README.md 3.13 KB
Newer Older
dcuai's avatar
dcuai committed
1
# DeepSeek-R1
wanglch's avatar
wanglch committed
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

## 论文

`DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement Learning`

* https://github.com/deepseek-ai/DeepSeek-R1/blob/main/DeepSeek_R1.pdf


## 模型结构

该模型基于Transformer,采用Multi-Head Latent Attention和DeepSeekMoE架构,其中MLA通过减少KV缓存降低内存占用可用于高效推理,DeepSeekMoE通过auxiliary loss平衡专家负载。

![alt text](readme_imgs/arch.png)

## 算法原理

DeepSeek-R1的模型结构通过MLA、DeepSeekMoE、辅助损失无关的负载均衡策略、多令牌预测和FP8混合精度训练等创新技术,显著提升了模型的性能和训练效率,使用强化学习训练模型,增强模型的思考能力,这些设计使得DeepSeek-R1在保持高性能的同时,大幅降低了训练成本。


## 环境配置

### Docker(方法一)
    
wanglch's avatar
wanglch committed
25
    docker pull image.sourcefind.cn:5000/dcu/admin/base/pytorch:2.3.0-py3.10-dtk24.04.3-ubuntu20.04
wanglch's avatar
wanglch committed
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84

    docker run --shm-size 500g --network=host --name=dpskr1 --privileged --device=/dev/kfd --device=/dev/dri --group-add video --cap-add=SYS_PTRACE --security-opt seccomp=unconfined -v 项目地址(绝对路径):/home/ -v /opt/hyhal:/opt/hyhal:ro -it <your IMAGE ID> bash
    

    # 部署模型环境
    
    cd inference
    pip install -r requirements.txt


### Dockerfile(方法二)

    docker build -t <IMAGE_NAME>:<TAG> .

    docker run --shm-size 500g --network=host --name=dpskr1 --privileged --device=/dev/kfd --device=/dev/dri --group-add video --cap-add=SYS_PTRACE --security-opt seccomp=unconfined -v 项目地址(绝对路径):/home/ -v /opt/hyhal:/opt/hyhal:ro -it <your IMAGE ID> bash

    cd inference
    pip install -r requirements.txt


## 数据集



## 训练



## 推理

### 配置ollama环境

```
git clone -b 0.5.7 http://developer.sourcefind.cn/codes/OpenDAS/ollama.git

cd ollama

# 编译

wget https://go.dev/dl/go1.23.4.linux-amd64.tar.gz
tar -C /usr/local -xzf go1.23.4.linux-amd64.tar.gz
export PATH=$PATH:/usr/local/go/bin

# 修改go下载源,提升速度(按需设置)
go env -w GOPROXY=https://goproxy.cn,direct

# 运行编译

export LIBRARY_PATH=/opt/dtk/lib:$LIBRARY_PATH
make -j 16
go build .
```

### run

#### deepseek-r1 模型推理  其它模型参考 [ollama.com](https://ollama.com/library)

##### 启用服务端 (server)
```
yangrong's avatar
yangrong committed
85
export HSA_OVERRIDE_GFX_VERSION=设备型号(如: Z100L gfx906对应9.0.6;K100 gfx926对应9.2.6;K100AI gfx928对应9.2.8)
wanglch's avatar
wanglch committed
86
export ROCR_VISIBLE_DEVICES=所有设备号(0,1,2,3,4,5,6,...)/选择设备号
wanglch's avatar
wanglch committed
87
88
89
90
91
92
93
94
95
96
97
98

./ollama serve

```
##### 启用应用端 (chat)

新建终端,进入容器


```
cd  ollama

wanglch's avatar
wanglch committed
99
./ollama run deepseek-r1:671b
wanglch's avatar
wanglch committed
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
```


## result

![alt text](readme_imgs/result1.png)

### 精度



## 应用场景

### 算法类别

`对话问答`

### 热点应用行业

`电商,教育,广媒,交通,政府`

## 预训练权重

[SCNet高速下载通道](http://113.200.138.88:18080/aimodels/deepseek-ai/DeepSeek-R1-GGUF)


## 源码仓库及问题反馈

* https://developer.sourcefind.cn/codes/wanglch/deepseek-r1_ollama

## 参考资料

* https://github.com/deepseek-ai/DeepSeek-R1

* https://github.com/ollama/ollama