run_splitK_gemm_example.inc 7.36 KB
Newer Older
Yang0001's avatar
Yang0001 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
#pragma once

struct ProblemSize final
{
    ck::index_t M = 3840;
    ck::index_t N = 4096;
    ck::index_t K = 4096;

    ck::index_t stride_A = K;
    ck::index_t stride_B = K;
    ck::index_t stride_C = N;

    ck::index_t k_batch = 4;
};

struct ExecutionConfig final
{
    bool do_verification = true;
    int init_method      = 1;
    bool time_kernel     = false;
};

bool run_splitK_gemm(const ProblemSize& problem_size, const ExecutionConfig& config)
{
    using namespace ck::literals;

#if defined(BUILD_INT4_EXAMPLE) && defined(CK_EXPERIMENTAL_BIT_INT_EXTENSION_INT4)
    static_assert(sizeof(ck::int4_t) == sizeof(int8_t));
    static_assert(sizeof(ADataType) == sizeof(KernelADataType));
    static_assert(sizeof(BDataType) == sizeof(KernelBDataType));
#endif

    auto& [M, N, K, StrideA, StrideB, StrideC, KBatch] = problem_size;

    auto f_host_tensor_descriptor =
        [](std::size_t row, std::size_t col, std::size_t stride, auto layout) {
            using namespace ck::literals;

            if(std::is_same<decltype(layout), ck::tensor_layout::gemm::RowMajor>::value)
            {
                return HostTensorDescriptor({row, col}, {stride, 1_uz});
            }
            else
            {
                return HostTensorDescriptor({row, col}, {1_uz, stride});
            }
        };

    Tensor<ADataType> a_m_k(f_host_tensor_descriptor(M, K, StrideA, ALayout{}));
    Tensor<BDataType> b_k_n(f_host_tensor_descriptor(K, N, StrideB, BLayout{}));
    Tensor<CDataType> c_m_n_device_result(f_host_tensor_descriptor(M, N, StrideC, CLayout{}));

    std::cout << "a_m_k: " << a_m_k.mDesc << std::endl;
    std::cout << "b_k_n: " << b_k_n.mDesc << std::endl;
    std::cout << "c_m_n: " << c_m_n_device_result.mDesc << std::endl;

    switch(config.init_method)
    {
    case 0: break;
    case 1:
        a_m_k.GenerateTensorValue(GeneratorTensor_2<ADataType>{-5, 5});
        b_k_n.GenerateTensorValue(GeneratorTensor_2<BDataType>{-5, 5});
        break;
    case 2:
        a_m_k.GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0});
        b_k_n.GenerateTensorValue(GeneratorTensor_3<BDataType>{-0.5, 0.5});
        break;
    default:
        a_m_k.GenerateTensorValue(GeneratorTensor_Sequential<0>{});
        b_k_n.GenerateTensorValue(GeneratorTensor_Sequential<1>{});
    }

    DeviceMem a_m_k_device_buf(sizeof(ADataType) * a_m_k.mDesc.GetElementSpaceSize());
    DeviceMem b_k_n_device_buf(sizeof(BDataType) * b_k_n.mDesc.GetElementSpaceSize());
    DeviceMem c_m_n_device_buf(sizeof(CDataType) * c_m_n_device_result.mDesc.GetElementSpaceSize());

#ifdef BUILD_INT4_EXAMPLE
    const Tensor<KernelADataType> a_m_k_converted(a_m_k);
    const Tensor<KernelBDataType> b_k_n_converted(b_k_n);

    a_m_k_device_buf.ToDevice(a_m_k_converted.mData.data());
    b_k_n_device_buf.ToDevice(b_k_n_converted.mData.data());
#else
    a_m_k_device_buf.ToDevice(a_m_k.mData.data());
    b_k_n_device_buf.ToDevice(b_k_n.mData.data());
#endif
    c_m_n_device_buf.SetZero();

    auto a_element_op = AElementOp{};
    auto b_element_op = BElementOp{};
    auto c_element_op = CElementOp{};

    // do GEMM
    auto gemm     = DeviceGemmInstance{};
    auto invoker  = gemm.MakeInvoker();
    auto argument = gemm.MakeArgument(
#ifdef BUILD_INT4_EXAMPLE
        static_cast<KernelADataType*>(a_m_k_device_buf.GetDeviceBuffer()),
        static_cast<KernelBDataType*>(b_k_n_device_buf.GetDeviceBuffer()),
#else
        static_cast<ADataType*>(a_m_k_device_buf.GetDeviceBuffer()),
        static_cast<BDataType*>(b_k_n_device_buf.GetDeviceBuffer()),
#endif
        static_cast<CDataType*>(c_m_n_device_buf.GetDeviceBuffer()),
        M,
        N,
        K,
        StrideA,
        StrideB,
        StrideC,
        a_element_op,
        b_element_op,
        c_element_op,
        KBatch);

    if(!gemm.IsSupportedArgument(argument))
    {
        std::cout << gemm.GetTypeString() << " does not support this problem" << std::endl;

        return 0;
    }

    invoker.Run(argument, StreamConfig{nullptr, false});
    bool pass = true;

    if(config.do_verification)
    {
        c_m_n_device_buf.FromDevice(c_m_n_device_result.mData.data());
        using ReferenceGemmInstance = ck::tensor_operation::host::ReferenceGemm<ADataType,
                                                                                BDataType,
                                                                                CDataType,
                                                                                AccDataType,
                                                                                AElementOp,
                                                                                BElementOp,
                                                                                CElementOp>;

        auto ref_gemm    = ReferenceGemmInstance{};
        auto ref_invoker = ref_gemm.MakeInvoker();

        Tensor<CDataType> c_m_n_host_result(f_host_tensor_descriptor(M, N, StrideC, CLayout{}));

        auto ref_argument = ref_gemm.MakeArgument(
            a_m_k, b_k_n, c_m_n_host_result, a_element_op, b_element_op, c_element_op);

        ref_invoker.Run(ref_argument);

        if(std::is_same<CDataType, ck::half_t>::value)
        {
            pass &= ck::utils::check_err(
                c_m_n_device_result, c_m_n_host_result, "fp16 incorrect result", 3e-3, 1e-3);
        }
        else
        {
            pass &= ck::utils::check_err(c_m_n_device_result, c_m_n_host_result);
        }
    }

    if(config.time_kernel)
    {
        float ave_time = invoker.Run(argument, StreamConfig{nullptr, config.time_kernel});

        std::size_t flop = std::size_t(2) * M * N * K;
        std::size_t num_btype =
            sizeof(ADataType) * M * K + sizeof(BDataType) * K * N + sizeof(CDataType) * M * N;

        float tflops     = static_cast<float>(flop) / 1.E9 / ave_time;
        float gb_per_sec = num_btype / 1.E6 / ave_time;
        std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec
                  << " GB/s, " << gemm.GetTypeString() << std::endl;
    }

    return pass;
}

bool run_splitK_gemm_example(int argc, char* argv[])
{
    ProblemSize problem_size;
    ExecutionConfig config;

    if(argc == 1)
    {
        // use default case
    }
    else if(argc == 5)
    {
        config.do_verification = std::stoi(argv[1]);
        config.init_method     = std::stoi(argv[2]);
        config.time_kernel     = std::stoi(argv[3]);
        problem_size.k_batch   = std::stoi(argv[4]);
    }
    else if(argc == 11)
    {
        config.do_verification = std::stoi(argv[1]);
        config.init_method     = std::stoi(argv[2]);
        config.time_kernel     = std::stoi(argv[3]);
        problem_size.k_batch   = std::stoi(argv[4]);

        problem_size.M = std::stoi(argv[5]);
        problem_size.N = std::stoi(argv[6]);
        problem_size.K = std::stoi(argv[7]);

        problem_size.stride_A = std::stoi(argv[8]);
        problem_size.stride_B = std::stoi(argv[9]);
        problem_size.stride_C = std::stoi(argv[10]);
    }
    else
    {
        printf("arg1: verification (0=no, 1=yes)\n");
        printf("arg2: initialization (0=no init, 1=integer value, 2=decimal value)\n");
        printf("arg3: time kernel (0=no, 1=yes)\n");
        printf("arg4: KBatch\n");
        printf("arg5 to 11: M (256x), N(128x), K(32x), StrideA, StrideB, StrideC\n");
        exit(0);
    }

    return run_splitK_gemm(problem_size, config);
}