reduce_multiblock_atomic_add_impl.hpp 9.09 KB
Newer Older
Yang0001's avatar
Yang0001 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.

#pragma once

#include <iostream>

#include "ck/ck.hpp"
#include "ck/utility/reduction_enums.hpp"
#include "ck/tensor_operation/gpu/device/reduction_operator_mapping.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_reduce_multiblock.hpp"

#include "ck/library/utility/algorithm.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/host_common_util.hpp"
#include "ck/library/utility/host_reduction.hpp"

#include "reduce_example_common.hpp"

template <typename InOutDataType,
          typename AccDataType,
          ck::ReduceTensorOp ReduceOpId,
          ck::index_t Rank,
          ck::index_t NumReduceDim,
          bool PropagateNan>
int reduce_multiblock_atomic_add_impl(bool do_verification,
                                      int init_method,
                                      bool time_kernel,
                                      const std::vector<size_t>& inLengths,
                                      const std::array<int, NumReduceDim>& reduceDims,
                                      float alpha,
                                      float beta)

{
    using namespace ck;
    using namespace ck::tensor_operation::device;

    constexpr index_t NumOutDim = (Rank - NumReduceDim == 0) ? 1 : Rank - NumReduceDim;

    constexpr bool op_support_atomic_add =
        (ReduceOpId == ReduceTensorOp::ADD || ReduceOpId == ReduceTensorOp::AVG);

    constexpr bool invalid_reduce_1 = !op_support_atomic_add;
    constexpr bool invalid_reduce_2 =
        !(std::is_same<InOutDataType, float>::value || std::is_same<InOutDataType, double>::value);

    constexpr bool invalid_reduce = (invalid_reduce_1 || invalid_reduce_2);

    if(invalid_reduce)
    {
        std::cerr << "The reduction setting is invalid, exiting!" << std::endl;
        return (-1);
    };

    using ReduceOperation = typename reduce_binary_operator<ReduceOpId>::opType;
    using InElementwiseOperation =
        typename reduce_unary_operator<ReduceOpId, true, true>::InElementwiseOperation;
    using AccElementwiseOperation =
        typename reduce_unary_operator<ReduceOpId, true, true>::AccElementwiseOperation;

    using DeviceReduceInstance =
        ck::tensor_operation::device::DeviceReduceMultiBlock<InOutDataType,
                                                             AccDataType,
                                                             InOutDataType,
                                                             Rank,
                                                             NumReduceDim,
                                                             ReduceOperation,
                                                             InElementwiseOperation,
                                                             AccElementwiseOperation,
                                                             InMemoryDataOperationEnum::AtomicAdd,
                                                             PropagateNan,
                                                             false,
                                                             false, // HaveIndexInputIfOutputIndex
                                                             256,
                                                             4,
                                                             64,
                                                             1,
                                                             1,
                                                             0,
                                                             1,
                                                             1>;

    Tensor<InOutDataType> in(inLengths);

    std::vector<size_t> outLengths;

    auto invariantDims = get_invariant_dims<Rank, NumReduceDim>(reduceDims);

    if(invariantDims.empty())
        outLengths.push_back(1);
    else
        for(auto dim : invariantDims)
            outLengths.push_back(inLengths[dim]);

    Tensor<InOutDataType> out_ref(outLengths);
    Tensor<InOutDataType> out(outLengths);

    auto inStrides  = in.mDesc.GetStrides();
    auto outStrides = out.mDesc.GetStrides();

    size_t invariant_total_length = out.mDesc.GetElementSize();
    size_t reduce_total_length    = in.mDesc.GetElementSize() / invariant_total_length;

    std::size_t num_thread = 1;

    if(do_verification)
    {
        switch(init_method)
        {
        case 0: break;
        case 1:
            in.GenerateTensorValue(GeneratorTensor_1<InOutDataType>{1}, num_thread);
            if(beta != 0.0f)
                out_ref.GenerateTensorValue(GeneratorTensor_1<InOutDataType>{1}, num_thread);
            break;
        case 2:
            in.GenerateTensorValue(GeneratorTensor_2<InOutDataType>{-5, 5}, num_thread);
            if(beta != 0.0f)
                out_ref.GenerateTensorValue(GeneratorTensor_2<InOutDataType>{-5, 5}, num_thread);
            break;
        default:
            in.GenerateTensorValue(GeneratorTensor_3<InOutDataType>{-5.0, 5.0}, num_thread);
            if(beta != 0.0f)
                out_ref.GenerateTensorValue(GeneratorTensor_3<InOutDataType>{-5.0, 5.0},
                                            num_thread);
        }

        if(beta != 0.0f)
            for(size_t i = 0; i < out_ref.mDesc.GetElementSpaceSize(); i++)
                out.mData[i] = out_ref.mData[i];
    };

    // these buffers are usually provided by the user application
    DeviceMem in_dev(sizeof(InOutDataType) * in.mDesc.GetElementSpaceSize());
    DeviceMem out_dev(sizeof(InOutDataType) * out.mDesc.GetElementSpaceSize());

    in_dev.ToDevice(in.mData.data());

    if(beta != 0.0f)
        out_dev.ToDevice(out.mData.data());

    InElementwiseOperation in_elementwise_op;
    AccElementwiseOperation acc_elementwise_op;

    std::tie(in_elementwise_op, acc_elementwise_op) =
        reduce_unary_operator<ReduceOpId, true, true>::GetElementwiseOperator(
            static_cast<int32_t>(reduce_total_length));

    if(do_verification)
    {
        ReductionHost<InOutDataType,
                      AccDataType,
                      InOutDataType,
                      ReduceOperation,
                      InElementwiseOperation,
                      AccElementwiseOperation,
                      Rank,
                      NumReduceDim,
                      PropagateNan,
                      false>
            hostReduce(in.mDesc, out_ref.mDesc, invariantDims, reduceDims);

        hostReduce.Run(alpha,
                       in.mData.data(),
                       beta,
                       out_ref.mData.data(),
                       nullptr,
                       in_elementwise_op,
                       acc_elementwise_op);
    };

    std::array<index_t, Rank> arrInLengths;
    std::array<index_t, Rank> arrInStrides;
    std::array<index_t, NumOutDim> arrOutLengths;
    std::array<index_t, NumOutDim> arrOutStrides;

    ck::ranges::copy(inLengths, arrInLengths.begin());
    ck::ranges::copy(inStrides, arrInStrides.begin());
    ck::ranges::copy(outLengths, arrOutLengths.begin());
    ck::ranges::copy(outStrides, arrOutStrides.begin());

    auto reduce = DeviceReduceInstance{};

    auto argument_ptr = reduce.MakeArgumentPointer(arrInLengths,
                                                   arrInStrides,
                                                   arrOutLengths,
                                                   arrOutStrides,
                                                   reduceDims,
                                                   alpha,
                                                   beta,
                                                   in_dev.GetDeviceBuffer(),
                                                   nullptr,
                                                   out_dev.GetDeviceBuffer(),
                                                   nullptr,
                                                   in_elementwise_op,
                                                   acc_elementwise_op);

    if(!reduce.IsSupportedArgument(argument_ptr.get()))
    {
        std::cerr
            << "The runtime parameters seems not supported by the DeviceReduce instance, exiting!"
            << std::endl;

        return (-2);
    };

    std::string reduce_name = reduce.GetTypeString();

    auto invoker_ptr = reduce.MakeInvokerPointer();

    float avg_time = invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, time_kernel});

    std::size_t num_bytes = invariant_total_length * reduce_total_length * sizeof(InOutDataType) +
                            invariant_total_length * sizeof(InOutDataType);

    float gb_per_sec = num_bytes / 1.E6 / avg_time;

    std::cout << "Perf: " << avg_time << " ms, " << gb_per_sec << " GB/s, " << reduce_name
              << std::endl;

    bool pass = true;

    if(do_verification)
    {
        out_dev.FromDevice(out.mData.data());
        pass = pass && ck::utils::check_err(out, out_ref);
    };

    return (pass ? 0 : 1);
}