process


def update_settings(settings, cfg):
    settings.print_interval = cfg.TRAIN.PRINT_INTERVAL
    settings.search_area_factor = {'template': cfg.DATA.TEMPLATE.FACTOR,
                                   'search': cfg.DATA.SEARCH.FACTOR}
    settings.output_sz = {'template': cfg.DATA.TEMPLATE.SIZE,
                          'search': cfg.DATA.SEARCH.SIZE}
    settings.center_jitter_factor = {'template': cfg.DATA.TEMPLATE.CENTER_JITTER,
                                     'search': cfg.DATA.SEARCH.CENTER_JITTER}
    settings.scale_jitter_factor = {'template': cfg.DATA.TEMPLATE.SCALE_JITTER,
                                    'search': cfg.DATA.SEARCH.SCALE_JITTER}
    settings.grad_clip_norm = cfg.TRAIN.GRAD_CLIP_NORM
    settings.print_stats = None
    settings.batchsize = cfg.TRAIN.BATCH_SIZE
    settings.scheduler_type = cfg.TRAIN.SCHEDULER.TYPE


def names2datasets(name_list: list, settings, image_loader):
    assert isinstance(name_list, list)
    datasets = []
    #settings.use_lmdb = True
    for name in name_list:
        assert name in ["LASOT", "GOT10K_vottrain", "GOT10K_votval", "GOT10K_train_full", "GOT10K_official_val",
                        "COCO17", "VID", "TRACKINGNET"]
        if name == "LASOT":
            if settings.use_lmdb:
                print("Building lasot dataset from lmdb")
                datasets.append(Lasot_lmdb(settings.env.lasot_lmdb_dir, split='train', image_loader=image_loader))
            else:
                datasets.append(Lasot(settings.env.lasot_dir, split='train', image_loader=image_loader))
        if name == "GOT10K_vottrain":
            if settings.use_lmdb:
                print("Building got10k from lmdb")
                datasets.append(Got10k_lmdb(settings.env.got10k_lmdb_dir, split='vottrain', image_loader=image_loader))
            else:
                datasets.append(Got10k(settings.env.got10k_dir, split='vottrain', image_loader=image_loader))
        if name == "GOT10K_train_full":
            if settings.use_lmdb:
                print("Building got10k_train_full from lmdb")
                datasets.append(Got10k_lmdb(settings.env.got10k_lmdb_dir, split='train_full', image_loader=image_loader))
            else:
                datasets.append(Got10k(settings.env.got10k_dir, split='train_full', image_loader=image_loader))
        if name == "GOT10K_votval":
            if settings.use_lmdb:
                print("Building got10k from lmdb")
                datasets.append(Got10k_lmdb(settings.env.got10k_lmdb_dir, split='votval', image_loader=image_loader))
            else:
                datasets.append(Got10k(settings.env.got10k_dir, split='votval', image_loader=image_loader))
        if name == "GOT10K_official_val":
            if settings.use_lmdb:
                raise ValueError("Not implement")
            else:
                datasets.append(Got10k(settings.env.got10k_val_dir, split=None, image_loader=image_loader))
        if name == "COCO17":
            if settings.use_lmdb:
                print("Building COCO2017 from lmdb")
                datasets.append(MSCOCOSeq_lmdb(settings.env.coco_lmdb_dir, version="2017", image_loader=image_loader))
            else:
                datasets.append(MSCOCOSeq(settings.env.coco_dir, version="2017", image_loader=image_loader))
        if name == "VID":
            if settings.use_lmdb:
                print("Building VID from lmdb")
                datasets.append(ImagenetVID_lmdb(settings.env.imagenet_lmdb_dir, image_loader=image_loader))
            else:
                datasets.append(ImagenetVID(settings.env.imagenet_dir, image_loader=image_loader))
        if name == "TRACKINGNET":
            if settings.use_lmdb:
                print("Building TrackingNet from lmdb")
                datasets.append(TrackingNet_lmdb(settings.env.trackingnet_lmdb_dir, image_loader=image_loader))
            else:
                # raise ValueError("NOW WE CAN ONLY USE TRACKINGNET FROM LMDB")
                datasets.append(TrackingNet(settings.env.trackingnet_dir, image_loader=image_loader))
    return datasets


def build_dataloaders(cfg, settings):
    # Data transform
    transform_joint = tfm.Transform(tfm.ToGrayscale(probability=0.05),
                                    tfm.RandomHorizontalFlip(probability=0.5))

    transform_train = tfm.Transform(tfm.ToTensorAndJitter(0.2),
                                    tfm.RandomHorizontalFlip_Norm(probability=0.5),
                                    tfm.Normalize(mean=cfg.DATA.MEAN, std=cfg.DATA.STD))

    transform_val = tfm.Transform(tfm.ToTensor(),
                                  tfm.Normalize(mean=cfg.DATA.MEAN, std=cfg.DATA.STD))

    # The tracking pairs processing module
    output_sz = settings.output_sz
    search_area_factor = settings.search_area_factor

    data_processing_train = processing.STARKProcessing(search_area_factor=search_area_factor,
                                                       output_sz=output_sz,
                                                       center_jitter_factor=settings.center_jitter_factor,
                                                       scale_jitter_factor=settings.scale_jitter_factor,
                                                       mode='sequence',
                                                       transform=transform_train,
                                                       joint_transform=transform_joint,
                                                       settings=settings)

    data_processing_val = processing.STARKProcessing(search_area_factor=search_area_factor,
                                                     output_sz=output_sz,
                                                     center_jitter_factor=settings.center_jitter_factor,
                                                     scale_jitter_factor=settings.scale_jitter_factor,
                                                     mode='sequence',
                                                     transform=transform_val,
                                                     joint_transform=transform_joint,
                                                     settings=settings)

    # Train sampler and loader
    settings.num_template = getattr(cfg.DATA.TEMPLATE, "NUMBER", 1)
    settings.num_search = getattr(cfg.DATA.SEARCH, "NUMBER", 1)
    sampler_mode = getattr(cfg.DATA, "SAMPLER_MODE", "causal")
    train_cls = getattr(cfg.TRAIN, "TRAIN_CLS", False)
    print("sampler_mode", sampler_mode)
    dataset_train = sampler.TrackingSampler(datasets=names2datasets(cfg.DATA.TRAIN.DATASETS_NAME, settings, opencv_loader),
                                            p_datasets=cfg.DATA.TRAIN.DATASETS_RATIO,
                                            samples_per_epoch=cfg.DATA.TRAIN.SAMPLE_PER_EPOCH,
                                            max_gap=cfg.DATA.MAX_SAMPLE_INTERVAL, num_search_frames=settings.num_search,
                                            num_template_frames=settings.num_template, processing=data_processing_train,
                                            frame_sample_mode=sampler_mode, train_cls=train_cls)

    train_sampler = DistributedSampler(dataset_train) if settings.local_rank != -1 else None
    shuffle = False if settings.local_rank != -1 else True

    loader_train = LTRLoader('train', dataset_train, training=True, batch_size=cfg.TRAIN.BATCH_SIZE, shuffle=shuffle,
                             num_workers=cfg.TRAIN.NUM_WORKER, drop_last=True, stack_dim=1, sampler=train_sampler)

    # Validation samplers and loaders
    dataset_val = sampler.TrackingSampler(datasets=names2datasets(cfg.DATA.VAL.DATASETS_NAME, settings, opencv_loader),
                                          p_datasets=cfg.DATA.VAL.DATASETS_RATIO,
                                          samples_per_epoch=cfg.DATA.VAL.SAMPLE_PER_EPOCH,
                                          max_gap=cfg.DATA.MAX_SAMPLE_INTERVAL, num_search_frames=settings.num_search,
                                          num_template_frames=settings.num_template, processing=data_processing_val,
                                          frame_sample_mode=sampler_mode, train_cls=train_cls)
    val_sampler = DistributedSampler(dataset_val) if settings.local_rank != -1 else None
    loader_val = LTRLoader('val', dataset_val, training=False, batch_size=cfg.TRAIN.BATCH_SIZE,
                           num_workers=cfg.TRAIN.NUM_WORKER, drop_last=True, stack_dim=1, sampler=val_sampler,
                           epoch_interval=cfg.TRAIN.VAL_EPOCH_INTERVAL)

    return loader_train, loader_val


def get_optimizer_scheduler(net, cfg):
    train_cls = getattr(cfg.TRAIN, "TRAIN_CLS", False)
    if train_cls:
        print("Only training classification head. Learnable parameters are shown below.")
        param_dicts = [
            {"params": [p for n, p in net.named_parameters() if "cls" in n and p.requires_grad]}
        ]

        for n, p in net.named_parameters():
            if "cls" not in n:
                p.requires_grad = False
            else:
                print(n)
    else:
        param_dicts = [
            {"params": [p for n, p in net.named_parameters() if "backbone" not in n and p.requires_grad]},
            {
                "params": [p for n, p in net.named_parameters() if "backbone" in n and p.requires_grad],
                "lr": cfg.TRAIN.LR * cfg.TRAIN.BACKBONE_MULTIPLIER,
            },
        ]
        if is_main_process():
            print("Learnable parameters are shown below.")
            for n, p in net.named_parameters():
                if p.requires_grad:
                    print(n)

    if cfg.TRAIN.OPTIMIZER == "ADAMW":
        optimizer = torch.optim.AdamW(param_dicts, lr=cfg.TRAIN.LR,
                                      weight_decay=cfg.TRAIN.WEIGHT_DECAY)
    else:
        raise ValueError("Unsupported Optimizer")
    if cfg.TRAIN.SCHEDULER.TYPE == 'step':
        lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, cfg.TRAIN.LR_DROP_EPOCH)
    elif cfg.TRAIN.SCHEDULER.TYPE == "Mstep":
        lr_scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer,
                                                            milestones=cfg.TRAIN.SCHEDULER.MILESTONES,
                                                            gamma=cfg.TRAIN.SCHEDULER.GAMMA)
    else:
        raise ValueError("Unsupported scheduler")
    return optimizer, lr_scheduler