groupnorm_sigmoid_fp16.cpp 6.67 KB
Newer Older
Yang0001's avatar
Yang0001 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.

#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include <getopt.h>

#include "ck/ck.hpp"
#include "ck/utility/reduction_enums.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_normalization_impl.hpp"
#include "ck/tensor_operation/gpu/device/reduction_operator_mapping.hpp"

#include "ck/library/utility/fill.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_common_util.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_groupnorm.hpp"

constexpr int Rank         = 5;
constexpr int NumReduceDim = 3;

using XDataType     = ck::half_t;
using GammaDataType = ck::half_t;
using BetaDataType  = ck::half_t;
using YDataType     = ck::half_t;
using AccDataType   = float;

struct YElementOp
{
    template <typename T>
    __host__ __device__ void operator()(T& y, const T& x) const
    {
        static_assert(ck::is_same<T, float>::value || ck::is_same<T, double>::value ||
                          ck::is_same<T, ck::half_t>::value,
                      "Data type is not supported by this operation!");

        T a;

        ck::tensor_operation::element_wise::Sigmoid{}(a, x);

        y = x * a;
    };
};

using DeviceInstance =
    ck::tensor_operation::device::DeviceNormalizationImpl<XDataType,
                                                          GammaDataType,
                                                          BetaDataType,
                                                          AccDataType,
                                                          YDataType,
                                                          YElementOp,
                                                          Rank,
                                                          NumReduceDim,
                                                          1024, // BlockSize
                                                          1,    // ClusterM
                                                          1024, // ClusterK
                                                          1,    // SliceM
                                                          32,   // SliceK
                                                          1,    // SrcVecDim (0=M, 1=K)
                                                          2,    // SrcScalarPerVector
                                                          1,    // GammaVecDim (0=M, 1=K)
                                                          2,    // GammaScalarPerVector
                                                          1,    // BetaVecDim (0=M, 1=K)
                                                          2,    // BetaScalarPerVector
                                                          2>;   // OutScalarPerVector

int main(int argc, char* argv[])
{
    ck::index_t N = 2;
    ck::index_t H = 32;
    ck::index_t W = 32;
    ck::index_t G = 32;
    ck::index_t C = 30;

    if(argc == 1)
    {
        // use default case
    }
    else if(argc == 6)
    {
        N = std::stoi(argv[1]);
        H = std::stoi(argv[2]);
        W = std::stoi(argv[3]);
        G = std::stoi(argv[4]);
        C = std::stoi(argv[5]);
    }
    else
    {
        std::cerr << "arg1 to 5: N, H, W, G, C" << std::endl;

        return 1;
    }

    Tensor<XDataType> x({N, H, W, G, C});
    Tensor<YDataType> y({N, H, W, G, C});
    Tensor<GammaDataType> gamma({G, C});
    Tensor<BetaDataType> beta({G, C});

    ck::utils::FillUniformDistribution<XDataType>{0.f, 1.f}(x);
    ck::utils::FillUniformDistribution<GammaDataType>{0.f, 1.f}(gamma);
    ck::utils::FillUniformDistribution<BetaDataType>{0.f, 1.f}(beta);

    DeviceMem x_dev(sizeof(XDataType) * x.mDesc.GetElementSpaceSize());
    DeviceMem gamma_dev(sizeof(GammaDataType) * gamma.mDesc.GetElementSpaceSize());
    DeviceMem beta_dev(sizeof(BetaDataType) * beta.mDesc.GetElementSpaceSize());
    DeviceMem y_dev(sizeof(YDataType) * y.mDesc.GetElementSpaceSize());

    x_dev.ToDevice(x.mData.data());
    gamma_dev.ToDevice(gamma.mData.data());
    beta_dev.ToDevice(beta.mData.data());

    const auto y_element_op = YElementOp{};

    auto device_instance = DeviceInstance{};
    auto argument_ptr    = device_instance.MakeArgumentPointer(
        {N, H, W, G, C},
        std::vector<ck::index_t>{x.mDesc.GetStrides().begin(), x.mDesc.GetStrides().end()},
        {0, 0, 0, C, 1},
        {0, 0, 0, C, 1},
        std::vector<ck::index_t>{y.mDesc.GetStrides().begin(), y.mDesc.GetStrides().end()},
        {1, 2, 4}, // reduction dimension: [H, W, C]
        1e-6,
        x_dev.GetDeviceBuffer(),
        gamma_dev.GetDeviceBuffer(),
        beta_dev.GetDeviceBuffer(),
        y_dev.GetDeviceBuffer(),
        nullptr,
        nullptr,
        y_element_op);

    if(!device_instance.IsSupportedArgument(argument_ptr.get()))
    {
        std::cout << "The runtime parameters are not supported" << std::endl;
        return 1;
    };

    auto invoker_ptr = device_instance.MakeInvokerPointer();
    float ave_time   = invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, true, true});

    std::size_t num_btype = sizeof(XDataType) * N * H * W * G * C +
                            sizeof(YDataType) * N * H * W * G * C + sizeof(GammaDataType) * G * C +
                            sizeof(BetaDataType) * G * C;

    float gb_per_sec = num_btype / 1.E6 / ave_time;

    std::cout << "Perf: " << ave_time << " ms, " << gb_per_sec << " GB/s, "
              << device_instance.GetTypeString() << std::endl;

    bool pass = true;
    {
        Tensor<YDataType> host_y({N, H, W, G, C});
        using ReferenceInstance = ck::tensor_operation::host::ReferenceGroupnorm<XDataType,
                                                                                 GammaDataType,
                                                                                 BetaDataType,
                                                                                 YDataType,
                                                                                 AccDataType,
                                                                                 YElementOp>;

        ReferenceInstance ref;
        auto ref_argument =
            ref.MakeArgument(x, gamma, beta, host_y, y_element_op, {N, H, W, G, C}, 1e-6);
        auto ref_invoker = ref.MakeInvoker();
        ref_invoker.Run(ref_argument);

        y_dev.FromDevice(y.mData.data());
        pass &= ck::utils::check_err(y, host_y, "Error: Incorrect results", 1e-3, 1e-3);
    }

    return (pass ? 0 : 1);
}