test_layernorm_util.hpp 7.87 KB
Newer Older
rocking5566's avatar
rocking5566 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.

#pragma once

#include <vector>
#include <iostream>
#include <gtest/gtest.h>

#include "ck/ck.hpp"
#include "ck/utility/number.hpp"
#include "ck/tensor_operation/gpu/device/device_layernorm.hpp"

#include "ck/library/utility/check_err.hpp"
#include "ck/library/host_tensor/host_tensor.hpp"
#include "ck/library/host_tensor/device_memory.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_layernorm.hpp"

namespace ck {

template <typename Range>
std::string serialize_range(const Range& range)
{
    std::stringstream ss;
    for(auto& r : range)
    {
        ss << r << ", ";
    }
    std::string str = ss.str();
    return std::string(str.begin(), str.end() - 2);
}

template <typename Tuple>
class TestLayernorm : public ::testing::Test
{
    protected:
    using XDataType                             = std::tuple_element_t<0, Tuple>;
    using GammaDataType                         = std::tuple_element_t<1, Tuple>;
    using BetaDataType                          = std::tuple_element_t<2, Tuple>;
    using AccDataType                           = std::tuple_element_t<3, Tuple>;
    using YDataType                             = std::tuple_element_t<4, Tuple>;
    static constexpr index_t Rank               = std::tuple_element_t<5, Tuple>{}.value;
    static constexpr index_t NumReduceDim       = std::tuple_element_t<6, Tuple>{}.value;
    static constexpr index_t BlockSize          = std::tuple_element_t<7, Tuple>{}.value;
    static constexpr index_t MThreadClusterSize = std::tuple_element_t<8, Tuple>{}.value;
    static constexpr index_t KThreadClusterSize = std::tuple_element_t<9, Tuple>{}.value;
    static constexpr index_t MThreadSliceSize   = std::tuple_element_t<10, Tuple>{}.value;
    static constexpr index_t KThreadSliceSize   = std::tuple_element_t<11, Tuple>{}.value;
    static constexpr index_t XYSrcVectorDim     = std::tuple_element_t<12, Tuple>{}.value;
    static constexpr index_t XSrcVectorSize     = std::tuple_element_t<13, Tuple>{}.value;
    static constexpr index_t GammaSrcVectorSize = std::tuple_element_t<14, Tuple>{}.value;
    static constexpr index_t BetaSrcVectorSize  = std::tuple_element_t<15, Tuple>{}.value;
    static constexpr index_t YDstVectorSize     = std::tuple_element_t<16, Tuple>{}.value;

    using PassThrough = ck::tensor_operation::element_wise::PassThrough;

    using ReferenceInstance = tensor_operation::host::ReferenceLayernorm<XDataType,
                                                                         GammaDataType,
                                                                         BetaDataType,
                                                                         YDataType,
                                                                         AccDataType,
                                                                         PassThrough,
                                                                         Rank,
                                                                         NumReduceDim>;

    using DeviceInstance = tensor_operation::device::DeviceLayernorm<XDataType,
                                                                     GammaDataType,
                                                                     BetaDataType,
                                                                     AccDataType,
                                                                     YDataType,
                                                                     PassThrough,
                                                                     Rank,
                                                                     NumReduceDim,
                                                                     BlockSize,
                                                                     MThreadClusterSize,
                                                                     KThreadClusterSize,
                                                                     MThreadSliceSize,
                                                                     KThreadSliceSize,
                                                                     XYSrcVectorDim,
                                                                     XSrcVectorSize,
                                                                     GammaSrcVectorSize,
                                                                     BetaSrcVectorSize,
                                                                     YDstVectorSize>;

    TestLayernorm() : ref_instance_invoker_(ReferenceInstance{}.MakeInvoker()) {}

    void RunSingle(std::vector<index_t> lengths, std::vector<index_t> reduceDims)
    {
        std::vector<index_t> reduceLength(reduceDims.size());
        for(int i = 0; i < NumReduceDim; ++i)
        {
            reduceLength[i] = lengths[reduceDims[i]];
        }

        Tensor<XDataType> x(lengths);
        Tensor<GammaDataType> gamma(reduceLength);
        Tensor<BetaDataType> beta(reduceLength);
        Tensor<YDataType> y(lengths);
        Tensor<YDataType> y_ref(lengths);

        x.GenerateTensorValue(GeneratorTensor_3<XDataType>{0, 1.0});
        gamma.GenerateTensorValue(GeneratorTensor_3<GammaDataType>{0.0, 1.0});
        beta.GenerateTensorValue(GeneratorTensor_3<BetaDataType>{0.0, 1.0});

        DeviceMem x_dev(sizeof(XDataType) * x.mDesc.GetElementSpace());
        DeviceMem gamma_dev(sizeof(GammaDataType) * gamma.mDesc.GetElementSpace());
        DeviceMem beta_dev(sizeof(BetaDataType) * beta.mDesc.GetElementSpace());
        DeviceMem y_dev(sizeof(YDataType) * y.mDesc.GetElementSpace());

        x_dev.ToDevice(x.mData.data());
        gamma_dev.ToDevice(gamma.mData.data());
        beta_dev.ToDevice(beta.mData.data());

        auto device_instance = DeviceInstance{};
        auto argument_ptr    = device_instance.MakeArgumentPointer(
            lengths,
            std::vector<ck::index_t>{x.mDesc.GetStrides().begin(), x.mDesc.GetStrides().end()},
            std::vector<ck::index_t>{gamma.mDesc.GetStrides().begin(),
                                     gamma.mDesc.GetStrides().end()},
            std::vector<ck::index_t>{beta.mDesc.GetStrides().begin(),
                                     beta.mDesc.GetStrides().end()},
            reduceDims,
            1e-4,
            x_dev.GetDeviceBuffer(),
            gamma_dev.GetDeviceBuffer(),
            beta_dev.GetDeviceBuffer(),
            y_dev.GetDeviceBuffer(),
            PassThrough{});

        if(!device_instance.IsSupportedArgument(argument_ptr.get()))
        {
            return;
        }

        auto invoker_ptr = device_instance.MakeInvokerPointer();
        invoker_ptr->Run(argument_ptr.get());

        ref_instance_invoker_.Run(
            {x, gamma, beta, y_ref, PassThrough{}, lengths, reduceDims, 1e-4});

        y_dev.FromDevice(y.mData.data());

        bool pass;

        if(std::is_same<XDataType, int8_t>::value)
        {
            EXPECT_TRUE(pass = ck::utils::check_err(
                            y.mData, y_ref.mData, "Error: Incorrect results!", 0, 1));
        }
        else
        {
            EXPECT_TRUE(pass = ck::utils::check_err(
                            y.mData, y_ref.mData, "Error: Incorrect results d1", 1e-3, 1e-3));
        }

        if(!pass)
        {
            FAIL() << "Failure in input lengths = [" << serialize_range(lengths) << "], "
                   << "reduce dim = [" << serialize_range(reduceDims) << "].";
        }
    }

    void Run()
    {
        for(auto length : this->lengths_)
        {
            this->RunSingle(length, reduceDims_[0]);
        }
    }

    std::vector<std::vector<index_t>> lengths_ = {
        {4, 256}, {8, 511}, {9, 1032}, {4, 2048}, {1, 8192}, {4000, 2000}};

    std::vector<std::vector<index_t>> reduceDims_ = {{1}};

    typename ReferenceInstance::Invoker ref_instance_invoker_;
};
} // namespace ck