run_grouped_gemm_example.inc 9.77 KB
Newer Older
Yang0001's avatar
Yang0001 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
#pragma once

struct ProblemSize final
{
    std::vector<ck::index_t> Ms;
    std::vector<ck::index_t> Ns;
    std::vector<ck::index_t> Ks;

    std::vector<ck::index_t> stride_As;
    std::vector<ck::index_t> stride_Bs;
    std::vector<ck::index_t> stride_Cs;

    ck::index_t group_count;
};

struct ExecutionConfig final
{
    bool do_verification = true;
    int init_method      = 1;
    bool time_kernel     = false;
};

bool run_grouped_gemm(const ProblemSize& problem_size, const ExecutionConfig& config)
{
#if defined(BUILD_INT4_EXAMPLE) && defined(CK_EXPERIMENTAL_BIT_INT_EXTENSION_INT4)
    static_assert(sizeof(ck::int4_t) == sizeof(int8_t));
    static_assert(sizeof(ADataType) == sizeof(KernelADataType));
    static_assert(sizeof(BDataType) == sizeof(KernelBDataType));
    static_assert(sizeof(EDataType) == sizeof(KernelEDataType));
#endif
    int group_count = problem_size.group_count;

    // GEMM shape
    std::vector<ck::tensor_operation::device::GemmDesc> gemm_descs;
    std::vector<const void*> p_a, p_b;
    std::vector<void*> p_c;

    gemm_descs.reserve(group_count);

    for(int i = 0; i < group_count; i++)
    {
        int M = problem_size.Ms[i];
        int N = problem_size.Ns[i];
        int K = problem_size.Ks[i];

        int stride_A = problem_size.stride_As[i];
        int stride_B = problem_size.stride_Bs[i];
        int stride_C = problem_size.stride_Cs[i];

        gemm_descs.push_back({M, N, K, stride_A, stride_B, stride_C, {}});
    }

    auto f_host_tensor_descriptor =
        [](std::size_t row, std::size_t col, std::size_t stride, auto layout) {
            using namespace ck::literals;

            if(std::is_same<decltype(layout), ck::tensor_layout::gemm::RowMajor>::value)
            {
                return HostTensorDescriptor({row, col}, {stride, 1_uz});
            }
            else
            {
                return HostTensorDescriptor({row, col}, {1_uz, stride});
            }
        };

    std::vector<Tensor<ADataType>> a_tensors;
    std::vector<Tensor<BDataType>> b_tensors;
    std::vector<Tensor<EDataType>> c_host_tensors;
#ifdef BUILD_INT4_EXAMPLE
    std::vector<Tensor<KernelEDataType>> c_device_tensors;
#else
    std::vector<Tensor<EDataType>> c_device_tensors;
#endif

    a_tensors.reserve(group_count);
    b_tensors.reserve(group_count);
    c_host_tensors.reserve(group_count);
    c_device_tensors.reserve(group_count);

    using DeviceMemPtr = std::unique_ptr<DeviceMem>;

    std::vector<DeviceMemPtr> a_tensors_device, b_tensors_device, c_tensors_device;

    a_tensors_device.reserve(group_count);
    b_tensors_device.reserve(group_count);
    c_tensors_device.reserve(group_count);

    std::size_t flop = 0, num_btype = 0;

    for(std::size_t i = 0; i < gemm_descs.size(); i++)
    {
        a_tensors.push_back(Tensor<ADataType>(f_host_tensor_descriptor(
            gemm_descs[i].M_, gemm_descs[i].K_, gemm_descs[i].stride_A_, ALayout{})));
        b_tensors.push_back(Tensor<BDataType>(f_host_tensor_descriptor(
            gemm_descs[i].K_, gemm_descs[i].N_, gemm_descs[i].stride_B_, BLayout{})));
        c_host_tensors.push_back(Tensor<EDataType>(f_host_tensor_descriptor(
            gemm_descs[i].M_, gemm_descs[i].N_, gemm_descs[i].stride_C_, ELayout{})));
#ifdef BUILD_INT4_EXAMPLE
        c_device_tensors.push_back(Tensor<KernelEDataType>(f_host_tensor_descriptor(
            gemm_descs[i].M_, gemm_descs[i].N_, gemm_descs[i].stride_C_, ELayout{})));
#else
        c_device_tensors.push_back(Tensor<EDataType>(f_host_tensor_descriptor(
            gemm_descs[i].M_, gemm_descs[i].N_, gemm_descs[i].stride_C_, ELayout{})));
#endif
        std::cout << "gemm[" << i << "] a_m_k: " << a_tensors[i].mDesc
                  << " b_k_n: " << b_tensors[i].mDesc << " c_m_n: " << c_device_tensors[i].mDesc
                  << std::endl;

        flop += std::size_t(2) * gemm_descs[i].M_ * gemm_descs[i].K_ * gemm_descs[i].N_;
        num_btype += sizeof(ADataType) * a_tensors[i].mDesc.GetElementSize() +
                     sizeof(BDataType) * b_tensors[i].mDesc.GetElementSize() +
                     sizeof(EDataType) * c_device_tensors[i].mDesc.GetElementSize();

        switch(config.init_method)
        {
        case 0: break;
        case 1:
            a_tensors[i].GenerateTensorValue(GeneratorTensor_2<ADataType>{-5, 5});
            b_tensors[i].GenerateTensorValue(GeneratorTensor_2<BDataType>{-5, 5});
            break;
        case 2:
            a_tensors[i].GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0});
            b_tensors[i].GenerateTensorValue(GeneratorTensor_3<BDataType>{-0.5, 0.5});
            break;
        default:
            a_tensors[i].GenerateTensorValue(GeneratorTensor_Sequential<0>{});
            b_tensors[i].GenerateTensorValue(GeneratorTensor_Sequential<1>{});
        }
    }

    for(std::size_t i = 0; i < gemm_descs.size(); i++)
    {
        a_tensors_device.emplace_back(std::make_unique<DeviceMem>(
            sizeof(ADataType) * a_tensors[i].mDesc.GetElementSpaceSize()));
        b_tensors_device.emplace_back(std::make_unique<DeviceMem>(
            sizeof(BDataType) * b_tensors[i].mDesc.GetElementSpaceSize()));
        c_tensors_device.emplace_back(std::make_unique<DeviceMem>(
            sizeof(EDataType) * c_device_tensors[i].mDesc.GetElementSpaceSize()));

#ifdef BUILD_INT4_EXAMPLE
        const Tensor<KernelADataType> a_converted(a_tensors[i]);
        const Tensor<KernelBDataType> b_converted(b_tensors[i]);

        a_tensors_device[i]->ToDevice(a_converted.mData.data());
        b_tensors_device[i]->ToDevice(b_converted.mData.data());
#else
        a_tensors_device[i]->ToDevice(a_tensors[i].mData.data());
        b_tensors_device[i]->ToDevice(b_tensors[i].mData.data());
#endif

        p_a.push_back(a_tensors_device[i]->GetDeviceBuffer());
        p_b.push_back(b_tensors_device[i]->GetDeviceBuffer());
        p_c.push_back(c_tensors_device[i]->GetDeviceBuffer());
    }

    auto a_element_op = AElementOp{};
    auto b_element_op = BElementOp{};
    auto c_element_op = CDEElementOp{};

    auto gemm    = DeviceGemmInstance{};
    auto invoker = gemm.MakeInvoker();

    std::vector<std::array<const void*, 0>> p_Ds = {};

    // do GEMM
    auto argument = gemm.MakeArgument(
        p_a, p_b, p_Ds, p_c, gemm_descs, a_element_op, b_element_op, c_element_op);

    DeviceMem gemm_desc_workspace(gemm.GetWorkSpaceSize(&argument));

    gemm.SetWorkSpacePointer(&argument, gemm_desc_workspace.GetDeviceBuffer());

    if(!gemm.IsSupportedArgument(argument))
    {
        throw std::runtime_error(
            "wrong! device_gemm with the specified compilation parameters does "
            "not support this GEMM problem");
    }

    invoker.Run(argument, StreamConfig{nullptr, false});

    bool pass = true;
    if(config.do_verification)
    {
        using ReferenceGemmInstance = ck::tensor_operation::host::ReferenceGemm<ADataType,
                                                                                BDataType,
                                                                                EDataType,
                                                                                AccDataType,
                                                                                AElementOp,
                                                                                BElementOp,
                                                                                CDEElementOp>;

        for(std::size_t i = 0; i < gemm_descs.size(); i++)
        {
            c_tensors_device[i]->FromDevice(c_device_tensors[i].mData.data());
            auto ref_gemm    = ReferenceGemmInstance{};
            auto ref_invoker = ref_gemm.MakeInvoker();

            auto ref_argument = ref_gemm.MakeArgument(a_tensors[i],
                                                      b_tensors[i],
                                                      c_host_tensors[i],
                                                      a_element_op,
                                                      b_element_op,
                                                      c_element_op);

            ref_invoker.Run(ref_argument);

#ifdef BUILD_INT4_EXAMPLE
            const Tensor<EDataType> c_device_result_converted(c_device_tensors[i]);
            pass &= ck::utils::check_err(c_device_result_converted, c_host_tensors[i]);

#else
            pass &= ck::utils::check_err(c_device_tensors[i], c_host_tensors[i]);
#endif
        }
    }

    if(config.time_kernel)
    {
        float ave_time   = invoker.Run(argument, StreamConfig{nullptr, config.time_kernel});
        float tflops     = static_cast<float>(flop) / 1.E9 / ave_time;
        float gb_per_sec = num_btype / 1.E6 / ave_time;

        std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec
                  << " GB/s, " << gemm.GetTypeString() << std::endl;
    }

    return pass;
}

bool run_grouped_gemm_example(int argc, char* argv[])
{
    ProblemSize problem_size;
    ExecutionConfig config;

    problem_size.group_count = 16;

    for(int i = 0; i < problem_size.group_count; i++)
    {
        problem_size.Ms.push_back(256 + 256 * i);
        problem_size.Ns.push_back(128 + 128 * i);
        problem_size.Ks.push_back(128 + 64 * i);

        problem_size.stride_As.push_back(problem_size.Ks[i]);
        problem_size.stride_Bs.push_back(problem_size.Ks[i]);
        problem_size.stride_Cs.push_back(problem_size.Ns[i]);
    }

    if(argc == 4)
    {
        config.do_verification = std::stoi(argv[1]);
        config.init_method     = std::stoi(argv[2]);
        config.time_kernel     = std::stoi(argv[3]);
    }
    else
    {
        printf("arg1: verification (0=no, 1=yes)\n");
        printf("arg2: initialization (0=no init, 1=integer value, 2=decimal value)\n");
        printf("arg3: time kernel (0=n0, 1=yes)\n");
        exit(0);
    }

    return run_grouped_gemm(problem_size, config);
}