pool2d_fwd_common.hpp 11.6 KB
Newer Older
Yang0001's avatar
Yang0001 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.

#pragma once

#include <iostream>

#include "ck/ck.hpp"
#include "ck/utility/reduction_enums.hpp"
#include "ck/utility/reduction_functions_accumulate.hpp"
#include "ck/tensor_operation/gpu/device/reduction_operator_mapping.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_pool2d_fwd_nhwc_nhwc.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"

#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"

template <typename InDataType,
          typename OutDataType,
          typename AccDataType,
          typename IndexDataType,
          ck::ReduceTensorOp ReduceOpId,
          bool PropagateNan,
          bool OutputIndex>
static void pool_host_verify(const Tensor<InDataType>& in,
                             Tensor<OutDataType>& out,
                             Tensor<IndexDataType>& out_indices,
                             const std::array<ck::index_t, 2>& window_spatial_lengths,
                             const std::array<ck::index_t, 2>& window_strides,
                             const std::array<ck::index_t, 2>& in_left_pads,
                             const std::array<ck::index_t, 2>& /*in_right_pads*/)
{
    const int32_t reduceLength = window_spatial_lengths[0] * window_spatial_lengths[1];

    using ReduceOperation = typename ck::reduce_binary_operator<ReduceOpId>::opType;

    auto elementwise_ops =
        ck::reduce_unary_operator<ReduceOpId, true, true>::GetElementwiseOperator(reduceLength);

    auto in_elementwise_op  = std::get<0>(elementwise_ops);
    auto acc_elementwise_op = std::get<1>(elementwise_ops);

    if constexpr(!OutputIndex)
    {
        using Accumulation =
            ck::detail::AccumulateWithNanCheck<PropagateNan, ReduceOperation, AccDataType>;

        auto f_nchw = [&](auto n, auto c, auto ho, auto wo) {
            auto accuVal = ReduceOperation::template GetIdentityValue<AccDataType>();

            for(ck::index_t y = 0; y < window_spatial_lengths[0]; ++y)
            {
                ck::index_t hi = ho * window_strides[0] + y - in_left_pads[0];
                for(ck::index_t x = 0; x < window_spatial_lengths[1]; ++x)
                {
                    ck::index_t wi = wo * window_strides[1] + x - in_left_pads[1];
                    if(hi >= 0 && hi < static_cast<ck::index_t>(in.mDesc.GetLengths()[2]) &&
                       wi >= 0 && wi < static_cast<ck::index_t>(in.mDesc.GetLengths()[3]))
                    {
                        AccDataType currVal = static_cast<AccDataType>(in(n, c, hi, wi));

                        in_elementwise_op(currVal, currVal);

                        Accumulation::Calculate(accuVal, currVal);
                    }
                }
            }

            acc_elementwise_op(accuVal, accuVal);

            out(n, c, ho, wo) = accuVal;
        };

        make_ParallelTensorFunctor(f_nchw,
                                   out.mDesc.GetLengths()[0],
                                   out.mDesc.GetLengths()[1],
                                   out.mDesc.GetLengths()[2],
                                   out.mDesc.GetLengths()[3])(std::thread::hardware_concurrency());
    }
    else
    {
        using Accumulation = ck::detail::AccumulateWithIndexAndNanCheck<PropagateNan,
                                                                        ReduceOperation,
                                                                        AccDataType,
                                                                        IndexDataType>;
        auto f_nchw        = [&](auto n, auto c, auto ho, auto wo) {
            auto accuVal            = ReduceOperation::template GetIdentityValue<AccDataType>();
            IndexDataType accuIndex = 0;

            for(ck::index_t y = 0; y < window_spatial_lengths[0]; ++y)
            {
                ck::index_t hi = ho * window_strides[0] + y - in_left_pads[0];
                for(ck::index_t x = 0; x < window_spatial_lengths[1]; ++x)
                {
                    ck::index_t wi = wo * window_strides[1] + x - in_left_pads[1];
                    if(hi >= 0 && hi < in.mDesc.GetLengths()[2] && wi >= 0 &&
                       wi < in.mDesc.GetLengths()[3])
                    {
                        AccDataType currVal     = static_cast<AccDataType>(in(n, c, hi, wi));
                        IndexDataType currIndex = y * window_spatial_lengths[1] + x;

                        in_elementwise_op(currVal, currVal);

                        Accumulation::Calculate(accuVal, currVal, accuIndex, currIndex);
                    }
                }
            }

            acc_elementwise_op(accuVal, accuVal);

            out(n, c, ho, wo)         = accuVal;
            out_indices(n, c, ho, wo) = accuIndex;
        };

        make_ParallelTensorFunctor(f_nchw,
                                   out.mDesc.GetLengths()[0],
                                   out.mDesc.GetLengths()[1],
                                   out.mDesc.GetLengths()[2],
                                   out.mDesc.GetLengths()[3])(std::thread::hardware_concurrency());
    };
}

template <typename InDataType,
          typename OutDataType,
          typename AccDataType,
          typename IndexDataType,
          typename InLayout,
          typename OutLayout,
          ck::ReduceTensorOp ReduceOpId,
          bool PropagateNan,
          bool OutputIndex>
bool pool_test(bool do_verification,
               int init_method,
               bool time_kernel,
               ck::index_t N,
               ck::index_t C,
               ck::index_t Y,
               ck::index_t X,
               ck::index_t Hi,
               ck::index_t Wi,
               ck::index_t window_stride_h,
               ck::index_t window_stride_w,
               ck::index_t in_left_pad_h,
               ck::index_t in_left_pad_w,
               ck::index_t in_right_pad_h,
               ck::index_t in_right_pad_w)
{
    using DevicePoolFwdInstance =
        ck::tensor_operation::device::DevicePool2dFwd_Input_N_Hi_Wi_C_Output_N_Ho_Wo_C<
            InDataType,  // InDataType
            OutDataType, // OutDataType
            AccDataType, // AccDataType
            ReduceOpId,
            OutputIndex,
            64, // BlockSize
            64, // ReduceMThreadClusterSize
            1,  // ReduceKThreadClusterSize
            4,  // ReduceMThreadSliceSize
            1,  // ReduceKThreadSliceSize
            4>; // InSrcOutDstVectorSize

    const ck::index_t Ho = (Hi + in_left_pad_h + in_right_pad_h - Y) / window_stride_h + 1;
    const ck::index_t Wo = (Wi + in_left_pad_w + in_right_pad_w - X) / window_stride_w + 1;

    const std::array<ck::index_t, 2> window_spatial_lengths{{Y, X}};
    const std::array<ck::index_t, 2> window_strides{{window_stride_h, window_stride_w}};
    const std::array<ck::index_t, 2> input_left_pads{{in_left_pad_h, in_left_pad_w}};
    const std::array<ck::index_t, 2> input_right_pads{{in_right_pad_h, in_right_pad_w}};

    // tensor layout
    auto f_host_tensor_descriptor =
        [](std::size_t N_, std::size_t C_, std::size_t H, std::size_t W, auto layout) {
            using namespace ck::literals;

            if constexpr(ck::is_same<decltype(layout), ck::tensor_layout::convolution::NCHW>::value)
            {
                return HostTensorDescriptor({N_, C_, H, W}, {C_ * H * W, H * W, W, 1_uz});
            }
            else if constexpr(ck::is_same<decltype(layout),
                                          ck::tensor_layout::convolution::NHWC>::value)
            {
                return HostTensorDescriptor({N_, C_, H, W}, {C_ * H * W, 1_uz, W * C_, C_});
            }
        };

    Tensor<InDataType> in_n_c_hi_wi(f_host_tensor_descriptor(N, C, Hi, Wi, InLayout{}));
    Tensor<OutDataType> out_n_c_ho_wo_host(f_host_tensor_descriptor(N, C, Ho, Wo, OutLayout{}));
    Tensor<IndexDataType> out_indices_n_c_ho_wo_host(
        f_host_tensor_descriptor(N, C, Ho, Wo, OutLayout{}));
    Tensor<OutDataType> out_n_c_ho_wo_device(f_host_tensor_descriptor(N, C, Ho, Wo, OutLayout{}));
    Tensor<IndexDataType> out_indices_n_c_ho_wo_device(
        f_host_tensor_descriptor(N, C, Ho, Wo, OutLayout{}));

    std::cout << "in_n_c_hi_wi: " << in_n_c_hi_wi.mDesc << std::endl;
    std::cout << "out_n_c_ho_wo: " << out_n_c_ho_wo_host.mDesc << std::endl;

    switch(init_method)
    {
    case 0: break;
    case 1: in_n_c_hi_wi.GenerateTensorValue(GeneratorTensor_1<InDataType>{1}); break;
    case 2: in_n_c_hi_wi.GenerateTensorValue(GeneratorTensor_2<InDataType>{-5, 5}); break;
    default: in_n_c_hi_wi.GenerateTensorValue(GeneratorTensor_3<InDataType>{-5.0, 5.0});
    }

    DeviceMem in_device_buf(sizeof(InDataType) * in_n_c_hi_wi.mDesc.GetElementSpaceSize());
    DeviceMem out_device_buf(sizeof(OutDataType) *
                             out_n_c_ho_wo_device.mDesc.GetElementSpaceSize());
    DeviceMem out_indices_device_buf(sizeof(IndexDataType) *
                                     out_indices_n_c_ho_wo_device.mDesc.GetElementSpaceSize());

    in_device_buf.ToDevice(in_n_c_hi_wi.mData.data());

    auto pool         = DevicePoolFwdInstance{};
    auto invoker_ptr  = pool.MakeInvokerPointer();
    auto argument_ptr = pool.MakeArgumentPointer(
        static_cast<InDataType*>(in_device_buf.GetDeviceBuffer()),
        static_cast<OutDataType*>(out_device_buf.GetDeviceBuffer()),
        static_cast<IndexDataType*>(out_indices_device_buf.GetDeviceBuffer()),
        N,
        C,
        std::array<ck::index_t, 2>{{Hi, Wi}},
        std::array<ck::index_t, 2>{{Y, X}},
        std::array<ck::index_t, 2>{{Ho, Wo}},
        window_strides,
        input_left_pads,
        input_right_pads);

    if(!pool.IsSupportedArgument(argument_ptr.get()))
    {
        throw std::runtime_error("wrong! device_op with the specified compilation parameters does "
                                 "not support this problem");
    }

    float ave_time = invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, time_kernel});

    std::size_t flop = std::size_t(2) * N * C * Ho * Wo * Y * X;

    std::size_t num_btype =
        sizeof(InDataType) * (N * C * Hi * Wi) + sizeof(OutDataType) * (N * C * Ho * Wo);

    float tflops = static_cast<float>(flop) / 1.E9 / ave_time;

    float gb_per_sec = num_btype / 1.E6 / ave_time;

    std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec << " GB/s"
              << std::endl;

    bool pass = true;

    if(do_verification)
    {
        pool_host_verify<InDataType,
                         OutDataType,
                         AccDataType,
                         IndexDataType,
                         ReduceOpId,
                         PropagateNan,
                         OutputIndex>(in_n_c_hi_wi,
                                      out_n_c_ho_wo_host,
                                      out_indices_n_c_ho_wo_host,
                                      window_spatial_lengths,
                                      window_strides,
                                      input_left_pads,
                                      input_right_pads);

        out_device_buf.FromDevice(out_n_c_ho_wo_device.mData.data());

        pass = pass && ck::utils::check_err(out_n_c_ho_wo_device, out_n_c_ho_wo_host);

        if constexpr(OutputIndex)
        {
            out_indices_device_buf.FromDevice(out_indices_n_c_ho_wo_device.mData.data());

            pass = pass &&
                   ck::utils::check_err(out_indices_n_c_ho_wo_device, out_indices_n_c_ho_wo_host);
        };
    }

    return (pass);
};