Commit bea94578 authored by bailuo's avatar bailuo
Browse files

init

parents
icon.png

68.4 KB

import os
import cv2
import torch
import numpy as np
import gradio as gr
from PIL import Image
from torchvision.ops import box_convert
from detectron2.config import LazyConfig, instantiate
from detectron2.checkpoint import DetectionCheckpointer
from segment_anything import sam_model_registry, SamPredictor
import groundingdino.datasets.transforms as T
from groundingdino.util.inference import load_model as dino_load_model, predict as dino_predict, annotate as dino_annotate
import time
models = {
'vit_h': './pretrained/sam_vit_h_4b8939.pth',
'vit_b': './pretrained/sam_vit_b_01ec64.pth'
}
vitmatte_models = {
'vit_b': './pretrained/ViTMatte_B_DIS.pth',
}
vitmatte_config = {
'vit_b': './configs/matte_anything.py',
}
grounding_dino = {
'config': './GroundingDINO/groundingdino/config/GroundingDINO_SwinT_OGC.py',
'weight': './pretrained/groundingdino_swint_ogc.pth'
}
def generate_checkerboard_image(height, width, num_squares):
num_squares_h = num_squares
square_size_h = height // num_squares_h
square_size_w = square_size_h
num_squares_w = width // square_size_w
new_height = num_squares_h * square_size_h
new_width = num_squares_w * square_size_w
image = np.zeros((new_height, new_width), dtype=np.uint8)
for i in range(num_squares_h):
for j in range(num_squares_w):
start_x = j * square_size_w
start_y = i * square_size_h
color = 255 if (i + j) % 2 == 0 else 200
image[start_y:start_y + square_size_h, start_x:start_x + square_size_w] = color
image = cv2.resize(image, (width, height))
image = cv2.cvtColor(image, cv2.COLOR_GRAY2RGB)
return image
def init_segment_anything(model_type):
"""
Initialize the segmenting anything with model_type in ['vit_b', 'vit_l', 'vit_h']
"""
sam = sam_model_registry[model_type](checkpoint=models[model_type]).to(device)
predictor = SamPredictor(sam)
return predictor
def init_vitmatte(model_type):
"""
Initialize the vitmatte with model_type in ['vit_s', 'vit_b']
"""
cfg = LazyConfig.load(vitmatte_config[model_type])
vitmatte = instantiate(cfg.model)
vitmatte.to(device)
vitmatte.eval()
DetectionCheckpointer(vitmatte).load(vitmatte_models[model_type])
return vitmatte
def generate_trimap(mask, erode_kernel_size=10, dilate_kernel_size=10):
erode_kernel = np.ones((erode_kernel_size, erode_kernel_size), np.uint8)
dilate_kernel = np.ones((dilate_kernel_size, dilate_kernel_size), np.uint8)
eroded = cv2.erode(mask, erode_kernel, iterations=5)
dilated = cv2.dilate(mask, dilate_kernel, iterations=5)
trimap = np.zeros_like(mask)
trimap[dilated==255] = 128
trimap[eroded==255] = 255
return trimap
# user click the image to get points, and show the points on the image
def get_point(img, sel_pix, point_type, evt: gr.SelectData):
if point_type == 'foreground_point':
sel_pix.append((evt.index, 1)) # append the foreground_point
elif point_type == 'background_point':
sel_pix.append((evt.index, 0)) # append the background_point
else:
sel_pix.append((evt.index, 1)) # default foreground_point
# draw points
for point, label in sel_pix:
cv2.drawMarker(img, point, colors[label], markerType=markers[label], markerSize=20, thickness=5)
if img[..., 0][0, 0] == img[..., 2][0, 0]: # BGR to RGB
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
return img if isinstance(img, np.ndarray) else np.array(img)
# undo the selected point
def undo_points(orig_img, sel_pix):
temp = orig_img.copy()
# draw points
if len(sel_pix) != 0:
sel_pix.pop()
for point, label in sel_pix:
cv2.drawMarker(temp, point, colors[label], markerType=markers[label], markerSize=20, thickness=5)
if temp[..., 0][0, 0] == temp[..., 2][0, 0]: # BGR to RGB
temp = cv2.cvtColor(temp, cv2.COLOR_BGR2RGB)
return temp if isinstance(temp, np.ndarray) else np.array(temp)
# undo all selected points
def undo_all_points(orig_img, sel_pix):
if orig_img is None:
raise gr.Error("Please upload pictures first!")
else:
temp = orig_img.copy()
while len(sel_pix) != 0:
sel_pix.pop()
if temp[..., 0][0, 0] == temp[..., 2][0, 0]: # BGR to RGB
temp = cv2.cvtColor(temp, cv2.COLOR_BGR2RGB)
return temp if isinstance(temp, np.ndarray) else np.array(temp)
# clear the fg_caption
def clear_fg_caption(fg_caption):
fg_caption = ""
return fg_caption
# once user upload an image, the original image is stored in `original_image`
def store_img(img):
return img, [] # when new image is uploaded, `selected_points` should be empty
def convert_pixels(gray_image, boxes):
converted_image = np.copy(gray_image)
for box in boxes:
x1, y1, x2, y2 = box
x1, y1, x2, y2 = int(x1), int(y1), int(x2), int(y2)
converted_image[y1:y2, x1:x2][converted_image[y1:y2, x1:x2] == 1] = 0.5
return converted_image
if __name__ == "__main__":
if torch.cuda.is_available():
device = 'cuda'
else:
device = 'cpu'
sam_model = 'vit_h'
vitmatte_model = 'vit_b'
colors = [(255, 0, 0), (0, 255, 0)]
markers = [1, 5]
print('Initializing models... Please wait...')
predictor = init_segment_anything(sam_model)
vitmatte = init_vitmatte(vitmatte_model)
grounding_dino = dino_load_model(grounding_dino['config'], grounding_dino['weight'])
def run_inference(input_x, selected_points, erode_kernel_size, dilate_kernel_size, fg_box_threshold, fg_text_threshold, fg_caption,
tr_box_threshold, tr_text_threshold, save_name, tr_caption = "glass, lens, crystal, diamond, bubble, bulb, web, grid"):
start_time = time.time()
predictor.set_image(input_x)
dino_transform = T.Compose(
[
T.RandomResize([800], max_size=1333),
T.ToTensor(),
T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
])
image_transformed, _ = dino_transform(Image.fromarray(input_x), None)
if len(selected_points) != 0:
points = torch.Tensor([p for p, _ in selected_points]).to(device).unsqueeze(1)
labels = torch.Tensor([int(l) for _, l in selected_points]).to(device).unsqueeze(1)
transformed_points = predictor.transform.apply_coords_torch(points, input_x.shape[:2])
print(points.size(), transformed_points.size(), labels.size(), input_x.shape, points)
point_coords=transformed_points.permute(1, 0, 2)
point_labels=labels.permute(1, 0)
else:
transformed_points, labels = None, None
point_coords, point_labels = None, None
if fg_caption is not None and fg_caption != "": # This section has benefited from the contributions of neuromorph,thanks!
fg_boxes, logits, phrases = dino_predict(
model=grounding_dino,
image=image_transformed,
caption=fg_caption,
box_threshold=fg_box_threshold,
text_threshold=fg_text_threshold,
device=device)
print(logits, phrases)
if fg_boxes.shape[0] == 0:
# no fg object detected
transformed_boxes = None
else:
h, w, _ = input_x.shape
fg_boxes = torch.Tensor(fg_boxes).to(device)
fg_boxes = fg_boxes * torch.Tensor([w, h, w, h]).to(device)
fg_boxes = box_convert(boxes=fg_boxes, in_fmt="cxcywh", out_fmt="xyxy")
transformed_boxes = predictor.transform.apply_boxes_torch(fg_boxes, input_x.shape[:2])
else:
transformed_boxes = None
# predict segmentation according to the boxes
masks, scores, logits = predictor.predict_torch(
point_coords = point_coords,
point_labels = point_labels,
boxes = transformed_boxes,
multimask_output = False,
)
masks = masks.cpu().detach().numpy()
mask_all = np.ones((input_x.shape[0], input_x.shape[1], 3))
for ann in masks:
color_mask = np.random.random((1, 3)).tolist()[0]
for i in range(3):
mask_all[ann[0] == True, i] = color_mask[i]
img = input_x / 255 * 0.3 + mask_all * 0.7
# generate alpha matte
torch.cuda.empty_cache()
mask = masks[0][0].astype(np.uint8)*255
trimap = generate_trimap(mask, erode_kernel_size, dilate_kernel_size).astype(np.float32)
trimap[trimap==128] = 0.5
trimap[trimap==255] = 1
boxes, logits, phrases = dino_predict(
model=grounding_dino,
image=image_transformed,
caption= tr_caption,
box_threshold=tr_box_threshold,
text_threshold=tr_text_threshold,
device=device)
annotated_frame = dino_annotate(image_source=input_x, boxes=boxes, logits=logits, phrases=phrases)
annotated_frame = cv2.cvtColor(annotated_frame, cv2.COLOR_BGR2RGB)
if boxes.shape[0] == 0:
# no transparent object detected
pass
else:
h, w, _ = input_x.shape
boxes = boxes * torch.Tensor([w, h, w, h])
xyxy = box_convert(boxes=boxes, in_fmt="cxcywh", out_fmt="xyxy").numpy()
trimap = convert_pixels(trimap, xyxy)
input = {
"image": torch.from_numpy(input_x).permute(2, 0, 1).unsqueeze(0)/255,
"trimap": torch.from_numpy(trimap).unsqueeze(0).unsqueeze(0),
}
torch.cuda.empty_cache()
alpha = vitmatte(input)['phas'].flatten(0,2)
alpha = alpha.detach().cpu().numpy()
# get a green background
background = generate_checkerboard_image(input_x.shape[0], input_x.shape[1], 8)
# calculate foreground with alpha blending
foreground_alpha = input_x * np.expand_dims(alpha, axis=2).repeat(3,2)/255 + background * (1 - np.expand_dims(alpha, axis=2).repeat(3,2))/255
# calculate foreground with mask
foreground_mask = input_x * np.expand_dims(mask/255, axis=2).repeat(3,2)/255 + background * (1 - np.expand_dims(mask/255, axis=2).repeat(3,2))/255
# concatenate input_x and foreground_alpha
cv2_alpha = (np.expand_dims(alpha, axis=2)*255).astype(np.uint8)
cv2_input_x = cv2.cvtColor(input_x, cv2.COLOR_BGR2RGB)
rgba = np.concatenate((cv2_input_x, cv2_alpha), axis=2)
cv2.imwrite(f'your_demos/{save_name}.png', rgba)
foreground_alpha[foreground_alpha>1] = 1
foreground_mask[foreground_mask>1] = 1
# return img, mask_all
trimap[trimap==1] == 0.999
# new background
background_1 = cv2.imread('figs/sea.jpg')
background_2 = cv2.imread('figs/forest.jpg')
background_3 = cv2.imread('figs/sunny.jpg')
background_1 = cv2.resize(background_1, (input_x.shape[1], input_x.shape[0]))
background_2 = cv2.resize(background_2, (input_x.shape[1], input_x.shape[0]))
background_3 = cv2.resize(background_3, (input_x.shape[1], input_x.shape[0]))
# to RGB
background_1 = cv2.cvtColor(background_1, cv2.COLOR_BGR2RGB)
background_2 = cv2.cvtColor(background_2, cv2.COLOR_BGR2RGB)
background_3 = cv2.cvtColor(background_3, cv2.COLOR_BGR2RGB)
# use alpha blending
new_bg_1 = input_x * np.expand_dims(alpha, axis=2).repeat(3,2)/255 + background_1 * (1 - np.expand_dims(alpha, axis=2).repeat(3,2))/255
new_bg_2 = input_x * np.expand_dims(alpha, axis=2).repeat(3,2)/255 + background_2 * (1 - np.expand_dims(alpha, axis=2).repeat(3,2))/255
new_bg_3 = input_x * np.expand_dims(alpha, axis=2).repeat(3,2)/255 + background_3 * (1 - np.expand_dims(alpha, axis=2).repeat(3,2))/255
end_time = time.time()
execution_time = end_time - start_time
print(f"推理+前后处理:{execution_time} s")
return mask, alpha, foreground_mask, foreground_alpha, new_bg_1, new_bg_2, new_bg_3
with gr.Blocks() as demo:
gr.Markdown(
"""
# <center>Matte Anything🐒 !
"""
)
with gr.Row().style(equal_height=True):
with gr.Column():
# input image
original_image = gr.State(value="numpy") # store original image without points, default None
input_image = gr.Image(type="numpy", label="Input Image", value="figs/demo.png")
# prompt (point or text)
# Point Input
with gr.Tab(label='Point Input') as Tab1:
with gr.Column():
selected_points = gr.State([]) # store points
radio = gr.Radio(['foreground_point', 'background_point'], label='Point Labels')
with gr.Row():
undo_button = gr.Button('Remove Point')
undo_all_button = gr.Button('Remove All Points')
# Foreground Text Input
with gr.Tab(label='Foreground Text Input') as Tab2:
with gr.Box():
gr.Markdown("Foreground Text Input")
fg_caption = gr.inputs.Textbox(lines=1, default="", label="foreground input text")
# Save Config
with gr.Tab(label='Save Config') as Tab3:
with gr.Box():
gr.Markdown("save name")
save_dir = gr.inputs.Textbox(lines=1, default="", label="Give a name of your demo. It will be saved in ```your_demos/your_name.pny```")
# run button
button = gr.Button("Start!")
# Trimap Settings
with gr.Tab(label='Trimap Settings'):
gr.Markdown("Trimap Settings")
erode_kernel_size = gr.inputs.Slider(minimum=1, maximum=30, step=1, default=10, label="erode_kernel_size")
dilate_kernel_size = gr.inputs.Slider(minimum=1, maximum=30, step=1, default=10, label="dilate_kernel_size")
# Input Text Settings
with gr.Tab(label='Input Text Settings'):
gr.Markdown("Input Text Settings")
fg_box_threshold = gr.inputs.Slider(minimum=0.0, maximum=1.0, step=0.001, default=0.25, label="foreground_box_threshold")
fg_text_threshold = gr.inputs.Slider(minimum=0.0, maximum=1.0, step=0.001, default=0.25, label="foreground_text_threshold")
# Transparency Settings
with gr.Tab(label='Transparency Settings'):
gr.Markdown("Transparency Settings")
tr_caption = gr.inputs.Textbox(lines=1, default="glass.lens.crystal.diamond.bubble.bulb.web.grid", label="transparency input text")
tr_box_threshold = gr.inputs.Slider(minimum=0.0, maximum=1.0, step=0.005, default=0.5, label="transparency_box_threshold")
tr_text_threshold = gr.inputs.Slider(minimum=0.0, maximum=1.0, step=0.005, default=0.25, label="transparency_text_threshold")
with gr.Column():
# show the image with mask
with gr.Tab(label='SAM Mask'):
mask = gr.Image(type='numpy')
# with gr.Tab(label='Trimap'):
# trimap = gr.Image(type='numpy')
with gr.Tab(label='Alpha Matte'):
alpha = gr.Image(type='numpy')
# show only mask
with gr.Tab(label='Foreground by SAM Mask'):
foreground_by_sam_mask = gr.Image(type='numpy')
with gr.Tab(label='Refined by ViTMatte'):
refined_by_vitmatte = gr.Image(type='numpy')
# with gr.Tab(label='Transparency Detection'):
# transparency = gr.Image(type='numpy')
with gr.Tab(label='New Background 1'):
new_bg_1 = gr.Image(type='numpy')
with gr.Tab(label='New Background 2'):
new_bg_2 = gr.Image(type='numpy')
with gr.Tab(label='New Background 3'):
new_bg_3 = gr.Image(type='numpy')
input_image.upload(
store_img,
[input_image],
[original_image, selected_points]
)
input_image.select(
get_point,
[input_image, selected_points, radio],
[input_image],
)
undo_button.click(
undo_points,
[original_image, selected_points],
[input_image]
)
undo_all_button.click(
undo_all_points,
[original_image, selected_points],
[input_image]
)
Tab1.select(
clear_fg_caption,
[fg_caption],
[fg_caption]
)
Tab2.select(
undo_all_points,
[original_image, selected_points],
[input_image]
)
button.click(run_inference, inputs=[original_image, selected_points, erode_kernel_size, dilate_kernel_size, fg_box_threshold, fg_text_threshold, fg_caption, tr_box_threshold, tr_text_threshold, \
save_dir, tr_caption], outputs=[mask, alpha, foreground_by_sam_mask, refined_by_vitmatte, new_bg_1, new_bg_2, new_bg_3])
with gr.Row():
with gr.Column():
background_image = gr.State(value=None)
demo.launch()
\ No newline at end of file
# 模型唯一标识
modelCode = 1117
# 模型名称
modelName=matte-anything_pytorch
# 模型描述
modelDescription=一种交互式自然图像抠图模型。
# 应用场景
appScenario=AIGC,零售,制造,电商,医疗,教育
# 框架类型
frameType=pytorch
from .backbone import *
from .criterion import *
from .decoder import *
from .meta_arch import *
\ No newline at end of file
from .backbone import *
from .vit import *
\ No newline at end of file
# Copyright (c) Facebook, Inc. and its affiliates.
from abc import ABCMeta, abstractmethod
from typing import Dict
import torch.nn as nn
from detectron2.layers import ShapeSpec
__all__ = ["Backbone"]
class Backbone(nn.Module, metaclass=ABCMeta):
"""
Abstract base class for network backbones.
"""
def __init__(self):
"""
The `__init__` method of any subclass can specify its own set of arguments.
"""
super().__init__()
@abstractmethod
def forward(self):
"""
Subclasses must override this method, but adhere to the same return type.
Returns:
dict[str->Tensor]: mapping from feature name (e.g., "res2") to tensor
"""
pass
@property
def size_divisibility(self) -> int:
"""
Some backbones require the input height and width to be divisible by a
specific integer. This is typically true for encoder / decoder type networks
with lateral connection (e.g., FPN) for which feature maps need to match
dimension in the "bottom up" and "top down" paths. Set to 0 if no specific
input size divisibility is required.
"""
return 0
@property
def padding_constraints(self) -> Dict[str, int]:
"""
This property is a generalization of size_divisibility. Some backbones and training
recipes require specific padding constraints, such as enforcing divisibility by a specific
integer (e.g., FPN) or padding to a square (e.g., ViTDet with large-scale jitter
in :paper:vitdet). `padding_constraints` contains these optional items like:
{
"size_divisibility": int,
"square_size": int,
# Future options are possible
}
`size_divisibility` will read from here if presented and `square_size` indicates the
square padding size if `square_size` > 0.
TODO: use type of Dict[str, int] to avoid torchscipt issues. The type of padding_constraints
could be generalized as TypedDict (Python 3.8+) to support more types in the future.
"""
return {}
def output_shape(self):
"""
Returns:
dict[str->ShapeSpec]
"""
# this is a backward-compatible default
return {
name: ShapeSpec(
channels=self._out_feature_channels[name], stride=self._out_feature_strides[name]
)
for name in self._out_features
}
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment